예제 #1
0
파일: sgecon.c 프로젝트: otoauler/sdkpub
/* Subroutine */ int sgecon_(char *norm, integer *n, real *a, integer *lda,
                             real *anorm, real *rcond, real *work, integer *iwork, integer *info)
{
    /*  -- LAPACK routine (version 3.0) --
           Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
           Courant Institute, Argonne National Lab, and Rice University
           February 29, 1992


        Purpose
        =======

        SGECON estimates the reciprocal of the condition number of a general
        real matrix A, in either the 1-norm or the infinity-norm, using
        the LU factorization computed by SGETRF.

        An estimate is obtained for norm(inv(A)), and the reciprocal of the
        condition number is computed as
           RCOND = 1 / ( norm(A) * norm(inv(A)) ).

        Arguments
        =========

        NORM    (input) CHARACTER*1
                Specifies whether the 1-norm condition number or the
                infinity-norm condition number is required:
                = '1' or 'O':  1-norm;
                = 'I':         Infinity-norm.

        N       (input) INTEGER
                The order of the matrix A.  N >= 0.

        A       (input) REAL array, dimension (LDA,N)
                The factors L and U from the factorization A = P*L*U
                as computed by SGETRF.

        LDA     (input) INTEGER
                The leading dimension of the array A.  LDA >= max(1,N).

        ANORM   (input) REAL
                If NORM = '1' or 'O', the 1-norm of the original matrix A.
                If NORM = 'I', the infinity-norm of the original matrix A.

        RCOND   (output) REAL
                The reciprocal of the condition number of the matrix A,
                computed as RCOND = 1/(norm(A) * norm(inv(A))).

        WORK    (workspace) REAL array, dimension (4*N)

        IWORK   (workspace) INTEGER array, dimension (N)

        INFO    (output) INTEGER
                = 0:  successful exit
                < 0:  if INFO = -i, the i-th argument had an illegal value

        =====================================================================


           Test the input parameters.

           Parameter adjustments */
    /* Table of constant values */
    static integer c__1 = 1;

    /* System generated locals */
    integer a_dim1, a_offset, i__1;
    real r__1;
    /* Local variables */
    static integer kase, kase1;
    static real scale;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int srscl_(integer *, real *, real *, integer *);
    static real sl;
    static integer ix;
    extern doublereal slamch_(char *);
    static real su;
    extern /* Subroutine */ int xerbla_(char *, integer *), slacon_(
        integer *, real *, real *, integer *, real *, integer *);
    extern integer isamax_(integer *, real *, integer *);
    static real ainvnm;
    static logical onenrm;
    static char normin[1];
    extern /* Subroutine */ int slatrs_(char *, char *, char *, char *,
                                        integer *, real *, integer *, real *, real *, real *, integer *);
    static real smlnum;


    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    --work;
    --iwork;

    /* Function Body */
    *info = 0;
    onenrm = *(unsigned char *)norm == '1' || lsame_(norm, "O");
    if (! onenrm && ! lsame_(norm, "I")) {
        *info = -1;
    } else if (*n < 0) {
        *info = -2;
    } else if (*lda < max(1,*n)) {
        *info = -4;
    } else if (*anorm < 0.f) {
        *info = -5;
    }
    if (*info != 0) {
        i__1 = -(*info);
        xerbla_("SGECON", &i__1);
        return 0;
    }

    /*     Quick return if possible */

    *rcond = 0.f;
    if (*n == 0) {
        *rcond = 1.f;
        return 0;
    } else if (*anorm == 0.f) {
        return 0;
    }

    smlnum = slamch_("Safe minimum");

    /*     Estimate the norm of inv(A). */

    ainvnm = 0.f;
    *(unsigned char *)normin = 'N';
    if (onenrm) {
        kase1 = 1;
    } else {
        kase1 = 2;
    }
    kase = 0;
L10:
    slacon_(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase);
    if (kase != 0) {
        if (kase == kase1) {

            /*           Multiply by inv(L). */

            slatrs_("Lower", "No transpose", "Unit", normin, n, &a[a_offset],
                    lda, &work[1], &sl, &work[(*n << 1) + 1], info);

            /*           Multiply by inv(U). */

            slatrs_("Upper", "No transpose", "Non-unit", normin, n, &a[
                        a_offset], lda, &work[1], &su, &work[*n * 3 + 1], info);
        } else {

            /*           Multiply by inv(U'). */

            slatrs_("Upper", "Transpose", "Non-unit", normin, n, &a[a_offset],
                    lda, &work[1], &su, &work[*n * 3 + 1], info);

            /*           Multiply by inv(L'). */

            slatrs_("Lower", "Transpose", "Unit", normin, n, &a[a_offset],
                    lda, &work[1], &sl, &work[(*n << 1) + 1], info);
        }

        /*        Divide X by 1/(SL*SU) if doing so will not cause overflow. */

        scale = sl * su;
        *(unsigned char *)normin = 'Y';
        if (scale != 1.f) {
            ix = isamax_(n, &work[1], &c__1);
            if (scale < (r__1 = work[ix], dabs(r__1)) * smlnum || scale ==
                    0.f) {
                goto L20;
            }
            srscl_(n, &scale, &work[1], &c__1);
        }
        goto L10;
    }

    /*     Compute the estimate of the reciprocal condition number. */

    if (ainvnm != 0.f) {
        *rcond = 1.f / ainvnm / *anorm;
    }

L20:
    return 0;

