예제 #1
0
int main(void)
{
    /* Local scalars */
    char uplo, uplo_i;
    lapack_int n, n_i;
    lapack_int kd, kd_i;
    lapack_int ldab, ldab_i;
    lapack_int ldab_r;
    float anorm, anorm_i;
    float rcond, rcond_i;
    lapack_int info, info_i;
    lapack_int i;
    int failed;

    /* Local arrays */
    float *ab = NULL, *ab_i = NULL;
    float *work = NULL, *work_i = NULL;
    lapack_int *iwork = NULL, *iwork_i = NULL;
    float *ab_r = NULL;

    /* Iniitialize the scalar parameters */
    init_scalars_spbcon( &uplo, &n, &kd, &ldab, &anorm );
    ldab_r = n+2;
    uplo_i = uplo;
    n_i = n;
    kd_i = kd;
    ldab_i = ldab;
    anorm_i = anorm;

    /* Allocate memory for the LAPACK routine arrays */
    ab = (float *)LAPACKE_malloc( ldab*n * sizeof(float) );
    work = (float *)LAPACKE_malloc( 3*n * sizeof(float) );
    iwork = (lapack_int *)LAPACKE_malloc( n * sizeof(lapack_int) );

    /* Allocate memory for the C interface function arrays */
    ab_i = (float *)LAPACKE_malloc( ldab*n * sizeof(float) );
    work_i = (float *)LAPACKE_malloc( 3*n * sizeof(float) );
    iwork_i = (lapack_int *)LAPACKE_malloc( n * sizeof(lapack_int) );

    /* Allocate memory for the row-major arrays */
    ab_r = (float *)LAPACKE_malloc( (kd+1)*(n+2) * sizeof(float) );

    /* Initialize input arrays */
    init_ab( ldab*n, ab );
    init_work( 3*n, work );
    init_iwork( n, iwork );

    /* Call the LAPACK routine */
    spbcon_( &uplo, &n, &kd, ab, &ldab, &anorm, &rcond, work, iwork, &info );

    /* Initialize input data, call the column-major middle-level
     * interface to LAPACK routine and check the results */
    for( i = 0; i < ldab*n; i++ ) {
        ab_i[i] = ab[i];
    }
    for( i = 0; i < 3*n; i++ ) {
        work_i[i] = work[i];
    }
    for( i = 0; i < n; i++ ) {
        iwork_i[i] = iwork[i];
    }
    info_i = LAPACKE_spbcon_work( LAPACK_COL_MAJOR, uplo_i, n_i, kd_i, ab_i,
                                  ldab_i, anorm_i, &rcond_i, work_i, iwork_i );

    failed = compare_spbcon( rcond, rcond_i, info, info_i );
    if( failed == 0 ) {
        printf( "PASSED: column-major middle-level interface to spbcon\n" );
    } else {
        printf( "FAILED: column-major middle-level interface to spbcon\n" );
    }

    /* Initialize input data, call the column-major high-level
     * interface to LAPACK routine and check the results */
    for( i = 0; i < ldab*n; i++ ) {
        ab_i[i] = ab[i];
    }
    for( i = 0; i < 3*n; i++ ) {
        work_i[i] = work[i];
    }
    for( i = 0; i < n; i++ ) {
        iwork_i[i] = iwork[i];
    }
    info_i = LAPACKE_spbcon( LAPACK_COL_MAJOR, uplo_i, n_i, kd_i, ab_i, ldab_i,
                             anorm_i, &rcond_i );

    failed = compare_spbcon( rcond, rcond_i, info, info_i );
    if( failed == 0 ) {
        printf( "PASSED: column-major high-level interface to spbcon\n" );
    } else {
        printf( "FAILED: column-major high-level interface to spbcon\n" );
    }

    /* Initialize input data, call the row-major middle-level
     * interface to LAPACK routine and check the results */
    for( i = 0; i < ldab*n; i++ ) {
        ab_i[i] = ab[i];
    }
    for( i = 0; i < 3*n; i++ ) {
        work_i[i] = work[i];
    }
    for( i = 0; i < n; i++ ) {
        iwork_i[i] = iwork[i];
    }

