예제 #1
0
/* Subroutine */ int sormtr_(char *side, char *uplo, char *trans, integer *m, 
	integer *n, real *a, integer *lda, real *tau, real *c__, integer *ldc, 
	 real *work, integer *lwork, integer *info)
{
    /* System generated locals */
    address a__1[2];
    integer a_dim1, a_offset, c_dim1, c_offset, i__1[2], i__2, i__3;
    char ch__1[2];

    /* Local variables */
    integer i1, i2, nb, mi, ni, nq, nw;
    logical left;
    integer iinfo;
    logical upper;
    integer lwkopt;
    logical lquery;

/*  -- LAPACK routine (version 3.2) -- */
/*     November 2006 */

/*  Purpose */
/*  ======= */

/*  SORMTR overwrites the general real M-by-N matrix C with */

/*                  SIDE = 'L'     SIDE = 'R' */
/*  TRANS = 'N':      Q * C          C * Q */
/*  TRANS = 'T':      Q**T * C       C * Q**T */

/*  where Q is a real orthogonal matrix of order nq, with nq = m if */
/*  SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of */
/*  nq-1 elementary reflectors, as returned by SSYTRD: */

/*  if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1); */

/*  if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1). */

/*  Arguments */
/*  ========= */

/*  SIDE    (input) CHARACTER*1 */
/*          = 'L': apply Q or Q**T from the Left; */
/*          = 'R': apply Q or Q**T from the Right. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U': Upper triangle of A contains elementary reflectors */
/*                 from SSYTRD; */
/*          = 'L': Lower triangle of A contains elementary reflectors */
/*                 from SSYTRD. */

/*  TRANS   (input) CHARACTER*1 */
/*          = 'N':  No transpose, apply Q; */
/*          = 'T':  Transpose, apply Q**T. */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix C. M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix C. N >= 0. */

/*  A       (input) REAL array, dimension */
/*                               (LDA,M) if SIDE = 'L' */
/*                               (LDA,N) if SIDE = 'R' */
/*          The vectors which define the elementary reflectors, as */
/*          returned by SSYTRD. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A. */
/*          LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'. */

/*  TAU     (input) REAL array, dimension */
/*                               (M-1) if SIDE = 'L' */
/*                               (N-1) if SIDE = 'R' */
/*          TAU(i) must contain the scalar factor of the elementary */
/*          reflector H(i), as returned by SSYTRD. */

/*  C       (input/output) REAL array, dimension (LDC,N) */
/*          On entry, the M-by-N matrix C. */
/*          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. */

/*  LDC     (input) INTEGER */
/*          The leading dimension of the array C. LDC >= max(1,M). */

/*  WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK. */
/*          If SIDE = 'L', LWORK >= max(1,N); */
/*          if SIDE = 'R', LWORK >= max(1,M). */
/*          For optimum performance LWORK >= N*NB if SIDE = 'L', and */
/*          LWORK >= M*NB if SIDE = 'R', where NB is the optimal */
/*          blocksize. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */

/*  ===================================================================== */

/*     Test the input arguments */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --tau;
    c_dim1 = *ldc;
    c_offset = 1 + c_dim1;
    c__ -= c_offset;
    --work;

    /* Function Body */
    *info = 0;
    left = lsame_(side, "L");
    upper = lsame_(uplo, "U");
    lquery = *lwork == -1;