    /*     End of SGECON */

} /* sgecon_ */
예제 #2
0
파일: slaein.c 프로젝트: flame/libflame
/* Subroutine */
int slaein_(logical *rightv, logical *noinit, integer *n, real *h__, integer *ldh, real *wr, real *wi, real *vr, real *vi, real *b, integer *ldb, real *work, real *eps3, real *smlnum, real *bignum, integer *info)
{
    /* System generated locals */
    integer b_dim1, b_offset, h_dim1, h_offset, i__1, i__2, i__3, i__4;
    real r__1, r__2, r__3, r__4;
    /* Builtin functions */
    double sqrt(doublereal);
    /* Local variables */
    integer i__, j;
    real w, x, y;
    integer i1, i2, i3;
    real w1, ei, ej, xi, xr, rec;
    integer its, ierr;
    real temp, norm, vmax;
    extern real snrm2_(integer *, real *, integer *);
    real scale;
    extern /* Subroutine */
    int sscal_(integer *, real *, real *, integer *);
    char trans[1];
    real vcrit;
    extern real sasum_(integer *, real *, integer *);
    real rootn, vnorm;
    extern real slapy2_(real *, real *);
    real absbii, absbjj;
    extern integer isamax_(integer *, real *, integer *);
    extern /* Subroutine */
    int sladiv_(real *, real *, real *, real *, real * , real *);
    char normin[1];
    real nrmsml;
    extern /* Subroutine */
    int slatrs_(char *, char *, char *, char *, integer *, real *, integer *, real *, real *, real *, integer *);
    real growto;
    /* -- LAPACK auxiliary routine (version 3.4.2) -- */
    /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
    /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
    /* September 2012 */
    /* .. Scalar Arguments .. */
    /* .. */
    /* .. Array Arguments .. */
    /* .. */
    /* ===================================================================== */
    /* .. Parameters .. */
    /* .. */
    /* .. Local Scalars .. */
    /* .. */
    /* .. External Functions .. */
    /* .. */
    /* .. External Subroutines .. */
    /* .. */
    /* .. Intrinsic Functions .. */
    /* .. */
    /* .. Executable Statements .. */
    /* Parameter adjustments */
    h_dim1 = *ldh;
    h_offset = 1 + h_dim1;
    h__ -= h_offset;
    --vr;
    --vi;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    --work;
    /* Function Body */
    *info = 0;
    /* GROWTO is the threshold used in the acceptance test for an */
    /* eigenvector. */
    rootn = sqrt((real) (*n));
    growto = .1f / rootn;
    /* Computing MAX */
    r__1 = 1.f;
    r__2 = *eps3 * rootn; // , expr subst
    nrmsml = max(r__1,r__2) * *smlnum;
    /* Form B = H - (WR,WI)*I (except that the subdiagonal elements and */
    /* the imaginary parts of the diagonal elements are not stored). */
    i__1 = *n;
    for (j = 1;
            j <= i__1;
            ++j)
    {
        i__2 = j - 1;
        for (i__ = 1;
                i__ <= i__2;
                ++i__)
        {
            b[i__ + j * b_dim1] = h__[i__ + j * h_dim1];
            /* L10: */
        }
        b[j + j * b_dim1] = h__[j + j * h_dim1] - *wr;
        /* L20: */
    }
    if (*wi == 0.f)
    {
        /* Real eigenvalue. */
        if (*noinit)
        {
            /* Set initial vector. */
            i__1 = *n;
            for (i__ = 1;
                    i__ <= i__1;
                    ++i__)
            {
                vr[i__] = *eps3;
                /* L30: */
            }
        }
        else
        {
            /* Scale supplied initial vector. */
            vnorm = snrm2_(n, &vr[1], &c__1);
            r__1 = *eps3 * rootn / max(vnorm,nrmsml);
            sscal_(n, &r__1, &vr[1], &c__1);
        }
        if (*rightv)
        {
            /* LU decomposition with partial pivoting of B, replacing zero */
            /* pivots by EPS3. */
            i__1 = *n - 1;
            for (i__ = 1;
                    i__ <= i__1;
                    ++i__)
            {
                ei = h__[i__ + 1 + i__ * h_dim1];
                if ((r__1 = b[i__ + i__ * b_dim1], f2c_abs(r__1)) < f2c_abs(ei))
                {
                    /* Interchange rows and eliminate. */
                    x = b[i__ + i__ * b_dim1] / ei;
                    b[i__ + i__ * b_dim1] = ei;
                    i__2 = *n;
                    for (j = i__ + 1;
                            j <= i__2;
                            ++j)
                    {
                        temp = b[i__ + 1 + j * b_dim1];
                        b[i__ + 1 + j * b_dim1] = b[i__ + j * b_dim1] - x * temp;
                        b[i__ + j * b_dim1] = temp;
                        /* L40: */
                    }
                }
                else
                {
                    /* Eliminate without interchange. */
                    if (b[i__ + i__ * b_dim1] == 0.f)
                    {
                        b[i__ + i__ * b_dim1] = *eps3;
                    }
                    x = ei / b[i__ + i__ * b_dim1];
                    if (x != 0.f)
                    {
                        i__2 = *n;
                        for (j = i__ + 1;
                                j <= i__2;
                                ++j)
                        {
                            b[i__ + 1 + j * b_dim1] -= x * b[i__ + j * b_dim1] ;
                            /* L50: */
                        }
                    }
                }
                /* L60: */
            }
            if (b[*n + *n * b_dim1] == 0.f)
            {
                b[*n + *n * b_dim1] = *eps3;
            }
            *(unsigned char *)trans = 'N';
        }
        else
        {
            /* UL decomposition with partial pivoting of B, replacing zero */
            /* pivots by EPS3. */
            for (j = *n;
                    j >= 2;
                    --j)
            {
                ej = h__[j + (j - 1) * h_dim1];
                if ((r__1 = b[j + j * b_dim1], f2c_abs(r__1)) < f2c_abs(ej))
                {
                    /* Interchange columns and eliminate. */
                    x = b[j + j * b_dim1] / ej;
                    b[j + j * b_dim1] = ej;
                    i__1 = j - 1;
                    for (i__ = 1;
                            i__ <= i__1;
                            ++i__)
                    {
                        temp = b[i__ + (j - 1) * b_dim1];
                        b[i__ + (j - 1) * b_dim1] = b[i__ + j * b_dim1] - x * temp;
                        b[i__ + j * b_dim1] = temp;
                        /* L70: */
                    }
                }
                else
                {
                    /* Eliminate without interchange. */
                    if (b[j + j * b_dim1] == 0.f)
                    {
                        b[j + j * b_dim1] = *eps3;
                    }
                    x = ej / b[j + j * b_dim1];
                    if (x != 0.f)
                    {
                        i__1 = j - 1;
                        for (i__ = 1;
                                i__ <= i__1;
                                ++i__)
                        {
                            b[i__ + (j - 1) * b_dim1] -= x * b[i__ + j * b_dim1];
                            /* L80: */
                        }
                    }
                }
                /* L90: */
            }
            if (b[b_dim1 + 1] == 0.f)
            {
                b[b_dim1 + 1] = *eps3;
            }
            *(unsigned char *)trans = 'T';
        }
        *(unsigned char *)normin = 'N';
        i__1 = *n;
        for (its = 1;
                its <= i__1;
                ++its)
        {
            /* Solve U*x = scale*v for a right eigenvector */
            /* or U**T*x = scale*v for a left eigenvector, */
            /* overwriting x on v. */
            slatrs_("Upper", trans, "Nonunit", normin, n, &b[b_offset], ldb, & vr[1], &scale, &work[1], &ierr);
            *(unsigned char *)normin = 'Y';
            /* Test for sufficient growth in the norm of v. */
            vnorm = sasum_(n, &vr[1], &c__1);
            if (vnorm >= growto * scale)
            {
                goto L120;
            }
            /* Choose new orthogonal starting vector and try again. */
            temp = *eps3 / (rootn + 1.f);
            vr[1] = *eps3;
            i__2 = *n;
            for (i__ = 2;
                    i__ <= i__2;
                    ++i__)
            {
                vr[i__] = temp;
                /* L100: */
            }
            vr[*n - its + 1] -= *eps3 * rootn;
            /* L110: */
        }
        /* Failure to find eigenvector in N iterations. */
        *info = 1;
L120: /* Normalize eigenvector. */
        i__ = isamax_(n, &vr[1], &c__1);
        r__2 = 1.f / (r__1 = vr[i__], f2c_abs(r__1));
        sscal_(n, &r__2, &vr[1], &c__1);
    }
    else
    {
        /* Complex eigenvalue. */
        if (*noinit)
        {
            /* Set initial vector. */
            i__1 = *n;
            for (i__ = 1;
                    i__ <= i__1;
                    ++i__)
            {
                vr[i__] = *eps3;
                vi[i__] = 0.f;
                /* L130: */
            }
        }
        else
        {
            /* Scale supplied initial vector. */
            r__1 = snrm2_(n, &vr[1], &c__1);
            r__2 = snrm2_(n, &vi[1], &c__1);
            norm = slapy2_(&r__1, &r__2);
            rec = *eps3 * rootn / max(norm,nrmsml);
            sscal_(n, &rec, &vr[1], &c__1);
            sscal_(n, &rec, &vi[1], &c__1);
        }
        if (*rightv)
        {
            /* LU decomposition with partial pivoting of B, replacing zero */
            /* pivots by EPS3. */
            /* The imaginary part of the (i,j)-th element of U is stored in */
            /* B(j+1,i). */
            b[b_dim1 + 2] = -(*wi);
            i__1 = *n;
            for (i__ = 2;
                    i__ <= i__1;
                    ++i__)
            {
                b[i__ + 1 + b_dim1] = 0.f;
                /* L140: */
            }
            i__1 = *n - 1;
            for (i__ = 1;
                    i__ <= i__1;
                    ++i__)
            {
                absbii = slapy2_(&b[i__ + i__ * b_dim1], &b[i__ + 1 + i__ * b_dim1]);
                ei = h__[i__ + 1 + i__ * h_dim1];
                if (absbii < f2c_abs(ei))
                {
                    /* Interchange rows and eliminate. */
                    xr = b[i__ + i__ * b_dim1] / ei;
                    xi = b[i__ + 1 + i__ * b_dim1] / ei;
                    b[i__ + i__ * b_dim1] = ei;
                    b[i__ + 1 + i__ * b_dim1] = 0.f;
                    i__2 = *n;
                    for (j = i__ + 1;
                            j <= i__2;
                            ++j)
                    {
                        temp = b[i__ + 1 + j * b_dim1];
                        b[i__ + 1 + j * b_dim1] = b[i__ + j * b_dim1] - xr * temp;
                        b[j + 1 + (i__ + 1) * b_dim1] = b[j + 1 + i__ * b_dim1] - xi * temp;
                        b[i__ + j * b_dim1] = temp;
                        b[j + 1 + i__ * b_dim1] = 0.f;
                        /* L150: */
                    }
                    b[i__ + 2 + i__ * b_dim1] = -(*wi);
                    b[i__ + 1 + (i__ + 1) * b_dim1] -= xi * *wi;
                    b[i__ + 2 + (i__ + 1) * b_dim1] += xr * *wi;
                }
                else
                {
                    /* Eliminate without interchanging rows. */
                    if (absbii == 0.f)
                    {
                        b[i__ + i__ * b_dim1] = *eps3;
                        b[i__ + 1 + i__ * b_dim1] = 0.f;
                        absbii = *eps3;
                    }
                    ei = ei / absbii / absbii;
                    xr = b[i__ + i__ * b_dim1] * ei;
                    xi = -b[i__ + 1 + i__ * b_dim1] * ei;
                    i__2 = *n;
                    for (j = i__ + 1;
                            j <= i__2;
                            ++j)
                    {
                        b[i__ + 1 + j * b_dim1] = b[i__ + 1 + j * b_dim1] - xr * b[i__ + j * b_dim1] + xi * b[j + 1 + i__ * b_dim1];
                        b[j + 1 + (i__ + 1) * b_dim1] = -xr * b[j + 1 + i__ * b_dim1] - xi * b[i__ + j * b_dim1];
                        /* L160: */
                    }
                    b[i__ + 2 + (i__ + 1) * b_dim1] -= *wi;
                }
                /* Compute 1-norm of offdiagonal elements of i-th row. */
                i__2 = *n - i__;
                i__3 = *n - i__;
                work[i__] = sasum_(&i__2, &b[i__ + (i__ + 1) * b_dim1], ldb) + sasum_(&i__3, &b[i__ + 2 + i__ * b_dim1], &c__1);
                /* L170: */
            }
            if (b[*n + *n * b_dim1] == 0.f && b[*n + 1 + *n * b_dim1] == 0.f)
            {
                b[*n + *n * b_dim1] = *eps3;
            }
            work[*n] = 0.f;
            i1 = *n;
            i2 = 1;
            i3 = -1;
        }
        else
        {
            /* UL decomposition with partial pivoting of conjg(B), */
            /* replacing zero pivots by EPS3. */
            /* The imaginary part of the (i,j)-th element of U is stored in */
            /* B(j+1,i). */
            b[*n + 1 + *n * b_dim1] = *wi;
            i__1 = *n - 1;
            for (j = 1;
                    j <= i__1;
                    ++j)
            {
                b[*n + 1 + j * b_dim1] = 0.f;
                /* L180: */
            }
            for (j = *n;
                    j >= 2;
                    --j)
            {
                ej = h__[j + (j - 1) * h_dim1];
                absbjj = slapy2_(&b[j + j * b_dim1], &b[j + 1 + j * b_dim1]);
                if (absbjj < f2c_abs(ej))
                {
                    /* Interchange columns and eliminate */
                    xr = b[j + j * b_dim1] / ej;
                    xi = b[j + 1 + j * b_dim1] / ej;
                    b[j + j * b_dim1] = ej;
                    b[j + 1 + j * b_dim1] = 0.f;
                    i__1 = j - 1;
                    for (i__ = 1;
                            i__ <= i__1;
                            ++i__)
                    {
                        temp = b[i__ + (j - 1) * b_dim1];
                        b[i__ + (j - 1) * b_dim1] = b[i__ + j * b_dim1] - xr * temp;
                        b[j + i__ * b_dim1] = b[j + 1 + i__ * b_dim1] - xi * temp;
                        b[i__ + j * b_dim1] = temp;
                        b[j + 1 + i__ * b_dim1] = 0.f;
                        /* L190: */
                    }
                    b[j + 1 + (j - 1) * b_dim1] = *wi;
                    b[j - 1 + (j - 1) * b_dim1] += xi * *wi;
                    b[j + (j - 1) * b_dim1] -= xr * *wi;
                }
                else
                {
                    /* Eliminate without interchange. */
                    if (absbjj == 0.f)
                    {
                        b[j + j * b_dim1] = *eps3;
                        b[j + 1 + j * b_dim1] = 0.f;
                        absbjj = *eps3;
                    }
                    ej = ej / absbjj / absbjj;
                    xr = b[j + j * b_dim1] * ej;
                    xi = -b[j + 1 + j * b_dim1] * ej;
                    i__1 = j - 1;
                    for (i__ = 1;
                            i__ <= i__1;
                            ++i__)
                    {
                        b[i__ + (j - 1) * b_dim1] = b[i__ + (j - 1) * b_dim1] - xr * b[i__ + j * b_dim1] + xi * b[j + 1 + i__ * b_dim1];
                        b[j + i__ * b_dim1] = -xr * b[j + 1 + i__ * b_dim1] - xi * b[i__ + j * b_dim1];
                        /* L200: */
                    }
                    b[j + (j - 1) * b_dim1] += *wi;
                }
                /* Compute 1-norm of offdiagonal elements of j-th column. */
                i__1 = j - 1;
                i__2 = j - 1;
                work[j] = sasum_(&i__1, &b[j * b_dim1 + 1], &c__1) + sasum_(& i__2, &b[j + 1 + b_dim1], ldb);
                /* L210: */
            }
            if (b[b_dim1 + 1] == 0.f && b[b_dim1 + 2] == 0.f)
            {
                b[b_dim1 + 1] = *eps3;
            }
            work[1] = 0.f;
            i1 = 1;
            i2 = *n;
            i3 = 1;
        }
        i__1 = *n;
        for (its = 1;
                its <= i__1;
                ++its)
        {
            scale = 1.f;
            vmax = 1.f;
            vcrit = *bignum;
            /* Solve U*(xr,xi) = scale*(vr,vi) for a right eigenvector, */
            /* or U**T*(xr,xi) = scale*(vr,vi) for a left eigenvector, */
            /* overwriting (xr,xi) on (vr,vi). */
            i__2 = i2;
            i__3 = i3;
            for (i__ = i1;
                    i__3 < 0 ? i__ >= i__2 : i__ <= i__2;
                    i__ += i__3)
            {
                if (work[i__] > vcrit)
                {
                    rec = 1.f / vmax;
                    sscal_(n, &rec, &vr[1], &c__1);
                    sscal_(n, &rec, &vi[1], &c__1);
                    scale *= rec;
                    vmax = 1.f;
                    vcrit = *bignum;
                }
                xr = vr[i__];
                xi = vi[i__];
                if (*rightv)
                {
                    i__4 = *n;
                    for (j = i__ + 1;
                            j <= i__4;
                            ++j)
                    {
                        xr = xr - b[i__ + j * b_dim1] * vr[j] + b[j + 1 + i__ * b_dim1] * vi[j];
                        xi = xi - b[i__ + j * b_dim1] * vi[j] - b[j + 1 + i__ * b_dim1] * vr[j];
                        /* L220: */
                    }
                }
                else
                {
                    i__4 = i__ - 1;
                    for (j = 1;
                            j <= i__4;
                            ++j)
                    {
                        xr = xr - b[j + i__ * b_dim1] * vr[j] + b[i__ + 1 + j * b_dim1] * vi[j];
                        xi = xi - b[j + i__ * b_dim1] * vi[j] - b[i__ + 1 + j * b_dim1] * vr[j];
                        /* L230: */
                    }
                }
                w = (r__1 = b[i__ + i__ * b_dim1], f2c_abs(r__1)) + (r__2 = b[i__ + 1 + i__ * b_dim1], f2c_abs(r__2));
                if (w > *smlnum)
                {
                    if (w < 1.f)
                    {
                        w1 = f2c_abs(xr) + f2c_abs(xi);
                        if (w1 > w * *bignum)
                        {
                            rec = 1.f / w1;
                            sscal_(n, &rec, &vr[1], &c__1);
                            sscal_(n, &rec, &vi[1], &c__1);
                            xr = vr[i__];
                            xi = vi[i__];
                            scale *= rec;
                            vmax *= rec;
                        }
                    }
                    /* Divide by diagonal element of B. */
                    sladiv_(&xr, &xi, &b[i__ + i__ * b_dim1], &b[i__ + 1 + i__ * b_dim1], &vr[i__], &vi[i__]);
                    /* Computing MAX */
                    r__3 = (r__1 = vr[i__], f2c_abs(r__1)) + (r__2 = vi[i__], f2c_abs( r__2));
                    vmax = max(r__3,vmax);
                    vcrit = *bignum / vmax;
                }
                else
                {
                    i__4 = *n;
                    for (j = 1;
                            j <= i__4;
                            ++j)
                    {
                        vr[j] = 0.f;
                        vi[j] = 0.f;
                        /* L240: */
                    }
                    vr[i__] = 1.f;
                    vi[i__] = 1.f;
                    scale = 0.f;
                    vmax = 1.f;
                    vcrit = *bignum;
                }
                /* L250: */
            }
            /* Test for sufficient growth in the norm of (VR,VI). */
            vnorm = sasum_(n, &vr[1], &c__1) + sasum_(n, &vi[1], &c__1);
            if (vnorm >= growto * scale)
            {
                goto L280;
            }
            /* Choose a new orthogonal starting vector and try again. */
            y = *eps3 / (rootn + 1.f);
            vr[1] = *eps3;
            vi[1] = 0.f;
            i__3 = *n;
            for (i__ = 2;
                    i__ <= i__3;
                    ++i__)
            {
                vr[i__] = y;
                vi[i__] = 0.f;
                /* L260: */
            }
            vr[*n - its + 1] -= *eps3 * rootn;
            /* L270: */
        }
        /* Failure to find eigenvector in N iterations */
        *info = 1;
L280: /* Normalize eigenvector. */
        vnorm = 0.f;
        i__1 = *n;
        for (i__ = 1;
                i__ <= i__1;
                ++i__)
        {
            /* Computing MAX */
            r__3 = vnorm;
            r__4 = (r__1 = vr[i__], f2c_abs(r__1)) + (r__2 = vi[i__] , f2c_abs(r__2)); // , expr subst
            vnorm = max(r__3,r__4);
            /* L290: */
        }
        r__1 = 1.f / vnorm;
        sscal_(n, &r__1, &vr[1], &c__1);
        r__1 = 1.f / vnorm;
        sscal_(n, &r__1, &vi[1], &c__1);
    }
    return 0;
    /* End of SLAEIN */
}
예제 #3
0
/* Subroutine */ int strcon_(char *norm, char *uplo, char *diag, integer *n, 
	real *a, integer *lda, real *rcond, real *work, integer *iwork, 
	integer *info)
{
/*  -- LAPACK routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       March 31, 1993   


