static int vdev_root_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize, uint64_t *ashift) { spa_t *spa = vd->vdev_spa; int lasterror = 0; int numerrors = 0; int c; if (vd->vdev_children == 0) { vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL; return (SET_ERROR(EINVAL)); } vdev_open_children(vd); for (c = 0; c < vd->vdev_children; c++) { vdev_t *cvd = vd->vdev_child[c]; if (cvd->vdev_open_error && !cvd->vdev_islog) { lasterror = cvd->vdev_open_error; numerrors++; } } if (spa_load_state(spa) != SPA_LOAD_NONE) spa_set_missing_tvds(spa, numerrors); if (too_many_errors(vd, numerrors)) { vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS; return (lasterror); } *asize = 0; *max_asize = 0; *ashift = 0; return (0); }
/* * Generate the pool's configuration based on the current in-core state. * * We infer whether to generate a complete config or just one top-level config * based on whether vd is the root vdev. */ nvlist_t * spa_config_generate(spa_t *spa, vdev_t *vd, uint64_t txg, int getstats) { nvlist_t *config, *nvroot; vdev_t *rvd = spa->spa_root_vdev; unsigned long hostid = 0; boolean_t locked = B_FALSE; uint64_t split_guid; if (vd == NULL) { vd = rvd; locked = B_TRUE; spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); } ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER) == (SCL_CONFIG | SCL_STATE)); /* * If txg is -1, report the current value of spa->spa_config_txg. */ if (txg == -1ULL) txg = spa->spa_config_txg; VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa)) == 0); VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, spa_name(spa)) == 0); VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, spa_state(spa)) == 0); VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, txg) == 0); VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, spa_guid(spa)) == 0); VERIFY(spa->spa_comment == NULL || nvlist_add_string(config, ZPOOL_CONFIG_COMMENT, spa->spa_comment) == 0); #ifdef _KERNEL hostid = zone_get_hostid(NULL); #else /* _KERNEL */ /* * We're emulating the system's hostid in userland, so we can't use * zone_get_hostid(). */ (void) ddi_strtoul(hw_serial, NULL, 10, &hostid); #endif /* _KERNEL */ if (hostid != 0) { VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID, hostid) == 0); } VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME, utsname.nodename) == 0); if (vd != rvd) { VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TOP_GUID, vd->vdev_top->vdev_guid) == 0); VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0); if (vd->vdev_isspare) VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_IS_SPARE, 1ULL) == 0); if (vd->vdev_islog) VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_IS_LOG, 1ULL) == 0); vd = vd->vdev_top; /* label contains top config */ } else { /* * Only add the (potentially large) split information * in the mos config, and not in the vdev labels */ if (spa->spa_config_splitting != NULL) VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_SPLIT, spa->spa_config_splitting) == 0); } /* * Add the top-level config. We even add this on pools which * don't support holes in the namespace. */ vdev_top_config_generate(spa, config); /* * If we're splitting, record the original pool's guid. */ if (spa->spa_config_splitting != NULL && nvlist_lookup_uint64(spa->spa_config_splitting, ZPOOL_CONFIG_SPLIT_GUID, &split_guid) == 0) { VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_SPLIT_GUID, split_guid) == 0); } nvroot = vdev_config_generate(spa, vd, getstats, 0); VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); nvlist_free(nvroot); /* * Store what's necessary for reading the MOS in the label. */ VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ, spa->spa_label_features) == 0); if (getstats && spa_load_state(spa) == SPA_LOAD_NONE) { ddt_histogram_t *ddh; ddt_stat_t *dds; ddt_object_t *ddo; ddh = kmem_zalloc(sizeof (ddt_histogram_t), KM_SLEEP); ddt_get_dedup_histogram(spa, ddh); VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_DDT_HISTOGRAM, (uint64_t *)ddh, sizeof (*ddh) / sizeof (uint64_t)) == 0); kmem_free(ddh, sizeof (ddt_histogram_t)); ddo = kmem_zalloc(sizeof (ddt_object_t), KM_SLEEP); ddt_get_dedup_object_stats(spa, ddo); VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_DDT_OBJ_STATS, (uint64_t *)ddo, sizeof (*ddo) / sizeof (uint64_t)) == 0); kmem_free(ddo, sizeof (ddt_object_t)); dds = kmem_zalloc(sizeof (ddt_stat_t), KM_SLEEP); ddt_get_dedup_stats(spa, dds); VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_DDT_STATS, (uint64_t *)dds, sizeof (*dds) / sizeof (uint64_t)) == 0); kmem_free(dds, sizeof (ddt_stat_t)); } if (locked) spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); return (config); }
/* * Generate the pool's configuration based on the current in-core state. * * We infer whether to generate a complete config or just one top-level config * based on whether vd is the root vdev. */ nvlist_t * spa_config_generate(spa_t *spa, vdev_t *vd, uint64_t txg, int getstats) { nvlist_t *config, *nvroot; vdev_t *rvd = spa->spa_root_vdev; unsigned long hostid = 0; boolean_t locked = B_FALSE; uint64_t split_guid; char *pool_name; if (vd == NULL) { vd = rvd; locked = B_TRUE; spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); } ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER) == (SCL_CONFIG | SCL_STATE)); /* * If txg is -1, report the current value of spa->spa_config_txg. */ if (txg == -1ULL) txg = spa->spa_config_txg; /* * Originally, users had to handle spa namespace collisions by either * exporting the already imported pool or by specifying a new name for * the pool with a conflicting name. In the case of root pools from * virtual guests, neither approach to collision resolution is * reasonable. This is addressed by extending the new name syntax with * an option to specify that the new name is temporary. When specified, * ZFS_IMPORT_TEMP_NAME will be set in spa->spa_import_flags to tell us * to use the previous name, which we do below. */ if (spa->spa_import_flags & ZFS_IMPORT_TEMP_NAME) { VERIFY0(nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME, &pool_name)); } else pool_name = spa_name(spa); VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa)) == 0); VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, pool_name) == 0); VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, spa_state(spa)) == 0); VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, txg) == 0); VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, spa_guid(spa)) == 0); VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA, spa->spa_errata) == 0); VERIFY(spa->spa_comment == NULL || nvlist_add_string(config, ZPOOL_CONFIG_COMMENT, spa->spa_comment) == 0); #ifdef _KERNEL hostid = zone_get_hostid(NULL); #else /* _KERNEL */ /* * We're emulating the system's hostid in userland, so we can't use * zone_get_hostid(). */ (void) ddi_strtoul(hw_serial, NULL, 10, &hostid); #endif /* _KERNEL */ if (hostid != 0) { VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID, hostid) == 0); } VERIFY0(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME, utsname()->nodename)); if (vd != rvd) { VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TOP_GUID, vd->vdev_top->vdev_guid) == 0); VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0); if (vd->vdev_isspare) VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_IS_SPARE, 1ULL) == 0); if (vd->vdev_islog) VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_IS_LOG, 1ULL) == 0); vd = vd->vdev_top; /* label contains top config */ } else { /* * Only add the (potentially large) split information * in the mos config, and not in the vdev labels */ if (spa->spa_config_splitting != NULL) VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_SPLIT, spa->spa_config_splitting) == 0); } /* * Add the top-level config. We even add this on pools which * don't support holes in the namespace. */ vdev_top_config_generate(spa, config); /* * If we're splitting, record the original pool's guid. */ if (spa->spa_config_splitting != NULL && nvlist_lookup_uint64(spa->spa_config_splitting, ZPOOL_CONFIG_SPLIT_GUID, &split_guid) == 0) { VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_SPLIT_GUID, split_guid) == 