/*     NQ is the order of Q and NW is the minimum dimension of WORK */

    if (left) {
	nq = *m;
	nw = *n;
    } else {
	nq = *n;
	nw = *m;
    }
    if (! left && ! lsame_(side, "R")) {
	*info = -1;
    } else if (! upper && ! lsame_(uplo, "L")) {
	*info = -2;
    } else if (! lsame_(trans, "N") && ! lsame_(trans, 
	    "T")) {
	*info = -3;
    } else if (*m < 0) {
	*info = -4;
    } else if (*n < 0) {
	*info = -5;
    } else if (*lda < max(1,nq)) {
	*info = -7;
    } else if (*ldc < max(1,*m)) {
	*info = -10;
    } else if (*lwork < max(1,nw) && ! lquery) {
	*info = -12;
    }

    if (*info == 0) {
	if (upper) {
	    if (left) {
/* Writing concatenation */
		i__1[0] = 1, a__1[0] = side;
		i__1[1] = 1, a__1[1] = trans;
		s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
		i__2 = *m - 1;
		i__3 = *m - 1;
		nb = ilaenv_(&c__1, "SORMQL", ch__1, &i__2, n, &i__3, &c_n1);
	    } else {
/* Writing concatenation */
		i__1[0] = 1, a__1[0] = side;
		i__1[1] = 1, a__1[1] = trans;
		s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
		i__2 = *n - 1;
		i__3 = *n - 1;
		nb = ilaenv_(&c__1, "SORMQL", ch__1, m, &i__2, &i__3, &c_n1);
	    }
	} else {
	    if (left) {
/* Writing concatenation */
		i__1[0] = 1, a__1[0] = side;
		i__1[1] = 1, a__1[1] = trans;
		s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
		i__2 = *m - 1;
		i__3 = *m - 1;
		nb = ilaenv_(&c__1, "SORMQR", ch__1, &i__2, n, &i__3, &c_n1);
	    } else {
/* Writing concatenation */
		i__1[0] = 1, a__1[0] = side;
		i__1[1] = 1, a__1[1] = trans;
		s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
		i__2 = *n - 1;
		i__3 = *n - 1;
		nb = ilaenv_(&c__1, "SORMQR", ch__1, m, &i__2, &i__3, &c_n1);
	    }
	}
	lwkopt = max(1,nw) * nb;
	work[1] = (real) lwkopt;
    }

    if (*info != 0) {
	i__2 = -(*info);
	xerbla_("SORMTR", &i__2);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*m == 0 || *n == 0 || nq == 1) {
	work[1] = 1.f;
	return 0;
    }

    if (left) {
	mi = *m - 1;
	ni = *n;
    } else {
	mi = *m;
	ni = *n - 1;
    }

    if (upper) {

/*        Q was determined by a call to SSYTRD with UPLO = 'U' */

	i__2 = nq - 1;
	sormql_(side, trans, &mi, &ni, &i__2, &a[(a_dim1 << 1) + 1], lda, &
		tau[1], &c__[c_offset], ldc, &work[1], lwork, &iinfo);
    } else {

/*        Q was determined by a call to SSYTRD with UPLO = 'L' */

	if (left) {
	    i1 = 2;
	    i2 = 1;
	} else {
	    i1 = 1;
	    i2 = 2;
	}
	i__2 = nq - 1;
	sormqr_(side, trans, &mi, &ni, &i__2, &a[a_dim1 + 2], lda, &tau[1], &
		c__[i1 + i2 * c_dim1], ldc, &work[1], lwork, &iinfo);
    }
    work[1] = (real) lwkopt;
    return 0;

/*     End of SORMTR */

} /* sormtr_ */
예제 #2
0
파일: sormtr.c 프로젝트: Booley/nbis
/* Subroutine */ int sormtr_(char *side, char *uplo, char *trans, int *m, 
	int *n, real *a, int *lda, real *tau, real *c, int *ldc, 
	real *work, int *lwork, int *info)
{
/*  -- LAPACK routine (version 2.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    SORMTR overwrites the general real M-by-N matrix C with   

                    SIDE = 'L'     SIDE = 'R'   
    TRANS = 'N':      Q * C          C * Q   
    TRANS = 'T':      Q**T * C       C * Q**T   

    where Q is a real orthogonal matrix of order nq, with nq = m if   
    SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of   
    nq-1 elementary reflectors, as returned by SSYTRD:   

    if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);   

    if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).   