    Purpose   
    =======   

    STRCON estimates the reciprocal of the condition number of a   
    triangular matrix A, in either the 1-norm or the infinity-norm.   

    The norm of A is computed and an estimate is obtained for   
    norm(inv(A)), then the reciprocal of the condition number is   
    computed as   
       RCOND = 1 / ( norm(A) * norm(inv(A)) ).   

    Arguments   
    =========   

    NORM    (input) CHARACTER*1   
            Specifies whether the 1-norm condition number or the   
            infinity-norm condition number is required:   
            = '1' or 'O':  1-norm;   
            = 'I':         Infinity-norm.   

    UPLO    (input) CHARACTER*1   
            = 'U':  A is upper triangular;   
            = 'L':  A is lower triangular.   

    DIAG    (input) CHARACTER*1   
            = 'N':  A is non-unit triangular;   
            = 'U':  A is unit triangular.   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.   

    A       (input) REAL array, dimension (LDA,N)   
            The triangular matrix A.  If UPLO = 'U', the leading N-by-N   
            upper triangular part of the array A contains the upper   
            triangular matrix, and the strictly lower triangular part of   
            A is not referenced.  If UPLO = 'L', the leading N-by-N lower   
            triangular part of the array A contains the lower triangular   
            matrix, and the strictly upper triangular part of A is not   
            referenced.  If DIAG = 'U', the diagonal elements of A are   
            also not referenced and are assumed to be 1.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,N).   

    RCOND   (output) REAL   
            The reciprocal of the condition number of the matrix A,   
            computed as RCOND = 1/(norm(A) * norm(inv(A))).   

    WORK    (workspace) REAL array, dimension (3*N)   

    IWORK   (workspace) INTEGER array, dimension (N)   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    /* Table of constant values */
    static integer c__1 = 1;
    
    /* System generated locals */
    integer a_dim1, a_offset, i__1;
    real r__1;
    /* Local variables */
    static integer kase, kase1;
    static real scale;
    extern logical lsame_(char *, char *);
    static real anorm;
    extern /* Subroutine */ int srscl_(integer *, real *, real *, integer *);
    static logical upper;
    static real xnorm;
    static integer ix;
    extern doublereal slamch_(char *);
    extern /* Subroutine */ int xerbla_(char *, integer *), slacon_(
	    integer *, real *, real *, integer *, real *, integer *);
    extern integer isamax_(integer *, real *, integer *);
    static real ainvnm;
    static logical onenrm;
    static char normin[1];
    extern doublereal slantr_(char *, char *, char *, integer *, integer *, 
	    real *, integer *, real *);
    extern /* Subroutine */ int slatrs_(char *, char *, char *, char *, 
	    integer *, real *, integer *, real *, real *, real *, integer *);
    static real smlnum;
    static logical nounit;


    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    --work;
    --iwork;

    /* Function Body */
    *info = 0;
    upper = lsame_(uplo, "U");
    onenrm = *(unsigned char *)norm == '1' || lsame_(norm, "O");
    nounit = lsame_(diag, "N");

    if (! onenrm && ! lsame_(norm, "I")) {
	*info = -1;
    } else if (! upper && ! lsame_(uplo, "L")) {
	*info = -2;
    } else if (! nounit && ! lsame_(diag, "U")) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    } else if (*lda < max(1,*n)) {
	*info = -6;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("STRCON", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	*rcond = 1.f;
	return 0;
    }

    *rcond = 0.f;
    smlnum = slamch_("Safe minimum") * (real) max(1,*n);

/*     Compute the norm of the triangular matrix A. */

    anorm = slantr_(norm, uplo, diag, n, n, &a[a_offset], lda, &work[1]);

/*     Continue only if ANORM > 0. */

    if (anorm > 0.f) {

/*        Estimate the norm of the inverse of A. */

	ainvnm = 0.f;
	*(unsigned char *)normin = 'N';
	if (onenrm) {
	    kase1 = 1;
	} else {
	    kase1 = 2;
	}
	kase = 0;
L10:
	slacon_(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase);
	if (kase != 0) {
	    if (kase == kase1) {

/*              Multiply by inv(A). */

		slatrs_(uplo, "No transpose", diag, normin, n, &a[a_offset], 
			lda, &work[1], &scale, &work[(*n << 1) + 1], info);
	    } else {

/*              Multiply by inv(A'). */

		slatrs_(uplo, "Transpose", diag, normin, n, &a[a_offset], lda,
			 &work[1], &scale, &work[(*n << 1) + 1], info);
	    }
	    *(unsigned char *)normin = 'Y';

/*           Multiply by 1/SCALE if doing so will not cause overflow. */

	    if (scale != 1.f) {
		ix = isamax_(n, &work[1], &c__1);
		xnorm = (r__1 = work[ix], dabs(r__1));
		if (scale < xnorm * smlnum || scale == 0.f) {
		    goto L20;
		}
		srscl_(n, &scale, &work[1], &c__1);
	    }
	    goto L10;
	}

/*        Compute the estimate of the reciprocal condition number. */

	if (ainvnm != 0.f) {
	    *rcond = 1.f / anorm / ainvnm;
	}
    }

L20:
    return 0;