    LAPACKE_sge_trans( LAPACK_COL_MAJOR, kd+1, n, ab_i, ldab, ab_r, n+2 );
    info_i = LAPACKE_spbcon_work( LAPACK_ROW_MAJOR, uplo_i, n_i, kd_i, ab_r,
                                  ldab_r, anorm_i, &rcond_i, work_i, iwork_i );

    failed = compare_spbcon( rcond, rcond_i, info, info_i );
    if( failed == 0 ) {
        printf( "PASSED: row-major middle-level interface to spbcon\n" );
    } else {
        printf( "FAILED: row-major middle-level interface to spbcon\n" );
    }

    /* Initialize input data, call the row-major high-level
     * interface to LAPACK routine and check the results */
    for( i = 0; i < ldab*n; i++ ) {
        ab_i[i] = ab[i];
    }
    for( i = 0; i < 3*n; i++ ) {
        work_i[i] = work[i];
    }
    for( i = 0; i < n; i++ ) {
        iwork_i[i] = iwork[i];
    }

    /* Init row_major arrays */
    LAPACKE_sge_trans( LAPACK_COL_MAJOR, kd+1, n, ab_i, ldab, ab_r, n+2 );
    info_i = LAPACKE_spbcon( LAPACK_ROW_MAJOR, uplo_i, n_i, kd_i, ab_r, ldab_r,
                             anorm_i, &rcond_i );

    failed = compare_spbcon( rcond, rcond_i, info, info_i );
    if( failed == 0 ) {
        printf( "PASSED: row-major high-level interface to spbcon\n" );
    } else {
        printf( "FAILED: row-major high-level interface to spbcon\n" );
    }

    /* Release memory */
    if( ab != NULL ) {
        LAPACKE_free( ab );
    }
    if( ab_i != NULL ) {
        LAPACKE_free( ab_i );
    }
    if( ab_r != NULL ) {
        LAPACKE_free( ab_r );
    }
    if( work != NULL ) {
        LAPACKE_free( work );
    }
    if( work_i != NULL ) {
        LAPACKE_free( work_i );
    }
    if( iwork != NULL ) {
        LAPACKE_free( iwork );
    }
    if( iwork_i != NULL ) {
        LAPACKE_free( iwork_i );
    }

    return 0;
}
예제 #2
0
파일: serrpo.c 프로젝트: zangel/uquad
/* Subroutine */ int serrpo_(char *path, integer *nunit)
{
    /* Builtin functions */
    integer s_wsle(cilist *), e_wsle(void);
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);

    /* Local variables */
    static integer info;
    static real anrm, a[16]	/* was [4][4] */, b[4];
    static integer i__, j;
    static real w[12], x[4], rcond;
    static char c2[2];
    static real r1[4], r2[4];
    extern /* Subroutine */ int spbtf2_(char *, integer *, integer *, real *, 
	    integer *, integer *);
    static real af[16]	/* was [4][4] */;
    extern /* Subroutine */ int spotf2_(char *, integer *, real *, integer *, 
	    integer *);
    static integer iw[4];
    extern /* Subroutine */ int alaesm_(char *, logical *, integer *);
    extern logical lsamen_(integer *, char *, char *);
    extern /* Subroutine */ int chkxer_(char *, integer *, integer *, logical 
	    *, logical *), spbcon_(char *, integer *, integer *, real 
	    *, integer *, real *, real *, real *, integer *, integer *), spbequ_(char *, integer *, integer *, real *, integer *, 
	    real *, real *, real *, integer *), spbrfs_(char *, 
	    integer *, integer *, integer *, real *, integer *, real *, 
	    integer *, real *, integer *, real *, integer *, real *, real *, 
	    real *, integer *, integer *), spbtrf_(char *, integer *, 
	    integer *, real *, integer *, integer *), spocon_(char *, 
	    integer *, real *, integer *, real *, real *, real *, integer *, 
	    integer *), sppcon_(char *, integer *, real *, real *, 
	    real *, real *, integer *, integer *), spoequ_(integer *, 
	    real *, integer *, real *, real *, real *, integer *), spbtrs_(
	    char *, integer *, integer *, integer *, real *, integer *, real *
	    , integer *, integer *), sporfs_(char *, integer *, 
	    integer *, real *, integer *, real *, integer *, real *, integer *
	    , real *, integer *, real *, real *, real *, integer *, integer *), spotrf_(char *, integer *, real *, integer *, integer *), spotri_(char *, integer *, real *, integer *, integer *), sppequ_(char *, integer *, real *, real *, real *, real 
	    *, integer *), spprfs_(char *, integer *, integer *, real 
	    *, real *, real *, integer *, real *, integer *, real *, real *, 
	    real *, integer *, integer *), spptrf_(char *, integer *, 
	    real *, integer *), spptri_(char *, integer *, real *, 
	    integer *), spotrs_(char *, integer *, integer *, real *, 
	    integer *, real *, integer *, integer *), spptrs_(char *, 
	    integer *, integer *, real *, real *, integer *, integer *);