    Arguments   
    =========   

    SIDE    (input) CHARACTER*1   
            = 'L': apply Q or Q**T from the Left;   
            = 'R': apply Q or Q**T from the Right.   

    UPLO    (input) CHARACTER*1   
            = 'U': Upper triangle of A contains elementary reflectors   
                   from SSYTRD;   
            = 'L': Lower triangle of A contains elementary reflectors   
                   from SSYTRD.   

    TRANS   (input) CHARACTER*1   
            = 'N':  No transpose, apply Q;   
            = 'T':  Transpose, apply Q**T.   

    M       (input) INTEGER   
            The number of rows of the matrix C. M >= 0.   

    N       (input) INTEGER   
            The number of columns of the matrix C. N >= 0.   

    A       (input) REAL array, dimension   
                                 (LDA,M) if SIDE = 'L'   
                                 (LDA,N) if SIDE = 'R'   
            The vectors which define the elementary reflectors, as   
            returned by SSYTRD.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.   
            LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'. 
  

    TAU     (input) REAL array, dimension   
                                 (M-1) if SIDE = 'L'   
                                 (N-1) if SIDE = 'R'   
            TAU(i) must contain the scalar factor of the elementary   
            reflector H(i), as returned by SSYTRD.   

    C       (input/output) REAL array, dimension (LDC,N)   
            On entry, the M-by-N matrix C.   
            On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. 
  

    LDC     (input) INTEGER   
            The leading dimension of the array C. LDC >= max(1,M).   

    WORK    (workspace/output) REAL array, dimension (LWORK)   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The dimension of the array WORK.   
            If SIDE = 'L', LWORK >= max(1,N);   
            if SIDE = 'R', LWORK >= max(1,M).   
            For optimum performance LWORK >= N*NB if SIDE = 'L', and   
            LWORK >= M*NB if SIDE = 'R', where NB is the optimal   
            blocksize.   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   

    ===================================================================== 
  


       Test the input arguments   

    
   Parameter adjustments   
       Function Body */
    /* System generated locals */
/*  Unused variables commented out by MDG on 03-09-05
    int a_dim1, a_offset, c_dim1, c_offset;
*/
    int i__1;
    /* Local variables */
    static logical left;
    extern logical lsame_(char *, char *);
    static int iinfo, i1;
    static logical upper;
    static int i2, mi, ni, nq, nw;
    extern /* Subroutine */ int xerbla_(char *, int *), sormql_(
	    char *, char *, int *, int *, int *, real *, int *
	    , real *, real *, int *, real *, int *, int *), sormqr_(char *, char *, int *, int *, int *,
	     real *, int *, real *, real *, int *, real *, int *, 
	    int *);


#define TAU(I) tau[(I)-1]
#define WORK(I) work[(I)-1]

#define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)]
#define C(I,J) c[(I)-1 + ((J)-1)* ( *ldc)]

    *info = 0;
    left = lsame_(side, "L");
    upper = lsame_(uplo, "U");

/*     NQ is the order of Q and NW is the minimum dimension of WORK */

    if (left) {
	nq = *m;
	nw = *n;
    } else {
	nq = *n;
	nw = *m;
    }
    if (! left && ! lsame_(side, "R")) {
	*info = -1;
    } else if (! upper && ! lsame_(uplo, "L")) {
	*info = -2;
    } else if (! lsame_(trans, "N") && ! lsame_(trans, "T")) {
	*info = -3;
    } else if (*m < 0) {
	*info = -4;
    } else if (*n < 0) {
	*info = -5;
    } else if (*lda < max(1,nq)) {
	*info = -7;
    } else if (*ldc < max(1,*m)) {
	*info = -10;
    } else if (*lwork < max(1,nw)) {
	*info = -12;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SORMTR", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*m == 0 || *n == 0 || nq == 1) {
	WORK(1) = 1.f;
	return 0;
    }

    if (left) {
	mi = *m - 1;
	ni = *n;
    } else {
	mi = *m;
	ni = *n - 1;
    }

    if (upper) {

/*        Q was determined by a call to SSYTRD with UPLO = 'U' */

	i__1 = nq - 1;
	sormql_(side, trans, &mi, &ni, &i__1, &A(1,2), lda, &
		TAU(1), &C(1,1), ldc, &WORK(1), lwork, &iinfo);
    } else {