/*     End of STRCON */

} /* strcon_ */
예제 #4
0
파일: sgecon.c 프로젝트: flame/libflame
/* Subroutine */
int sgecon_(char *norm, integer *n, real *a, integer *lda, real *anorm, real *rcond, real *work, integer *iwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1;
    real r__1;
    /* Local variables */
    real sl;
    integer ix;
    real su;
    integer kase, kase1;
    real scale;
    extern logical lsame_(char *, char *);
    integer isave[3];
    extern /* Subroutine */
    int srscl_(integer *, real *, real *, integer *), slacn2_(integer *, real *, real *, integer *, real *, integer *, integer *);
    extern real slamch_(char *);
    extern /* Subroutine */
    int xerbla_(char *, integer *);
    extern integer isamax_(integer *, real *, integer *);
    real ainvnm;
    logical onenrm;
    char normin[1];
    extern /* Subroutine */
    int slatrs_(char *, char *, char *, char *, integer *, real *, integer *, real *, real *, real *, integer *);
    real smlnum;
    /* -- LAPACK computational routine (version 3.4.0) -- */
    /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
    /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
    /* November 2011 */
    /* .. Scalar Arguments .. */
    /* .. */
    /* .. Array Arguments .. */
    /* .. */
    /* ===================================================================== */
    /* .. Parameters .. */
    /* .. */
    /* .. Local Scalars .. */
    /* .. */
    /* .. Local Arrays .. */
    /* .. */
    /* .. External Functions .. */
    /* .. */
    /* .. External Subroutines .. */
    /* .. */
    /* .. Intrinsic Functions .. */
    /* .. */
    /* .. Executable Statements .. */
    /* Test the input parameters. */
    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --work;
    --iwork;
    /* Function Body */
    *info = 0;
    onenrm = *(unsigned char *)norm == '1' || lsame_(norm, "O");
    if (! onenrm && ! lsame_(norm, "I"))
    {
        *info = -1;
    }
    else if (*n < 0)
    {
        *info = -2;
    }
    else if (*lda < max(1,*n))
    {
        *info = -4;
    }
    else if (*anorm < 0.f)
    {
        *info = -5;
    }
    if (*info != 0)
    {
        i__1 = -(*info);
        xerbla_("SGECON", &i__1);
        return 0;
    }
    /* Quick return if possible */
    *rcond = 0.f;
    if (*n == 0)
    {
        *rcond = 1.f;
        return 0;
    }
    else if (*anorm == 0.f)
    {
        return 0;
    }
    smlnum = slamch_("Safe minimum");
    /* Estimate the norm of inv(A). */
    ainvnm = 0.f;
    *(unsigned char *)normin = 'N';
    if (onenrm)
    {
        kase1 = 1;
    }
    else
    {
        kase1 = 2;
    }
    kase = 0;
L10:
    slacn2_(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase, isave);
    if (kase != 0)
    {
        if (kase == kase1)
        {
            /* Multiply by inv(L). */
            slatrs_("Lower", "No transpose", "Unit", normin, n, &a[a_offset], lda, &work[1], &sl, &work[(*n << 1) + 1], info);
            /* Multiply by inv(U). */
            slatrs_("Upper", "No transpose", "Non-unit", normin, n, &a[ a_offset], lda, &work[1], &su, &work[*n * 3 + 1], info);
        }
        else
        {
            /* Multiply by inv(U**T). */
            slatrs_("Upper", "Transpose", "Non-unit", normin, n, &a[a_offset], lda, &work[1], &su, &work[*n * 3 + 1], info);
            /* Multiply by inv(L**T). */
            slatrs_("Lower", "Transpose", "Unit", normin, n, &a[a_offset], lda, &work[1], &sl, &work[(*n << 1) + 1], info);
        }
        /* Divide X by 1/(SL*SU) if doing so will not cause overflow. */
        scale = sl * su;
        *(unsigned char *)normin = 'Y';
        if (scale != 1.f)
        {
            ix = isamax_(n, &work[1], &c__1);
            if (scale < (r__1 = work[ix], f2c_abs(r__1)) * smlnum || scale == 0.f)
            {
                goto L20;
            }
            srscl_(n, &scale, &work[1], &c__1);
        }
        goto L10;
    }
    /* Compute the estimate of the reciprocal condition number. */
    if (ainvnm != 0.f)
    {
        *rcond = 1.f / ainvnm / *anorm;
    }
L20:
    return 0;
    /* End of SGECON */
}
예제 #5
0
 int slaein_(int *rightv, int *noinit, int *n, 
	float *h__, int *ldh, float *wr, float *wi, float *vr, float *vi, float 
	*b, int *ldb, float *work, float *eps3, float *smlnum, float *bignum, 
	int *info)
{
    /* System generated locals */
    int b_dim1, b_offset, h_dim1, h_offset, i__1, i__2, i__3, i__4;
    float r__1, r__2, r__3, r__4;

    /* Builtin functions */
    double sqrt(double);

    /* Local variables */
    int i__, j;
    float w, x, y;
    int i1, i2, i3;
    float w1, ei, ej, xi, xr, rec;
    int its, ierr;
    float temp, norm, vmax;
    extern double snrm2_(int *, float *, int *);
    float scale;
    extern  int sscal_(int *, float *, float *, int *);
    char trans[1];
    float vcrit;
    extern double sasum_(int *, float *, int *);
    float rootn, vnorm;
    extern double slapy2_(float *, float *);
    float absbii, absbjj;
    extern int isamax_(int *, float *, int *);
    extern  int sladiv_(float *, float *, float *, float *, float *
, float *);
    char normin[1];
    float nrmsml;
    extern  int slatrs_(char *, char *, char *, char *, 
	    int *, float *, int *, float *, float *, float *, int *);
    float growto;


/*  -- LAPACK auxiliary routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SLAEIN uses inverse iteration to find a right or left eigenvector */
/*  corresponding to the eigenvalue (WR,WI) of a float upper Hessenberg */
/*  matrix H. */

/*  Arguments */
/*  ========= */

/*  RIGHTV   (input) LOGICAL */
/*          = .TRUE. : compute right eigenvector; */
/*          = .FALSE.: compute left eigenvector. */

/*  NOINIT   (input) LOGICAL */
/*          = .TRUE. : no initial vector supplied in (VR,VI). */
/*          = .FALSE.: initial vector supplied in (VR,VI). */

/*  N       (input) INTEGER */
/*          The order of the matrix H.  N >= 0. */

/*  H       (input) REAL array, dimension (LDH,N) */
/*          The upper Hessenberg matrix H. */

/*  LDH     (input) INTEGER */
/*          The leading dimension of the array H.  LDH >= MAX(1,N). */

/*  WR      (input) REAL */
/*  WI      (input) REAL */
/*          The float and imaginary parts of the eigenvalue of H whose */
/*          corresponding right or left eigenvector is to be computed. */

/*  VR      (input/output) REAL array, dimension (N) */
/*  VI      (input/output) REAL array, dimension (N) */
/*          On entry, if NOINIT = .FALSE. and WI = 0.0, VR must contain */
/*          a float starting vector for inverse iteration using the float */
/*          eigenvalue WR; if NOINIT = .FALSE. and WI.ne.0.0, VR and VI */
/*          must contain the float and imaginary parts of a complex */
/*          starting vector for inverse iteration using the complex */
/*          eigenvalue (WR,WI); otherwise VR and VI need not be set. */
/*          On exit, if WI = 0.0 (float eigenvalue), VR contains the */
/*          computed float eigenvector; if WI.ne.0.0 (complex eigenvalue), */
/*          VR and VI contain the float and imaginary parts of the */
/*          computed complex eigenvector. The eigenvector is normalized */
/*          so that the component of largest magnitude has magnitude 1; */
/*          here the magnitude of a complex number (x,y) is taken to be */
/*          |x| + |y|. */
/*          VI is not referenced if WI = 0.0. */

/*  B       (workspace) REAL array, dimension (LDB,N) */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= N+1. */

/*  WORK   (workspace) REAL array, dimension (N) */

/*  EPS3    (input) REAL */
/*          A small machine-dependent value which is used to perturb */
/*          close eigenvalues, and to replace zero pivots. */

/*  SMLNUM  (input) REAL */
/*          A machine-dependent value close to the underflow threshold. */

/*  BIGNUM  (input) REAL */
/*          A machine-dependent value close to the overflow threshold. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          = 1:  inverse iteration did not converge; VR is set to the */
/*                last iterate, and so is VI if WI.ne.0.0. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
    h_dim1 = *ldh;
    h_offset = 1 + h_dim1;
    h__ -= h_offset;
    --vr;
    --vi;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    --work;

    /* Function Body */
    *info = 0;

/*     GROWTO is the threshold used in the acceptance test for an */
/*     eigenvector. */

    rootn = sqrt((float) (*n));
    growto = .1f / rootn;
/* Computing MAX */
    r__1 = 1.f, r__2 = *eps3 * rootn;
    nrmsml = MAX(r__1,r__2) * *smlnum;

/*     Form B = H - (WR,WI)*I (except that the subdiagonal elements and */
/*     the imaginary parts of the diagonal elements are not stored). */

    i__1 = *n;
    for (j = 1; j <= i__1; ++j) {
	i__2 = j - 1;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    b[i__ + j * b_dim1] = h__[i__ + j * h_dim1];
/* L10: */
	}
	b[j + j * b_dim1] = h__[j + j * h_dim1] - *wr;
/* L20: */
    }

    if (*wi == 0.f) {

/*        Real eigenvalue. */

	if (*noinit) {

/*           Set initial vector. */

	    i__1 = *n;
	    for (i__ = 1; i__ <= i__1; ++i__) {
		vr[i__] = *eps3;
/* L30: */
	    }
	} else {

/*           Scale supplied initial vector. */

	    vnorm = snrm2_(n, &vr[1], &c__1);
	    r__1 = *eps3 * rootn / MAX(vnorm,nrmsml);
	    sscal_(n, &r__1, &vr[1], &c__1);
	}

	if (*rightv) {

/*           LU decomposition with partial pivoting of B, replacing zero */
/*           pivots by EPS3. */

	    i__1 = *n - 1;
	    for (i__ = 1; i__ <= i__1; ++i__) {
		ei = h__[i__ + 1 + i__ * h_dim1];
		if ((r__1 = b[i__ + i__ * b_dim1], ABS(r__1)) < ABS(ei)) {

/*                 Interchange rows and eliminate. */

		    x = b[i__ + i__ * b_dim1] / ei;
		    b[i__ + i__ * b_dim1] = ei;
		    i__2 = *n;
		    for (j = i__ + 1; j <= i__2; ++j) {
			temp = b[i__ + 1 + j * b_dim1];
			b[i__ + 1 + j * b_dim1] = b[i__ + j * b_dim1] - x * 
				temp;
			b[i__ + j * b_dim1] = temp;
/* L40: */
		    }
		} else {

/*                 Eliminate without interchange. */

		    if (b[i__ + i__ * b_dim1] == 0.f) {
			b[i__ + i__ * b_dim1] = *eps3;
		    }
		    x = ei / b[i__ + i__ * b_dim1];
		    if (x != 0.f) {
			i__2 = *n;
			for (j = i__ + 1; j <= i__2; ++j) {
			    b[i__ + 1 + j * b_dim1] -= x * b[i__ + j * b_dim1]
				    ;
/* L50: */
			}
		    }
		}
/* L60: */
	    }
	    if (b[*n + *n * b_dim1] == 0.f) {
		b[*n + *n * b_dim1] = *eps3;
	    }

	    *(unsigned char *)trans = 'N';

	} else {

/*           UL decomposition with partial pivoting of B, replacing zero */
/*           pivots by EPS3. */

	    for (j = *n; j >= 2; --j) {
		ej = h__[j + (j - 1) * h_dim1];
		if ((r__1 = b[j + j * b_dim1], ABS(r__1)) < ABS(ej)) {

/*                 Interchange columns and eliminate. */

		    x = b[j + j * b_dim1] / ej;
		    b[j + j * b_dim1] = ej;
		    i__1 = j - 1;
		    for (i__ = 1; i__ <= i__1; ++i__) {
			temp = b[i__ + (j - 1) * b_dim1];
			b[i__ + (j - 1) * b_dim1] = b[i__ + j * b_dim1] - x * 
				temp;
			b[i__ + j * b_dim1] = temp;
/* L70: */
		    }
		} else {

/*                 Eliminate without interchange. */

		    if (b[j + j * b_dim1] == 0.f) {
			b[j + j * b_dim1] = *eps3;
		    }
		    x = ej / b[j + j * b_dim1];
		    if (x != 0.f) {
			i__1 = j - 1;
			for (i__ = 1; i__ <= i__1; ++i__) {
			    b[i__ + (j - 1) * b_dim1] -= x * b[i__ + j * 
				    b_dim1];
/* L80: */
			}
		    }
		}
/* L90: */
	    }
	    if (b[b_dim1 + 1] == 0.f) {
		b[b_dim1 + 1] = *eps3;
	    }