    /* Fortran I/O blocks */
    static cilist io___1 = { 0, 0, 0, 0, 0 };



#define a_ref(a_1,a_2) a[(a_2)*4 + a_1 - 5]
#define af_ref(a_1,a_2) af[(a_2)*4 + a_1 - 5]


/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       February 29, 1992   


    Purpose   
    =======   

    SERRPO tests the error exits for the REAL routines   
    for symmetric positive definite matrices.   

    Arguments   
    =========   

    PATH    (input) CHARACTER*3   
            The LAPACK path name for the routines to be tested.   

    NUNIT   (input) INTEGER   
            The unit number for output.   

    ===================================================================== */


    infoc_1.nout = *nunit;
    io___1.ciunit = infoc_1.nout;
    s_wsle(&io___1);
    e_wsle();
    s_copy(c2, path + 1, (ftnlen)2, (ftnlen)2);

/*     Set the variables to innocuous values. */

    for (j = 1; j <= 4; ++j) {
	for (i__ = 1; i__ <= 4; ++i__) {
	    a_ref(i__, j) = 1.f / (real) (i__ + j);
	    af_ref(i__, j) = 1.f / (real) (i__ + j);
/* L10: */
	}
	b[j - 1] = 0.f;
	r1[j - 1] = 0.f;
	r2[j - 1] = 0.f;
	w[j - 1] = 0.f;
	x[j - 1] = 0.f;
	iw[j - 1] = j;
/* L20: */
    }
    infoc_1.ok = TRUE_;

    if (lsamen_(&c__2, c2, "PO")) {

/*        Test error exits of the routines that use the Cholesky   
          decomposition of a symmetric positive definite matrix.   

          SPOTRF */

	s_copy(srnamc_1.srnamt, "SPOTRF", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	spotrf_("/", &c__0, a, &c__1, &info);
	chkxer_("SPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	spotrf_("U", &c_n1, a, &c__1, &info);
	chkxer_("SPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	spotrf_("U", &c__2, a, &c__1, &info);
	chkxer_("SPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        SPOTF2 */

	s_copy(srnamc_1.srnamt, "SPOTF2", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	spotf2_("/", &c__0, a, &c__1, &info);
	chkxer_("SPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	spotf2_("U", &c_n1, a, &c__1, &info);
	chkxer_("SPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	spotf2_("U", &c__2, a, &c__1, &info);
	chkxer_("SPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        SPOTRI */

	s_copy(srnamc_1.srnamt, "SPOTRI", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	spotri_("/", &c__0, a, &c__1, &info);
	chkxer_("SPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	spotri_("U", &c_n1, a, &c__1, &info);
	chkxer_("SPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	spotri_("U", &c__2, a, &c__1, &info);
	chkxer_("SPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        SPOTRS */