/*        Q was determined by a call to SSYTRD with UPLO = 'L' */

	if (left) {
	    i1 = 2;
	    i2 = 1;
	} else {
	    i1 = 1;
	    i2 = 2;
	}
	i__1 = nq - 1;
	sormqr_(side, trans, &mi, &ni, &i__1, &A(2,1), lda, &TAU(1), &
		C(i1,i2), ldc, &WORK(1), lwork, &iinfo);
    }
    return 0;

/*     End of SORMTR */

} /* sormtr_ */
예제 #3
0
/* Subroutine */ int sgeqls_(integer *m, integer *n, integer *nrhs, real *a, 
	integer *lda, real *tau, real *b, integer *ldb, real *work, integer *
	lwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1;

    /* Local variables */


/*  -- LAPACK routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  Solve the least squares problem */
/*      min || A*X - B || */
/*  using the QL factorization */
/*      A = Q*L */
/*  computed by SGEQLF. */

/*  Arguments */
/*  ========= */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix A.  M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix A.  M >= N >= 0. */

/*  NRHS    (input) INTEGER */
/*          The number of columns of B.  NRHS >= 0. */

/*  A       (input) REAL array, dimension (LDA,N) */
/*          Details of the QL factorization of the original matrix A as */
/*          returned by SGEQLF. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= M. */

/*  TAU     (input) REAL array, dimension (N) */
/*          Details of the orthogonal matrix Q. */

/*  B       (input/output) REAL array, dimension (LDB,NRHS) */
/*          On entry, the m-by-nrhs right hand side matrix B. */
/*          On exit, the n-by-nrhs solution matrix X, stored in rows */
/*          m-n+1:m. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B. LDB >= M. */

/*  WORK    (workspace) REAL array, dimension (LWORK) */

/*  LWORK   (input) INTEGER */
/*          The length of the array WORK.  LWORK must be at least NRHS, */
/*          and should be at least NRHS*NB, where NB is the block size */
/*          for this environment. */

/*  INFO    (output) INTEGER */
/*          = 0: successful exit */
/*          < 0: if INFO = -i, the i-th argument had an illegal value */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input arguments. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --tau;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    --work;

    /* Function Body */
    *info = 0;
    if (*m < 0) {
	*info = -1;
    } else if (*n < 0 || *n > *m) {
	*info = -2;
    } else if (*nrhs < 0) {
	*info = -3;
    } else if (*lda < max(1,*m)) {
	*info = -5;
    } else if (*ldb < max(1,*m)) {
	*info = -8;
    } else if (*lwork < 1 || *lwork < *nrhs && *m > 0 && *n > 0) {
	*info = -10;
    }
    if (*info != 0) {
	i__1 = -(*info);
	this_xerbla_("SGEQLS", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0 || *nrhs == 0 || *m == 0) {
	return 0;
    }

/*     B := Q' * B */

    sormql_("Left", "Transpose", m, nrhs, n, &a[a_offset], lda, &tau[1], &b[
	    b_offset], ldb, &work[1], lwork, info);

/*     Solve L*X = B(m-n+1:m,:) */

    strsm_("Left", "Lower", "No transpose", "Non-unit", n, nrhs, &c_b9, &a[*m 
	    - *n + 1 + a_dim1], lda, &b[*m - *n + 1 + b_dim1], ldb);

    return 0;

/*     End of SGEQLS */

} /* sgeqls_ */