	    *(unsigned char *)trans = 'T';

	}

	*(unsigned char *)normin = 'N';
	i__1 = *n;
	for (its = 1; its <= i__1; ++its) {

/*           Solve U*x = scale*v for a right eigenvector */
/*             or U'*x = scale*v for a left eigenvector, */
/*           overwriting x on v. */

	    slatrs_("Upper", trans, "Nonunit", normin, n, &b[b_offset], ldb, &
		    vr[1], &scale, &work[1], &ierr);
	    *(unsigned char *)normin = 'Y';

/*           Test for sufficient growth in the norm of v. */

	    vnorm = sasum_(n, &vr[1], &c__1);
	    if (vnorm >= growto * scale) {
		goto L120;
	    }

/*           Choose new orthogonal starting vector and try again. */

	    temp = *eps3 / (rootn + 1.f);
	    vr[1] = *eps3;
	    i__2 = *n;
	    for (i__ = 2; i__ <= i__2; ++i__) {
		vr[i__] = temp;
/* L100: */
	    }
	    vr[*n - its + 1] -= *eps3 * rootn;
/* L110: */
	}

/*        Failure to find eigenvector in N iterations. */

	*info = 1;

L120:

/*        Normalize eigenvector. */

	i__ = isamax_(n, &vr[1], &c__1);
	r__2 = 1.f / (r__1 = vr[i__], ABS(r__1));
	sscal_(n, &r__2, &vr[1], &c__1);
    } else {

/*        Complex eigenvalue. */

	if (*noinit) {

/*           Set initial vector. */

	    i__1 = *n;
	    for (i__ = 1; i__ <= i__1; ++i__) {
		vr[i__] = *eps3;
		vi[i__] = 0.f;
/* L130: */
	    }
	} else {

/*           Scale supplied initial vector. */

	    r__1 = snrm2_(n, &vr[1], &c__1);
	    r__2 = snrm2_(n, &vi[1], &c__1);
	    norm = slapy2_(&r__1, &r__2);
	    rec = *eps3 * rootn / MAX(norm,nrmsml);
	    sscal_(n, &rec, &vr[1], &c__1);
	    sscal_(n, &rec, &vi[1], &c__1);
	}

	if (*rightv) {

/*           LU decomposition with partial pivoting of B, replacing zero */
/*           pivots by EPS3. */

/*           The imaginary part of the (i,j)-th element of U is stored in */
/*           B(j+1,i). */

	    b[b_dim1 + 2] = -(*wi);
	    i__1 = *n;
	    for (i__ = 2; i__ <= i__1; ++i__) {
		b[i__ + 1 + b_dim1] = 0.f;
/* L140: */
	    }

	    i__1 = *n - 1;
	    for (i__ = 1; i__ <= i__1; ++i__) {
		absbii = slapy2_(&b[i__ + i__ * b_dim1], &b[i__ + 1 + i__ * 
			b_dim1]);
		ei = h__[i__ + 1 + i__ * h_dim1];
		if (absbii < ABS(ei)) {

/*                 Interchange rows and eliminate. */

		    xr = b[i__ + i__ * b_dim1] / ei;
		    xi = b[i__ + 1 + i__ * b_dim1] / ei;
		    b[i__ + i__ * b_dim1] = ei;
		    b[i__ + 1 + i__ * b_dim1] = 0.f;
		    i__2 = *n;
		    for (j = i__ + 1; j <= i__2; ++j) {
			temp = b[i__ + 1 + j * b_dim1];
			b[i__ + 1 + j * b_dim1] = b[i__ + j * b_dim1] - xr * 
				temp;
			b[j + 1 + (i__ + 1) * b_dim1] = b[j + 1 + i__ * 
				b_dim1] - xi * temp;
			b[i__ + j * b_dim1] = temp;
			b[j + 1 + i__ * b_dim1] = 0.f;
/* L150: */
		    }
		    b[i__ + 2 + i__ * b_dim1] = -(*wi);
		    b[i__ + 1 + (i__ + 1) * b_dim1] -= xi * *wi;
		    b[i__ + 2 + (i__ + 1) * b_dim1] += xr * *wi;
		} else {

/*                 Eliminate without interchanging rows. */

		    if (absbii == 0.f) {
			b[i__ + i__ * b_dim1] = *eps3;
			b[i__ + 1 + i__ * b_dim1] = 0.f;
			absbii = *eps3;
		    }
		    ei = ei / absbii / absbii;
		    xr = b[i__ + i__ * b_dim1] * ei;
		    xi = -b[i__ + 1 + i__ * b_dim1] * ei;
		    i__2 = *n;
		    for (j = i__ + 1; j <= i__2; ++j) {
			b[i__ + 1 + j * b_dim1] = b[i__ + 1 + j * b_dim1] - 
				xr * b[i__ + j * b_dim1] + xi * b[j + 1 + i__ 
				* b_dim1];
			b[j + 1 + (i__ + 1) * b_dim1] = -xr * b[j + 1 + i__ * 
				b_dim1] - xi * b[i__ + j * b_dim1];
/* L160: */
		    }
		    b[i__ + 2 + (i__ + 1) * b_dim1] -= *wi;
		}

/*              Compute 1-norm of offdiagonal elements of i-th row. */

		i__2 = *n - i__;
		i__3 = *n - i__;
		work[i__] = sasum_(&i__2, &b[i__ + (i__ + 1) * b_dim1], ldb) 
			+ sasum_(&i__3, &b[i__ + 2 + i__ * b_dim1], &c__1);
/* L170: */
	    }
	    if (b[*n + *n * b_dim1] == 0.f && b[*n + 1 + *n * b_dim1] == 0.f) 
		    {
		b[*n + *n * b_dim1] = *eps3;
	    }
	    work[*n] = 0.f;

	    i1 = *n;
	    i2 = 1;
	    i3 = -1;
	} else {

/*           UL decomposition with partial pivoting of conjg(B), */
/*           replacing zero pivots by EPS3. */

/*           The imaginary part of the (i,j)-th element of U is stored in */
/*           B(j+1,i). */

	    b[*n + 1 + *n * b_dim1] = *wi;
	    i__1 = *n - 1;
	    for (j = 1; j <= i__1; ++j) {
		b[*n + 1 + j * b_dim1] = 0.f;
/* L180: */
	    }

	    for (j = *n; j >= 2; --j) {
		ej = h__[j + (j - 1) * h_dim1];
		absbjj = slapy2_(&b[j + j * b_dim1], &b[j + 1 + j * b_dim1]);
		if (absbjj < ABS(ej)) {

/*                 Interchange columns and eliminate */

		    xr = b[j + j * b_dim1] / ej;
		    xi = b[j + 1 + j * b_dim1] / ej;
		    b[j + j * b_dim1] = ej;
		    b[j + 1 + j * b_dim1] = 0.f;
		    i__1 = j - 1;
		    for (i__ = 1; i__ <= i__1; ++i__) {
			temp = b[i__ + (j - 1) * b_dim1];
			b[i__ + (j - 1) * b_dim1] = b[i__ + j * b_dim1] - xr *
				 temp;
			b[j + i__ * b_dim1] = b[j + 1 + i__ * b_dim1] - xi * 
				temp;
			b[i__ + j * b_dim1] = temp;
			b[j + 1 + i__ * b_dim1] = 0.f;
/* L190: */
		    }
		    b[j + 1 + (j - 1) * b_dim1] = *wi;
		    b[j - 1 + (j - 1) * b_dim1] += xi * *wi;
		    b[j + (j - 1) * b_dim1] -= xr * *wi;
		} else {

/*                 Eliminate without interchange. */

		    if (absbjj == 0.f) {
			b[j + j * b_dim1] = *eps3;
			b[j + 1 + j * b_dim1] = 0.f;
			absbjj = *eps3;
		    }
		    ej = ej / absbjj / absbjj;
		    xr = b[j + j * b_dim1] * ej;
		    xi = -b[j + 1 + j * b_dim1] * ej;
		    i__1 = j - 1;
		    for (i__ = 1; i__ <= i__1; ++i__) {
			b[i__ + (j - 1) * b_dim1] = b[i__ + (j - 1) * b_dim1] 
				- xr * b[i__ + j * b_dim1] + xi * b[j + 1 + 
				i__ * b_dim1];
			b[j + i__ * b_dim1] = -xr * b[j + 1 + i__ * b_dim1] - 
				xi * b[i__ + j * b_dim1];
/* L200: */
		    }
		    b[j + (j - 1) * b_dim1] += *wi;
		}

/*              Compute 1-norm of offdiagonal elements of j-th column. */

		i__1 = j - 1;
		i__2 = j - 1;
		work[j] = sasum_(&i__1, &b[j * b_dim1 + 1], &c__1) + sasum_(&
			i__2, &b[j + 1 + b_dim1], ldb);
/* L210: */
	    }
	    if (b[b_dim1 + 1] == 0.f && b[b_dim1 + 2] == 0.f) {
		b[b_dim1 + 1] = *eps3;
	    }
	    work[1] = 0.f;

	    i1 = 1;
	    i2 = *n;
	    i3 = 1;
	}

	i__1 = *n;
	for (its = 1; its <= i__1; ++its) {
	    scale = 1.f;
	    vmax = 1.f;
	    vcrit = *bignum;

/*           Solve U*(xr,xi) = scale*(vr,vi) for a right eigenvector, */
/*             or U'*(xr,xi) = scale*(vr,vi) for a left eigenvector, */
/*           overwriting (xr,xi) on (vr,vi). */

	    i__2 = i2;
	    i__3 = i3;
	    for (i__ = i1; i__3 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__3) 
		    {

		if (work[i__] > vcrit) {
		    rec = 1.f / vmax;
		    sscal_(n, &rec, &vr[1], &c__1);
		    sscal_(n, &rec, &vi[1], &c__1);
		    scale *= rec;
		    vmax = 1.f;
		    vcrit = *bignum;
		}

		xr = vr[i__];
		xi = vi[i__];
		if (*rightv) {
		    i__4 = *n;
		    for (j = i__ + 1; j <= i__4; ++j) {
			xr = xr - b[i__ + j * b_dim1] * vr[j] + b[j + 1 + i__ 
				* b_dim1] * vi[j];
			xi = xi - b[i__ + j * b_dim1] * vi[j] - b[j + 1 + i__ 
				* b_dim1] * vr[j];
/* L220: */
		    }
		} else {
		    i__4 = i__ - 1;
		    for (j = 1; j <= i__4; ++j) {
			xr = xr - b[j + i__ * b_dim1] * vr[j] + b[i__ + 1 + j 
				* b_dim1] * vi[j];
			xi = xi - b[j + i__ * b_dim1] * vi[j] - b[i__ + 1 + j 
				* b_dim1] * vr[j];
/* L230: */
		    }
		}

		w = (r__1 = b[i__ + i__ * b_dim1], ABS(r__1)) + (r__2 = b[
			i__ + 1 + i__ * b_dim1], ABS(r__2));
		if (w > *smlnum) {
		    if (w < 1.f) {
			w1 = ABS(xr) + ABS(xi);
			if (w1 > w * *bignum) {
			    rec = 1.f / w1;
			    sscal_(n, &rec, &vr[1], &c__1);
			    sscal_(n, &rec, &vi[1], &c__1);
			    xr = vr[i__];
			    xi = vi[i__];
			    scale *= rec;
			    vmax *= rec;
			}
		    }