	s_copy(srnamc_1.srnamt, "SPOTRS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	spotrs_("/", &c__0, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("SPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	spotrs_("U", &c_n1, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("SPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	spotrs_("U", &c__0, &c_n1, a, &c__1, b, &c__1, &info);
	chkxer_("SPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	spotrs_("U", &c__2, &c__1, a, &c__1, b, &c__2, &info);
	chkxer_("SPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	spotrs_("U", &c__2, &c__1, a, &c__2, b, &c__1, &info);
	chkxer_("SPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        SPORFS */

	s_copy(srnamc_1.srnamt, "SPORFS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	sporfs_("/", &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &c__1, 
		r1, r2, w, iw, &info);
	chkxer_("SPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	sporfs_("U", &c_n1, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &c__1, 
		r1, r2, w, iw, &info);
	chkxer_("SPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	sporfs_("U", &c__0, &c_n1, a, &c__1, af, &c__1, b, &c__1, x, &c__1, 
		r1, r2, w, iw, &info);
	chkxer_("SPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	sporfs_("U", &c__2, &c__1, a, &c__1, af, &c__2, b, &c__2, x, &c__2, 
		r1, r2, w, iw, &info);
	chkxer_("SPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	sporfs_("U", &c__2, &c__1, a, &c__2, af, &c__1, b, &c__2, x, &c__2, 
		r1, r2, w, iw, &info);
	chkxer_("SPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 9;
	sporfs_("U", &c__2, &c__1, a, &c__2, af, &c__2, b, &c__1, x, &c__2, 
		r1, r2, w, iw, &info);
	chkxer_("SPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 11;
	sporfs_("U", &c__2, &c__1, a, &c__2, af, &c__2, b, &c__2, x, &c__1, 
		r1, r2, w, iw, &info);
	chkxer_("SPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        SPOCON */

	s_copy(srnamc_1.srnamt, "SPOCON", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	spocon_("/", &c__0, a, &c__1, &anrm, &rcond, w, iw, &info);
	chkxer_("SPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	spocon_("U", &c_n1, a, &c__1, &anrm, &rcond, w, iw, &info);
	chkxer_("SPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	spocon_("U", &c__2, a, &c__1, &anrm, &rcond, w, iw, &info);
	chkxer_("SPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        SPOEQU */

	s_copy(srnamc_1.srnamt, "SPOEQU", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	spoequ_(&c_n1, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("SPOEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	spoequ_(&c__2, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("SPOEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

    } else if (lsamen_(&c__2, c2, "PP")) {

/*        Test error exits of the routines that use the Cholesky   
          decomposition of a symmetric positive definite packed matrix.   

          SPPTRF */

	s_copy(srnamc_1.srnamt, "SPPTRF", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	spptrf_("/", &c__0, a, &info);
	chkxer_("SPPTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	spptrf_("U", &c_n1, a, &info);
	chkxer_("SPPTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        SPPTRI */

	s_copy(srnamc_1.srnamt, "SPPTRI", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	spptri_("/", &c__0, a, &info);
	chkxer_("SPPTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	spptri_("U", &c_n1, a, &info);
	chkxer_("SPPTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        SPPTRS */

	s_copy(srnamc_1.srnamt, "SPPTRS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	spptrs_("/", &c__0, &c__0, a, b, &c__1, &info);
	chkxer_("SPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	spptrs_("U", &c_n1, &c__0, a, b, &c__1, &info);
	chkxer_("SPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	spptrs_("U", &c__0, &c_n1, a, b, &c__1, &info);
	chkxer_("SPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	spptrs_("U", &c__2, &c__1, a, b, &c__1, &info);
	chkxer_("SPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        SPPRFS */