0); } nvroot = vdev_config_generate(spa, vd, getstats, 0); VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); nvlist_free(nvroot); /* * Store what's necessary for reading the MOS in the label. */ VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ, spa->spa_label_features) == 0); if (getstats && spa_load_state(spa) == SPA_LOAD_NONE) { ddt_histogram_t *ddh; ddt_stat_t *dds; ddt_object_t *ddo; ddh = kmem_zalloc(sizeof (ddt_histogram_t), KM_SLEEP); ddt_get_dedup_histogram(spa, ddh); VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_DDT_HISTOGRAM, (uint64_t *)ddh, sizeof (*ddh) / sizeof (uint64_t)) == 0); kmem_free(ddh, sizeof (ddt_histogram_t)); ddo = kmem_zalloc(sizeof (ddt_object_t), KM_SLEEP); ddt_get_dedup_object_stats(spa, ddo); VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_DDT_OBJ_STATS, (uint64_t *)ddo, sizeof (*ddo) / sizeof (uint64_t)) == 0); kmem_free(ddo, sizeof (ddt_object_t)); dds = kmem_zalloc(sizeof (ddt_stat_t), KM_SLEEP); ddt_get_dedup_stats(spa, dds); VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_DDT_STATS, (uint64_t *)dds, sizeof (*dds) / sizeof (uint64_t)) == 0); kmem_free(dds, sizeof (ddt_stat_t)); } if (locked) spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); return (config); }
static void txg_sync_thread(dsl_pool_t *dp) { spa_t *spa = dp->dp_spa; tx_state_t *tx = &dp->dp_tx; callb_cpr_t cpr; uint64_t start, delta; txg_thread_enter(tx, &cpr); start = delta = 0; for (;;) { uint64_t timer, timeout = zfs_txg_timeout * hz; uint64_t txg; /* * We sync when we're scrubbing, there's someone waiting * on us, or the quiesce thread has handed off a txg to * us, or we have reached our timeout. */ timer = (delta >= timeout ? 0 : timeout - delta); while ((dp->dp_scrub_func == SCRUB_FUNC_NONE || spa_load_state(spa) != SPA_LOAD_NONE || spa_shutting_down(spa)) && !tx->tx_exiting && timer > 0 && tx->tx_synced_txg >= tx->tx_sync_txg_waiting && tx->tx_quiesced_txg == 0) { dprintf("waiting; tx_synced=%llu waiting=%llu dp=%p\n", tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp); txg_thread_wait(tx, &cpr, &tx->tx_sync_more_cv, timer); delta = ddi_get_lbolt() - start; timer = (delta > timeout ? 0 : timeout - delta); } /* * Wait until the quiesce thread hands off a txg to us, * prompting it to do so if necessary. */ while (!tx->tx_exiting && tx->tx_quiesced_txg == 0) { if (tx->tx_quiesce_txg_waiting < tx->tx_open_txg+1) tx->tx_quiesce_txg_waiting = tx->tx_open_txg+1; cv_broadcast(&tx->tx_quiesce_more_cv); txg_thread_wait(tx, &cpr, &tx->tx_quiesce_done_cv, 0); } if (tx->tx_exiting) txg_thread_exit(tx, &cpr, &tx->tx_sync_thread); /* * Consume the quiesced txg which has been handed off to * us. This may cause the quiescing thread to now be * able to quiesce another txg, so we must signal it. */ txg = tx->tx_quiesced_txg; tx->tx_quiesced_txg = 0; tx->tx_syncing_txg = txg; cv_broadcast(&tx->tx_quiesce_more_cv); dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); mutex_exit(&tx->tx_sync_lock); start = ddi_get_lbolt(); spa_sync(spa, txg); delta = ddi_get_lbolt() - start; mutex_enter(&tx->tx_sync_lock); tx->tx_synced_txg = txg; tx->tx_syncing_txg = 0; cv_broadcast(&tx->tx_sync_done_cv); /* * Dispatch commit callbacks to worker threads. */ txg_dispatch_callbacks(dp, txg); } }
static mirror_map_t * vdev_mirror_map_init(zio_t *zio) { mirror_map_t *mm = NULL; mirror_child_t *mc; vdev_t *vd = zio->io_vd; int c; if (vd == NULL) { dva_t *dva = zio->io_bp->blk_dva; spa_t *spa = zio->io_spa; mm = vdev_mirror_map_alloc(BP_GET_NDVAS(zio->io_bp), B_FALSE, B_TRUE); for (c = 0; c < mm->mm_children; c++) { mc = &mm->mm_child[c]; mc->mc_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[c])); mc->mc_offset = DVA_GET_OFFSET(&dva[c]); } } else { /* * If we are resilvering, then we should handle scrub reads * differently; we shouldn't issue them to the resilvering * device because it might not have those blocks. * * We are resilvering iff: * 1) We are a replacing vdev (ie our name is "replacing-1" or * "spare-1" or something like that), and * 