/*                 Divide by diagonal element of B. */

		    sladiv_(&xr, &xi, &b[i__ + i__ * b_dim1], &b[i__ + 1 + 
			    i__ * b_dim1], &vr[i__], &vi[i__]);
/* Computing MAX */
		    r__3 = (r__1 = vr[i__], ABS(r__1)) + (r__2 = vi[i__], 
			    ABS(r__2));
		    vmax = MAX(r__3,vmax);
		    vcrit = *bignum / vmax;
		} else {
		    i__4 = *n;
		    for (j = 1; j <= i__4; ++j) {
			vr[j] = 0.f;
			vi[j] = 0.f;
/* L240: */
		    }
		    vr[i__] = 1.f;
		    vi[i__] = 1.f;
		    scale = 0.f;
		    vmax = 1.f;
		    vcrit = *bignum;
		}
/* L250: */
	    }

/*           Test for sufficient growth in the norm of (VR,VI). */

	    vnorm = sasum_(n, &vr[1], &c__1) + sasum_(n, &vi[1], &c__1);
	    if (vnorm >= growto * scale) {
		goto L280;
	    }

/*           Choose a new orthogonal starting vector and try again. */

	    y = *eps3 / (rootn + 1.f);
	    vr[1] = *eps3;
	    vi[1] = 0.f;

	    i__3 = *n;
	    for (i__ = 2; i__ <= i__3; ++i__) {
		vr[i__] = y;
		vi[i__] = 0.f;
/* L260: */
	    }
	    vr[*n - its + 1] -= *eps3 * rootn;
/* L270: */
	}

/*        Failure to find eigenvector in N iterations */

	*info = 1;

L280:

/*        Normalize eigenvector. */

	vnorm = 0.f;
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
	    r__3 = vnorm, r__4 = (r__1 = vr[i__], ABS(r__1)) + (r__2 = vi[
		    i__], ABS(r__2));
	    vnorm = MAX(r__3,r__4);
/* L290: */
	}
	r__1 = 1.f / vnorm;
	sscal_(n, &r__1, &vr[1], &c__1);
	r__1 = 1.f / vnorm;
	sscal_(n, &r__1, &vi[1], &c__1);

    }

    return 0;

/*     End of SLAEIN */

} /* slaein_ */
예제 #6
0
 int spocon_(char *uplo, int *n, float *a, int *lda, 
	float *anorm, float *rcond, float *work, int *iwork, int *info)
{
    /* System generated locals */
    int a_dim1, a_offset, i__1;
    float r__1;

    /* Local variables */
    int ix, kase;
    float scale;
    extern int lsame_(char *, char *);
    int isave[3];
    extern  int srscl_(int *, float *, float *, int *);
    int upper;
    extern  int slacn2_(int *, float *, float *, int *, 
	    float *, int *, int *);
    float scalel;
    extern double slamch_(char *);
    float scaleu;
    extern  int xerbla_(char *, int *);
    extern int isamax_(int *, float *, int *);
    float ainvnm;
    char normin[1];
    extern  int slatrs_(char *, char *, char *, char *, 
	    int *, float *, int *, float *, float *, float *, int *);
    float smlnum;


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     Modified to call SLACN2 in place of SLACON, 7 Feb 03, SJH. */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SPOCON estimates the reciprocal of the condition number (in the */
/*  1-norm) of a float symmetric positive definite matrix using the */
/*  Cholesky factorization A = U**T*U or A = L*L**T computed by SPOTRF. */

/*  An estimate is obtained for norm(inv(A)), and the reciprocal of the */
/*  condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). */

/*  Arguments */
/*  ========= */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  A       (input) REAL array, dimension (LDA,N) */
/*          The triangular factor U or L from the Cholesky factorization */
/*          A = U**T*U or A = L*L**T, as computed by SPOTRF. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= MAX(1,N). */

/*  ANORM   (input) REAL */
/*          The 1-norm (or infinity-norm) of the symmetric matrix A. */

/*  RCOND   (output) REAL */
/*          The reciprocal of the condition number of the matrix A, */
/*          computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an */
/*          estimate of the 1-norm of inv(A) computed in this routine. */

/*  WORK    (workspace) REAL array, dimension (3*N) */

/*  IWORK   (workspace) INTEGER array, dimension (N) */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --work;
    --iwork;

    /* Function Body */
    *info = 0;
    upper = lsame_(uplo, "U");
    if (! upper && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*lda < MAX(1,*n)) {
	*info = -4;
    } else if (*anorm < 0.f) {
	*info = -5;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SPOCON", &i__1);
	return 0;
    }

/*     Quick return if possible */

    *rcond = 0.f;
    if (*n == 0) {
	*rcond = 1.f;
	return 0;
    } else if (*anorm == 0.f) {
	return 0;
    }

    smlnum = slamch_("Safe minimum");

/*     Estimate the 1-norm of inv(A). */

    kase = 0;
    *(unsigned char *)normin = 'N';
L10:
    slacn2_(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase, isave);
    if (kase != 0) {
	if (upper) {

/*           Multiply by inv(U'). */

	    slatrs_("Upper", "Transpose", "Non-unit", normin, n, &a[a_offset], 
		     lda, &work[1], &scalel, &work[(*n << 1) + 1], info);
	    *(unsigned char *)normin = 'Y';

/*           Multiply by inv(U). */

	    slatrs_("Upper", "No transpose", "Non-unit", normin, n, &a[
		    a_offset], lda, &work[1], &scaleu, &work[(*n << 1) + 1], 
		    info);
	} else {

/*           Multiply by inv(L). */

	    slatrs_("Lower", "No transpose", "Non-unit", normin, n, &a[
		    a_offset], lda, &work[1], &scalel, &work[(*n << 1) + 1], 
		    info);
	    *(unsigned char *)normin = 'Y';

/*           Multiply by inv(L'). */

	    slatrs_("Lower", "Transpose", "Non-unit", normin, n, &a[a_offset], 
		     lda, &work[1], &scaleu, &work[(*n << 1) + 1], info);
	}

/*        Multiply by 1/SCALE if doing so will not cause overflow. */

	scale = scalel * scaleu;
	if (scale != 1.f) {
	    ix = isamax_(n, &work[1], &c__1);
	    if (scale < (r__1 = work[ix], ABS(r__1)) * smlnum || scale == 
		    0.f) {
		goto L20;
	    }
	    srscl_(n, &scale, &work[1], &c__1);
	}
	goto L10;
    }

/*     Compute the estimate of the reciprocal condition number. */

    if (ainvnm != 0.f) {
	*rcond = 1.f / ainvnm / *anorm;
    }

L20:
    return 0;

/*     End of SPOCON */

} /* spocon_ */
예제 #7
0
파일: spocon.c 프로젝트: MichaelH13/sdkpub
/* Subroutine */ int spocon_(char *uplo, integer *n, real *a, integer *lda, 
	real *anorm, real *rcond, real *work, integer *iwork, integer *info)
{
/*  -- LAPACK routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       March 31, 1993   


    Purpose   
    =======   

    SPOCON estimates the reciprocal of the condition number (in the   
    1-norm) of a real symmetric positive definite matrix using the   
    Cholesky factorization A = U**T*U or A = L*L**T computed by SPOTRF.   

    An estimate is obtained for norm(inv(A)), and the reciprocal of the   
    condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).   

    Arguments   
    =========   

    UPLO    (input) CHARACTER*1   
            = 'U':  Upper triangle of A is stored;   
            = 'L':  Lower triangle of A is stored.   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.   

    A       (input) REAL array, dimension (LDA,N)   
            The triangular factor U or L from the Cholesky factorization   
            A = U**T*U or A = L*L**T, as computed by SPOTRF.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,N).   

    ANORM   (input) REAL   
            The 1-norm (or infinity-norm) of the symmetric matrix A.   

    RCOND   (output) REAL   
            The reciprocal of the condition number of the matrix A,   
            computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an   
            estimate of the 1-norm of inv(A) computed in this routine.   

    WORK    (workspace) REAL array, dimension (3*N)   

    IWORK   (workspace) INTEGER array, dimension (N)   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    /* Table of constant values */
    static integer c__1 = 1;
    
    /* System generated locals */
    integer a_dim1, a_offset, i__1;
    real r__1;
    /* Local variables */
    static integer kase;
    static real scale;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int srscl_(integer *, real *, real *, integer *);
    static logical upper;
    static integer ix;
    static real scalel;
    extern doublereal slamch_(char *);
    static real scaleu;
    extern /* Subroutine */ int xerbla_(char *, integer *), slacon_(
	    integer *, real *, real *, integer *, real *, integer *);
    extern integer isamax_(integer *, real *, integer *);
    static real ainvnm;
    static char normin[1];
    extern /* Subroutine */ int slatrs_(char *, char *, char *, char *, 
	    integer *, real *, integer *, real *, real *, real *, integer *);
    static real smlnum;


    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    --work;
    --iwork;

    /* Function Body */
    *info = 0;
    upper = lsame_(uplo, "U");
    if (! upper && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*lda < max(1,*n)) {
	*info = -4;
    } else if (*anorm < 0.f) {
	*info = -5;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SPOCON", &i__1);
	return 0;
    }

/*     Quick return if possible */

    *rcond = 0.f;
    if (*n == 0) {
	*rcond = 1.f;
	return 0;
    } else if (*anorm == 0.f) {
	return 0;
    }

    smlnum = slamch_("Safe minimum");

/*     Estimate the 1-norm of inv(A). */

    kase = 0;
    *(unsigned char *)normin = 'N';
L10:
    slacon_(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase);
    if (kase != 0) {
	if (upper) {

/*           Multiply by inv(U'). */

	    slatrs_("Upper", "Transpose", "Non-unit", normin, n, &a[a_offset],
		     lda, &work[1], &scalel, &work[(*n << 1) + 1], info);
	    *(unsigned char *)normin = 'Y';

/*           Multiply by inv(U). */

	    slatrs_("Upper", "No transpose", "Non-unit", normin, n, &a[
		    a_offset], lda, &work[1], &scaleu, &work[(*n << 1) + 1], 
		    info);
	} else {

/*           Multiply by inv(L). */

	    slatrs_("Lower", "No transpose", "Non-unit", normin, n, &a[
		    a_offset], lda, &work[1], &scalel, &work[(*n << 1) + 1], 
		    info);
	    *(unsigned char *)normin = 'Y';

/*           Multiply by inv(L'). */

	    slatrs_("Lower", "Transpose", "Non-unit", normin, n, &a[a_offset],
		     lda, &work[1], &scaleu, &work[(*n << 1) + 1], info);
	}