	s_copy(srnamc_1.srnamt, "SPPRFS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	spprfs_("/", &c__0, &c__0, a, af, b, &c__1, x, &c__1, r1, r2, w, iw, &
		info);
	chkxer_("SPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	spprfs_("U", &c_n1, &c__0, a, af, b, &c__1, x, &c__1, r1, r2, w, iw, &
		info);
	chkxer_("SPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	spprfs_("U", &c__0, &c_n1, a, af, b, &c__1, x, &c__1, r1, r2, w, iw, &
		info);
	chkxer_("SPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	spprfs_("U", &c__2, &c__1, a, af, b, &c__1, x, &c__2, r1, r2, w, iw, &
		info);
	chkxer_("SPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 9;
	spprfs_("U", &c__2, &c__1, a, af, b, &c__2, x, &c__1, r1, r2, w, iw, &
		info);
	chkxer_("SPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        SPPCON */

	s_copy(srnamc_1.srnamt, "SPPCON", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	sppcon_("/", &c__0, a, &anrm, &rcond, w, iw, &info);
	chkxer_("SPPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	sppcon_("U", &c_n1, a, &anrm, &rcond, w, iw, &info);
	chkxer_("SPPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        SPPEQU */

	s_copy(srnamc_1.srnamt, "SPPEQU", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	sppequ_("/", &c__0, a, r1, &rcond, &anrm, &info);
	chkxer_("SPPEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	sppequ_("U", &c_n1, a, r1, &rcond, &anrm, &info);
	chkxer_("SPPEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

    } else if (lsamen_(&c__2, c2, "PB")) {

/*        Test error exits of the routines that use the Cholesky   
          decomposition of a symmetric positive definite band matrix.   

          SPBTRF */

	s_copy(srnamc_1.srnamt, "SPBTRF", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	spbtrf_("/", &c__0, &c__0, a, &c__1, &info);
	chkxer_("SPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	spbtrf_("U", &c_n1, &c__0, a, &c__1, &info);
	chkxer_("SPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	spbtrf_("U", &c__1, &c_n1, a, &c__1, &info);
	chkxer_("SPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	spbtrf_("U", &c__2, &c__1, a, &c__1, &info);
	chkxer_("SPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        SPBTF2 */

	s_copy(srnamc_1.srnamt, "SPBTF2", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	spbtf2_("/", &c__0, &c__0, a, &c__1, &info);
	chkxer_("SPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	spbtf2_("U", &c_n1, &c__0, a, &c__1, &info);
	chkxer_("SPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	spbtf2_("U", &c__1, &c_n1, a, &c__1, &info);
	chkxer_("SPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	spbtf2_("U", &c__2, &c__1, a, &c__1, &info);
	chkxer_("SPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        SPBTRS */

	s_copy(srnamc_1.srnamt, "SPBTRS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	spbtrs_("/", &c__0, &c__0, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("SPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	spbtrs_("U", &c_n1, &c__0, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("SPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	spbtrs_("U", &c__1, &c_n1, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("SPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	spbtrs_("U", &c__0, &c__0, &c_n1, a, &c__1, b, &c__1, &info);
	chkxer_("SPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	spbtrs_("U", &c__2, &c__1, &c__1, a, &c__1, b, &c__1, &info);
	chkxer_("SPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	spbtrs_("U", &c__2, &c__0, &c__1, a, &c__1, b, &c__1, &info);
	chkxer_("SPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        SPBRFS */

	s_copy(srnamc_1.srnamt, "SPBRFS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	spbrfs_("/", &c__0, &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, iw, &info);
	chkxer_("SPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	spbrfs_("U", &c_n1, &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, iw, &info);
	chkxer_("SPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	spbrfs_("U", &c__1, &c_n1, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, iw, &info);
	chkxer_("SPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	spbrfs_("U", &c__0, &c__0, &c_n1, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, iw, &info);
	chkxer_("SPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	spbrfs_("U", &c__2, &c__1, &c__1, a, &c__1, af, &c__2, b, &c__2, x, &
		c__2, r1, r2, w, iw, &info);
	chkxer_("SPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	spbrfs_("U", &c__2, &c__1, &c__1, a, &c__2, af, &c__1, b, &c__2, x, &
		c__2, r1, r2, w, iw, &info);
	chkxer_("SPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 10;
	spbrfs_("U", &c__2, &c__0, &c__1, a, &c__1, af, &c__1, b, &c__1, x, &
		c__2, r1, r2, w, iw, &info);
	chkxer_("SPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 12;
	spbrfs_("U", &c__2, &c__0, &c__1, a, &c__1, af, &c__1, b, &c__2, x, &
		c__1, r1, r2, w, iw, &info);
	chkxer_("SPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        SPBCON */