2) The pool is currently being resilvered. * * We cannot simply check vd->vdev_resilver_txg, because it's * not set in this path. * * Nor can we just check our vdev_ops; there are cases (such as * when a user types "zpool replace pool odev spare_dev" and * spare_dev is in the spare list, or when a spare device is * automatically used to replace a DEGRADED device) when * resilvering is complete but both the original vdev and the * spare vdev remain in the pool. That behavior is intentional. * It helps implement the policy that a spare should be * automatically removed from the pool after the user replaces * the device that originally failed. * * If a spa load is in progress, then spa_dsl_pool may be * uninitialized. But we shouldn't be resilvering during a spa * load anyway. */ boolean_t replacing = (vd->vdev_ops == &vdev_replacing_ops || vd->vdev_ops == &vdev_spare_ops) && spa_load_state(vd->vdev_spa) == SPA_LOAD_NONE && dsl_scan_resilvering(vd->vdev_spa->spa_dsl_pool); mm = vdev_mirror_map_alloc(vd->vdev_children, replacing, B_FALSE); for (c = 0; c < mm->mm_children; c++) { mc = &mm->mm_child[c]; mc->mc_vd = vd->vdev_child[c]; mc->mc_offset = zio->io_offset; } } zio->io_vsd = mm; zio->io_vsd_ops = &vdev_mirror_vsd_ops; return (mm); }
static mirror_map_t * vdev_mirror_map_alloc(zio_t *zio) { mirror_map_t *mm = NULL; mirror_child_t *mc; vdev_t *vd = zio->io_vd; int c, d; if (vd == NULL) { dva_t *dva = zio->io_bp->blk_dva; spa_t *spa = zio->io_spa; c = BP_GET_NDVAS(zio->io_bp); mm = kmem_zalloc(offsetof(mirror_map_t, mm_child[c]), KM_SLEEP); mm->mm_children = c; mm->mm_resilvering = B_FALSE; mm->mm_preferred = spa_get_random(c); mm->mm_root = B_TRUE; /* * Check the other, lower-index DVAs to see if they're on * the same vdev as the child we picked. If they are, use * them since they are likely to have been allocated from * the primary metaslab in use at the time, and hence are * more likely to have locality with single-copy data. */ for (c = mm->mm_preferred, d = c - 1; d >= 0; d--) { if (DVA_GET_VDEV(&dva[d]) == DVA_GET_VDEV(&dva[c])) mm->mm_preferred = d; } for (c = 0; c < mm->mm_children; c++) { mc = &mm->mm_child[c]; mc->mc_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[c])); mc->mc_offset = DVA_GET_OFFSET(&dva[c]); } } else { int replacing; c = vd->vdev_children; mm = kmem_zalloc(offsetof(mirror_map_t, mm_child[c]), KM_SLEEP); mm->mm_children = c; /* * If we are resilvering, then we should handle scrub reads * differently; we shouldn't issue them to the resilvering * device because it might not have those blocks. * * We are resilvering iff: * 1) We are a replacing vdev (ie our name is "replacing-1" or * "spare-1" or something like that), and * 2) The pool is currently being resilvered. * * We cannot simply check vd->vdev_resilver_txg, because it's * not set in this path. * * Nor can we just check our vdev_ops; there are cases (such as * when a user types "zpool replace pool odev spare_dev" and * spare_dev is in the spare list, or when a spare device is * automatically used to replace a DEGRADED device) when * resilvering is complete but both the original vdev and the * spare vdev remain in the pool. That behavior is intentional. * It helps implement the policy that a spare should be * automatically removed from the pool after the user replaces * the device that originally failed. */ replacing = (vd->vdev_ops == &vdev_replacing_ops || vd->vdev_ops == &vdev_spare_ops); /* * If a spa load is in progress, then spa_dsl_pool may be * uninitialized. But we shouldn't be resilvering during a spa * load anyway. */ if (replacing && (spa_load_state(vd->vdev_spa) == SPA_LOAD_NONE) && dsl_scan_resilvering(vd->vdev_spa->spa_dsl_pool)) { mm->mm_resilvering = B_TRUE; } else { mm->mm_resilvering = B_FALSE; } mm->mm_preferred = mm->mm_resilvering ? 0 : (zio->io_offset >> vdev_mirror_shift) % c; mm->mm_root = B_FALSE; for (c = 0; c < mm->mm_children; c++) { mc = &mm->mm_child[c]; mc->mc_vd = vd->vdev_child[c]; mc->mc_offset = zio->io_offset; } } zio->io_vsd = mm; zio->io_vsd_ops = &vdev_mirror_vsd_ops; return (mm); }