/*        Multiply by 1/SCALE if doing so will not cause overflow. */

	scale = scalel * scaleu;
	if (scale != 1.f) {
	    ix = isamax_(n, &work[1], &c__1);
	    if (scale < (r__1 = work[ix], dabs(r__1)) * smlnum || scale == 
		    0.f) {
		goto L20;
	    }
	    srscl_(n, &scale, &work[1], &c__1);
	}
	goto L10;
    }

/*     Compute the estimate of the reciprocal condition number. */

    if (ainvnm != 0.f) {
	*rcond = 1.f / ainvnm / *anorm;
    }

L20:
    return 0;

/*     End of SPOCON */

} /* spocon_ */
예제 #8
0
파일: strcon.c 프로젝트: flame/libflame
/* Subroutine */
int strcon_(char *norm, char *uplo, char *diag, integer *n, real *a, integer *lda, real *rcond, real *work, integer *iwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1;
    real r__1;
    /* Local variables */
    integer ix, kase, kase1;
    real scale;
    extern logical lsame_(char *, char *);
    integer isave[3];
    real anorm;
    extern /* Subroutine */
    int srscl_(integer *, real *, real *, integer *);
    logical upper;
    real xnorm;
    extern /* Subroutine */
    int slacn2_(integer *, real *, real *, integer *, real *, integer *, integer *);
    extern real slamch_(char *);
    extern /* Subroutine */
    int xerbla_(char *, integer *);
    extern integer isamax_(integer *, real *, integer *);
    real ainvnm;
    logical onenrm;
    char normin[1];
    extern real slantr_(char *, char *, char *, integer *, integer *, real *, integer *, real *);
    extern /* Subroutine */
    int slatrs_(char *, char *, char *, char *, integer *, real *, integer *, real *, real *, real *, integer *);
    real smlnum;
    logical nounit;
    /* -- LAPACK computational routine (version 3.4.0) -- */
    /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
    /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
    /* November 2011 */
    /* .. Scalar Arguments .. */
    /* .. */
    /* .. Array Arguments .. */
    /* .. */
    /* ===================================================================== */
    /* .. Parameters .. */
    /* .. */
    /* .. Local Scalars .. */
    /* .. */
    /* .. Local Arrays .. */
    /* .. */
    /* .. External Functions .. */
    /* .. */
    /* .. External Subroutines .. */
    /* .. */
    /* .. Intrinsic Functions .. */
    /* .. */
    /* .. Executable Statements .. */
    /* Test the input parameters. */
    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --work;
    --iwork;
    /* Function Body */
    *info = 0;
    upper = lsame_(uplo, "U");
    onenrm = *(unsigned char *)norm == '1' || lsame_(norm, "O");
    nounit = lsame_(diag, "N");
    if (! onenrm && ! lsame_(norm, "I"))
    {
        *info = -1;
    }
    else if (! upper && ! lsame_(uplo, "L"))
    {
        *info = -2;
    }
    else if (! nounit && ! lsame_(diag, "U"))
    {
        *info = -3;
    }
    else if (*n < 0)
    {
        *info = -4;
    }
    else if (*lda < max(1,*n))
    {
        *info = -6;
    }
    if (*info != 0)
    {
        i__1 = -(*info);
        xerbla_("STRCON", &i__1);
        return 0;
    }
    /* Quick return if possible */
    if (*n == 0)
    {
        *rcond = 1.f;
        return 0;
    }
    *rcond = 0.f;
    smlnum = slamch_("Safe minimum") * (real) max(1,*n);
    /* Compute the norm of the triangular matrix A. */
    anorm = slantr_(norm, uplo, diag, n, n, &a[a_offset], lda, &work[1]);
    /* Continue only if ANORM > 0. */
    if (anorm > 0.f)
    {
        /* Estimate the norm of the inverse of A. */
        ainvnm = 0.f;
        *(unsigned char *)normin = 'N';
        if (onenrm)
        {
            kase1 = 1;
        }
        else
        {
            kase1 = 2;
        }
        kase = 0;
L10:
        slacn2_(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase, isave);
        if (kase != 0)
        {
            if (kase == kase1)
            {
                /* Multiply by inv(A). */
                slatrs_(uplo, "No transpose", diag, normin, n, &a[a_offset], lda, &work[1], &scale, &work[(*n << 1) + 1], info);
            }
            else
            {
                /* Multiply by inv(A**T). */
                slatrs_(uplo, "Transpose", diag, normin, n, &a[a_offset], lda, &work[1], &scale, &work[(*n << 1) + 1], info);
            }
            *(unsigned char *)normin = 'Y';
            /* Multiply by 1/SCALE if doing so will not cause overflow. */
            if (scale != 1.f)
            {
                ix = isamax_(n, &work[1], &c__1);
                xnorm = (r__1 = work[ix], f2c_abs(r__1));
                if (scale < xnorm * smlnum || scale == 0.f)
                {
                    goto L20;
                }
                srscl_(n, &scale, &work[1], &c__1);
            }
            goto L10;
        }
        /* Compute the estimate of the reciprocal condition number. */
        if (ainvnm != 0.f)
        {
            *rcond = 1.f / anorm / ainvnm;
        }
    }
L20:
    return 0;
    /* End of STRCON */
}
예제 #9
0
파일: serrtr.c 프로젝트: kstraube/hysim
/* Subroutine */ int serrtr_(char *path, integer *nunit)
{
    /* Builtin functions */
    integer s_wsle(cilist *), e_wsle(void);
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);

    /* Local variables */
    real a[4]	/* was [2][2] */, b[2], w[2], x[2];
    char c2[2];
    real r1[2], r2[2];
    integer iw[2], info;
    real scale, rcond;
    extern /* Subroutine */ int strti2_(char *, char *, integer *, real *, 
	    integer *, integer *), alaesm_(char *, logical *, 
	    integer *);
    extern logical lsamen_(integer *, char *, char *);
    extern /* Subroutine */ int chkxer_(char *, integer *, integer *, logical 
	    *, logical *), slatbs_(char *, char *, char *, char *, 
	    integer *, integer *, real *, integer *, real *, real *, real *, 
	    integer *), stbcon_(char *, char *
, char *, integer *, integer *, real *, integer *, real *, real *, 
	     integer *, integer *), stbrfs_(char *, 
	    char *, char *, integer *, integer *, integer *, real *, integer *
, real *, integer *, real *, integer *, real *, real *, real *, 
	    integer *, integer *), slatps_(char *, 
	    char *, char *, char *, integer *, real *, real *, real *, real *, 
	     integer *), stpcon_(char *, char 
	    *, char *, integer *, real *, real *, real *, integer *, integer *
), slatrs_(char *, char *, char *, char *, 
	     integer *, real *, integer *, real *, real *, real *, integer *), strcon_(char *, char *, char *, 
	    integer *, real *, integer *, real *, real *, integer *, integer *
), stbtrs_(char *, char *, char *, 
	    integer *, integer *, integer *, real *, integer *, real *, 
	    integer *, integer *), stprfs_(char *, 
	    char *, char *, integer *, integer *, real *, real *, integer *, 
	    real *, integer *, real *, real *, real *, integer *, integer *), strrfs_(char *, char *, char *, integer *
, integer *, real *, integer *, real *, integer *, real *, 
	    integer *, real *, real *, real *, integer *, integer *), stptri_(char *, char *, integer *, real *, 
	    integer *), strtri_(char *, char *, integer *, 
	    real *, integer *, integer *), stptrs_(char *, 
	    char *, char *, integer *, integer *, real *, real *, integer *, 
	    integer *), strtrs_(char *, char *, char *
, integer *, integer *, real *, integer *, real *, integer *, 
	    integer *);

    /* Fortran I/O blocks */
    static cilist io___1 = { 0, 0, 0, 0, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SERRTR tests the error exits for the REAL triangular */
/*  routines. */

/*  Arguments */
/*  ========= */

/*  PATH    (input) CHARACTER*3 */
/*          The LAPACK path name for the routines to be tested. */

/*  NUNIT   (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Executable Statements .. */

    infoc_1.nout = *nunit;
    io___1.ciunit = infoc_1.nout;
    s_wsle(&io___1);
    e_wsle();
    s_copy(c2, path + 1, (ftnlen)2, (ftnlen)2);
    a[0] = 1.f;
    a[2] = 2.f;
    a[3] = 3.f;
    a[1] = 4.f;
    infoc_1.ok = TRUE_;

    if (lsamen_(&c__2, c2, "TR")) {

/*        Test error exits for the general triangular routines. */

/*        STRTRI */

	s_copy(srnamc_1.srnamt, "STRTRI", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	strtri_("/", "N", &c__0, a, &c__1, &info);
	chkxer_("STRTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	strtri_("U", "/", &c__0, a, &c__1, &info);
	chkxer_("STRTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	strtri_("U", "N", &c_n1, a, &c__1, &info);
	chkxer_("STRTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	strtri_("U", "N", &c__2, a, &c__1, &info);
	chkxer_("STRTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        STRTI2 */

	s_copy(srnamc_1.srnamt, "STRTI2", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	strti2_("/", "N", &c__0, a, &c__1, &info);
	chkxer_("STRTI2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	strti2_("U", "/", &c__0, a, &c__1, &info);
	chkxer_("STRTI2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	strti2_("U", "N", &c_n1, a, &c__1, &info);
	chkxer_("STRTI2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	strti2_("U", "N", &c__2, a, &c__1, &info);
	chkxer_("STRTI2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        STRTRS */

	s_copy(srnamc_1.srnamt, "STRTRS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	strtrs_("/", "N", "N", &c__0, &c__0, a, &c__1, x, &c__1, &info);
	chkxer_("STRTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	strtrs_("U", "/", "N", &c__0, &c__0, a, &c__1, x, &c__1, &info);
	chkxer_("STRTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	strtrs_("U", "N", "/", &c__0, &c__0, a, &c__1, x, &c__1, &info);
	chkxer_("STRTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	strtrs_("U", "N", "N", &c_n1, &c__0, a, &c__1, x, &c__1, &info);
	chkxer_("STRTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	strtrs_("U", "N", "N", &c__0, &c_n1, a, &c__1, x, &c__1, &info);
	chkxer_("STRTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	strtrs_("U", "N", "N", &c__2, &c__1, a, &c__1, x, &c__2, &info);
	chkxer_("STRTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 9;
	strtrs_("U", "N", "N", &c__2, &c__1, a, &c__2, x, &c__1, &info);
	chkxer_("STRTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        STRRFS */

	s_copy(srnamc_1.srnamt, "STRRFS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	strrfs_("/", "N", "N", &c__0, &c__0, a, &c__1, b, &c__1, x, &c__1, r1, 
		 r2, w, iw, &info);
	chkxer_("STRRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	strrfs_("U", "/", "N", &c__0, &c__0, a, &c__1, b, &c__1, x, &c__1, r1, 
		 r2, w, iw, &info);
	chkxer_("STRRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	strrfs_("U", "N", "/", &c__0, &c__0, a, &c__1, b, &c__1, x, &c__1, r1, 
		 r2, w, iw, &info);
	chkxer_("STRRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	strrfs_("U", "N", "N", &c_n1, &c__0, a, &c__1, b, &c__1, x, &c__1, r1, 
		 r2, w, iw, &info);
	chkxer_("STRRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	strrfs_("U", "N", "N", &c__0, &c_n1, a, &c__1, b, &c__1, x, &c__1, r1, 
		 r2, w, iw, &info);
	chkxer_("STRRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	strrfs_("U", "N", "N", &c__2, &c__1, a, &c__1, b, &c__2, x, &c__2, r1, 
		 r2, w, iw, &info);
	chkxer_("STRRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 9;
	strrfs_("U", "N", "N", &c__2, &c__1, a, &c__2, b, &c__1, x, &c__2, r1, 
		 r2, w, iw, &info);
	chkxer_("STRRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 11;
	strrfs_("U", "N", "N", &c__2, &c__1, a, &c__2, b, &c__2, x, &c__1, r1, 
		 r2, w, iw, &info);
	chkxer_("STRRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        STRCON */