	s_copy(srnamc_1.srnamt, "SPBCON", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	spbcon_("/", &c__0, &c__0, a, &c__1, &anrm, &rcond, w, iw, &info);
	chkxer_("SPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	spbcon_("U", &c_n1, &c__0, a, &c__1, &anrm, &rcond, w, iw, &info);
	chkxer_("SPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	spbcon_("U", &c__1, &c_n1, a, &c__1, &anrm, &rcond, w, iw, &info);
	chkxer_("SPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	spbcon_("U", &c__2, &c__1, a, &c__1, &anrm, &rcond, w, iw, &info);
	chkxer_("SPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        SPBEQU */

	s_copy(srnamc_1.srnamt, "SPBEQU", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	spbequ_("/", &c__0, &c__0, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("SPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	spbequ_("U", &c_n1, &c__0, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("SPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	spbequ_("U", &c__1, &c_n1, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("SPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	spbequ_("U", &c__2, &c__1, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("SPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
    }

/*     Print a summary line. */

    alaesm_(path, &infoc_1.ok, &infoc_1.nout);

    return 0;

/*     End of SERRPO */

} /* serrpo_ */
예제 #3
0
/* Subroutine */ int spbsvx_(char *fact, char *uplo, integer *n, integer *kd, 
	integer *nrhs, real *ab, integer *ldab, real *afb, integer *ldafb, 
	char *equed, real *s, real *b, integer *ldb, real *x, integer *ldx, 
	real *rcond, real *ferr, real *berr, real *work, integer *iwork, 
	integer *info)
{
    /* System generated locals */
    integer ab_dim1, ab_offset, afb_dim1, afb_offset, b_dim1, b_offset, 
	    x_dim1, x_offset, i__1, i__2;
    real r__1, r__2;

    /* Local variables */
    integer i__, j, j1, j2;
    real amax, smin, smax;
    real scond, anorm;
    logical equil, rcequ, upper;
    logical nofact;
    real bignum;
    integer infequ;
    real smlnum;

/*  -- LAPACK driver routine (version 3.2) -- */
/*     November 2006 */

/*  Purpose */
/*  ======= */

/*  SPBSVX uses the Cholesky factorization A = U**T*U or A = L*L**T to */
/*  compute the solution to a real system of linear equations */
/*     A * X = B, */
/*  where A is an N-by-N symmetric positive definite band matrix and X */
/*  and B are N-by-NRHS matrices. */

/*  Error bounds on the solution and a condition estimate are also */
/*  provided. */

/*  Description */
/*  =========== */

/*  The following steps are performed: */

/*  1. If FACT = 'E', real scaling factors are computed to equilibrate */
/*     the system: */
/*        diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B */
/*     Whether or not the system will be equilibrated depends on the */
/*     scaling of the matrix A, but if equilibration is used, A is */
/*     overwritten by diag(S)*A*diag(S) and B by diag(S)*B. */

/*  2. If FACT = 'N' or 'E', the Cholesky decomposition is used to */
/*     factor the matrix A (after equilibration if FACT = 'E') as */
/*        A = U**T * U,  if UPLO = 'U', or */
/*        A = L * L**T,  if UPLO = 'L', */
/*     where U is an upper triangular band matrix, and L is a lower */
/*     triangular band matrix. */

/*  3. If the leading i-by-i principal minor is not positive definite, */
/*     then the routine returns with INFO = i. Otherwise, the factored */
/*     form of A is used to estimate the condition number of the matrix */
/*     A.  If the reciprocal of the condition number is less than machine */
/*     precision, INFO = N+1 is returned as a warning, but the routine */
/*     still goes on to solve for X and compute error bounds as */
/*     described below. */