	s_copy(srnamc_1.srnamt, "STRCON", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	strcon_("/", "U", "N", &c__0, a, &c__1, &rcond, w, iw, &info);
	chkxer_("STRCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	strcon_("1", "/", "N", &c__0, a, &c__1, &rcond, w, iw, &info);
	chkxer_("STRCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	strcon_("1", "U", "/", &c__0, a, &c__1, &rcond, w, iw, &info);
	chkxer_("STRCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	strcon_("1", "U", "N", &c_n1, a, &c__1, &rcond, w, iw, &info);
	chkxer_("STRCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	strcon_("1", "U", "N", &c__2, a, &c__1, &rcond, w, iw, &info);
	chkxer_("STRCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        SLATRS */

	s_copy(srnamc_1.srnamt, "SLATRS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	slatrs_("/", "N", "N", "N", &c__0, a, &c__1, x, &scale, w, &info);
	chkxer_("SLATRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	slatrs_("U", "/", "N", "N", &c__0, a, &c__1, x, &scale, w, &info);
	chkxer_("SLATRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	slatrs_("U", "N", "/", "N", &c__0, a, &c__1, x, &scale, w, &info);
	chkxer_("SLATRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	slatrs_("U", "N", "N", "/", &c__0, a, &c__1, x, &scale, w, &info);
	chkxer_("SLATRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	slatrs_("U", "N", "N", "N", &c_n1, a, &c__1, x, &scale, w, &info);
	chkxer_("SLATRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	slatrs_("U", "N", "N", "N", &c__2, a, &c__1, x, &scale, w, &info);
	chkxer_("SLATRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

    } else if (lsamen_(&c__2, c2, "TP")) {

/*        Test error exits for the packed triangular routines. */

/*        STPTRI */

	s_copy(srnamc_1.srnamt, "STPTRI", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	stptri_("/", "N", &c__0, a, &info);
	chkxer_("STPTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	stptri_("U", "/", &c__0, a, &info);
	chkxer_("STPTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	stptri_("U", "N", &c_n1, a, &info);
	chkxer_("STPTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        STPTRS */

	s_copy(srnamc_1.srnamt, "STPTRS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	stptrs_("/", "N", "N", &c__0, &c__0, a, x, &c__1, &info);
	chkxer_("STPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	stptrs_("U", "/", "N", &c__0, &c__0, a, x, &c__1, &info);
	chkxer_("STPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	stptrs_("U", "N", "/", &c__0, &c__0, a, x, &c__1, &info);
	chkxer_("STPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	stptrs_("U", "N", "N", &c_n1, &c__0, a, x, &c__1, &info);
	chkxer_("STPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	stptrs_("U", "N", "N", &c__0, &c_n1, a, x, &c__1, &info);
	chkxer_("STPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	stptrs_("U", "N", "N", &c__2, &c__1, a, x, &c__1, &info);
	chkxer_("STPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        STPRFS */

	s_copy(srnamc_1.srnamt, "STPRFS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	stprfs_("/", "N", "N", &c__0, &c__0, a, b, &c__1, x, &c__1, r1, r2, w, 
		 iw, &info);
	chkxer_("STPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	stprfs_("U", "/", "N", &c__0, &c__0, a, b, &c__1, x, &c__1, r1, r2, w, 
		 iw, &info);
	chkxer_("STPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	stprfs_("U", "N", "/", &c__0, &c__0, a, b, &c__1, x, &c__1, r1, r2, w, 
		 iw, &info);
	chkxer_("STPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	stprfs_("U", "N", "N", &c_n1, &c__0, a, b, &c__1, x, &c__1, r1, r2, w, 
		 iw, &info);
	chkxer_("STPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	stprfs_("U", "N", "N", &c__0, &c_n1, a, b, &c__1, x, &c__1, r1, r2, w, 
		 iw, &info);
	chkxer_("STPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	stprfs_("U", "N", "N", &c__2, &c__1, a, b, &c__1, x, &c__2, r1, r2, w, 
		 iw, &info);
	chkxer_("STPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 10;
	stprfs_("U", "N", "N", &c__2, &c__1, a, b, &c__2, x, &c__1, r1, r2, w, 
		 iw, &info);
	chkxer_("STPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        STPCON */

	s_copy(srnamc_1.srnamt, "STPCON", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	stpcon_("/", "U", "N", &c__0, a, &rcond, w, iw, &info);
	chkxer_("STPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	stpcon_("1", "/", "N", &c__0, a, &rcond, w, iw, &info);
	chkxer_("STPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	stpcon_("1", "U", "/", &c__0, a, &rcond, w, iw, &info);
	chkxer_("STPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	stpcon_("1", "U", "N", &c_n1, a, &rcond, w, iw, &info);
	chkxer_("STPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        SLATPS */

	s_copy(srnamc_1.srnamt, "SLATPS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	slatps_("/", "N", "N", "N", &c__0, a, x, &scale, w, &info);
	chkxer_("SLATPS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	slatps_("U", "/", "N", "N", &c__0, a, x, &scale, w, &info);
	chkxer_("SLATPS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	slatps_("U", "N", "/", "N", &c__0, a, x, &scale, w, &info);
	chkxer_("SLATPS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	slatps_("U", "N", "N", "/", &c__0, a, x, &scale, w, &info);
	chkxer_("SLATPS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	slatps_("U", "N", "N", "N", &c_n1, a, x, &scale, w, &info);
	chkxer_("SLATPS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

    } else if (lsamen_(&c__2, c2, "TB")) {

/*        Test error exits for the banded triangular routines. */

/*        STBTRS */

	s_copy(srnamc_1.srnamt, "STBTRS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	stbtrs_("/", "N", "N", &c__0, &c__0, &c__0, a, &c__1, x, &c__1, &info);
	chkxer_("STBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	stbtrs_("U", "/", "N", &c__0, &c__0, &c__0, a, &c__1, x, &c__1, &info);
	chkxer_("STBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	stbtrs_("U", "N", "/", &c__0, &c__0, &c__0, a, &c__1, x, &c__1, &info);
	chkxer_("STBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	stbtrs_("U", "N", "N", &c_n1, &c__0, &c__0, a, &c__1, x, &c__1, &info);
	chkxer_("STBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	stbtrs_("U", "N", "N", &c__0, &c_n1, &c__0, a, &c__1, x, &c__1, &info);
	chkxer_("STBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	stbtrs_("U", "N", "N", &c__0, &c__0, &c_n1, a, &c__1, x, &c__1, &info);
	chkxer_("STBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	stbtrs_("U", "N", "N", &c__2, &c__1, &c__1, a, &c__1, x, &c__2, &info);
	chkxer_("STBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 10;
	stbtrs_("U", "N", "N", &c__2, &c__0, &c__1, a, &c__1, x, &c__1, &info);
	chkxer_("STBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        STBRFS */

	s_copy(srnamc_1.srnamt, "STBRFS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	stbrfs_("/", "N", "N", &c__0, &c__0, &c__0, a, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, iw, &info);
	chkxer_("STBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	stbrfs_("U", "/", "N", &c__0, &c__0, &c__0, a, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, iw, &info);
	chkxer_("STBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	stbrfs_("U", "N", "/", &c__0, &c__0, &c__0, a, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, iw, &info);
	chkxer_("STBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	stbrfs_("U", "N", "N", &c_n1, &c__0, &c__0, a, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, iw, &info);
	chkxer_("STBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	stbrfs_("U", "N", "N", &c__0, &c_n1, &c__0, a, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, iw, &info);
	chkxer_("STBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	stbrfs_("U", "N", "N", &c__0, &c__0, &c_n1, a, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, iw, &info);
	chkxer_("STBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	stbrfs_("U", "N", "N", &c__2, &c__1, &c__1, a, &c__1, b, &c__2, x, &
		c__2, r1, r2, w, iw, &info);
	chkxer_("STBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 10;
	stbrfs_("U", "N", "N", &c__2, &c__1, &c__1, a, &c__2, b, &c__1, x, &
		c__2, r1, r2, w, iw, &info);
	chkxer_("STBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 12;
	stbrfs_("U", "N", "N", &c__2, &c__1, &c__1, a, &c__2, b, &c__2, x, &
		c__1, r1, r2, w, iw, &info);
	chkxer_("STBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        STBCON */

	s_copy(srnamc_1.srnamt, "STBCON", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	stbcon_("/", "U", "N", &c__0, &c__0, a, &c__1, &rcond, w, iw, &info);
	chkxer_("STBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	stbcon_("1", "/", "N", &c__0, &c__0, a, &c__1, &rcond, w, iw, &info);
	chkxer_("STBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	stbcon_("1", "U", "/", &c__0, &c__0, a, &c__1, &rcond, w, iw, &info);
	chkxer_("STBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	stbcon_("1", "U", "N", &c_n1, &c__0, a, &c__1, &rcond, w, iw, &info);
	chkxer_("STBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	stbcon_("1", "U", "N", &c__0, &c_n1, a, &c__1, &rcond, w, iw, &info);
	chkxer_("STBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	stbcon_("1", "U", "N", &c__2, &c__1, a, &c__1, &rcond, w, iw, &info);
	chkxer_("STBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        SLATBS */

	s_copy(srnamc_1.srnamt, "SLATBS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	slatbs_("/", "N", "N", "N", &c__0, &c__0, a, &c__1, x, &scale, w, &
		info);
	chkxer_("SLATBS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	slatbs_("U", "/", "N", "N", &c__0, &c__0, a, &c__1, x, &scale, w, &
		info);
	chkxer_("SLATBS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	slatbs_("U", "N", "/", "N", &c__0, &c__0, a, &c__1, x, &scale, w, &
		info);
	chkxer_("SLATBS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	slatbs_("U", "N", "N", "/", &c__0, &c__0, a, &c__1, x, &scale, w, &
		info);
	chkxer_("SLATBS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	slatbs_("U", "N", "N", "N", &c_n1, &c__0, a, &c__1, x, &scale, w, &
		info);
	chkxer_("SLATBS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	slatbs_("U", "N", "N", "N", &c__1, &c_n1, a, &c__1, x, &scale, w, &
		info);
	chkxer_("SLATBS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	slatbs_("U", "N", "N", "N", &c__2, &c__1, a, &c__1, x, &scale, w, &
		info);
	chkxer_("SLATBS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
    }

/*     Print a summary line. */

    alaesm_(path, &infoc_1.ok, &infoc_1.nout);

    return 0;

/*     End of SERRTR */

} /* serrtr_ */