/*  4. The system of equations is solved for X using the factored form */
/*     of A. */

/*  5. Iterative refinement is applied to improve the computed solution */
/*     matrix and calculate error bounds and backward error estimates */
/*     for it. */

/*  6. If equilibration was used, the matrix X is premultiplied by */
/*     diag(S) so that it solves the original system before */
/*     equilibration. */

/*  Arguments */
/*  ========= */

/*  FACT    (input) CHARACTER*1 */
/*          Specifies whether or not the factored form of the matrix A is */
/*          supplied on entry, and if not, whether the matrix A should be */
/*          equilibrated before it is factored. */
/*          = 'F':  On entry, AFB contains the factored form of A. */
/*                  If EQUED = 'Y', the matrix A has been equilibrated */
/*                  with scaling factors given by S.  AB and AFB will not */
/*                  be modified. */
/*          = 'N':  The matrix A will be copied to AFB and factored. */
/*          = 'E':  The matrix A will be equilibrated if necessary, then */
/*                  copied to AFB and factored. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The number of linear equations, i.e., the order of the */
/*          matrix A.  N >= 0. */

/*  KD      (input) INTEGER */
/*          The number of superdiagonals of the matrix A if UPLO = 'U', */
/*          or the number of subdiagonals if UPLO = 'L'.  KD >= 0. */

/*  NRHS    (input) INTEGER */
/*          The number of right-hand sides, i.e., the number of columns */
/*          of the matrices B and X.  NRHS >= 0. */

/*  AB      (input/output) REAL array, dimension (LDAB,N) */
/*          On entry, the upper or lower triangle of the symmetric band */
/*          matrix A, stored in the first KD+1 rows of the array, except */
/*          if FACT = 'F' and EQUED = 'Y', then A must contain the */
/*          equilibrated matrix diag(S)*A*diag(S).  The j-th column of A */
/*          is stored in the j-th column of the array AB as follows: */
/*          if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j; */
/*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(N,j+KD). */
/*          See below for further details. */

/*          On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by */
/*          diag(S)*A*diag(S). */

/*  LDAB    (input) INTEGER */
/*          The leading dimension of the array A.  LDAB >= KD+1. */

/*  AFB     (input or output) REAL array, dimension (LDAFB,N) */
/*          If FACT = 'F', then AFB is an input argument and on entry */
/*          contains the triangular factor U or L from the Cholesky */
/*          factorization A = U**T*U or A = L*L**T of the band matrix */
/*          A, in the same storage format as A (see AB).  If EQUED = 'Y', */
/*          then AFB is the factored form of the equilibrated matrix A. */

/*          If FACT = 'N', then AFB is an output argument and on exit */
/*          returns the triangular factor U or L from the Cholesky */
/*          factorization A = U**T*U or A = L*L**T. */

/*          If FACT = 'E', then AFB is an output argument and on exit */
/*          returns the triangular factor U or L from the Cholesky */
/*          factorization A = U**T*U or A = L*L**T of the equilibrated */
/*          matrix A (see the description of A for the form of the */
/*          equilibrated matrix). */

/*  LDAFB   (input) INTEGER */
/*          The leading dimension of the array AFB.  LDAFB >= KD+1. */

/*  EQUED   (input or output) CHARACTER*1 */
/*          Specifies the form of equilibration that was done. */
/*          = 'N':  No equilibration (always true if FACT = 'N'). */
/*          = 'Y':  Equilibration was done, i.e., A has been replaced by */
/*                  diag(S) * A * diag(S). */
/*          EQUED is an input argument if FACT = 'F'; otherwise, it is an */
/*          output argument. */

/*  S       (input or output) REAL array, dimension (N) */
/*          The scale factors for A; not accessed if EQUED = 'N'.  S is */
/*          an input argument if FACT = 'F'; otherwise, S is an output */
/*          argument.  If FACT = 'F' and EQUED = 'Y', each element of S */
/*          must be positive. */

/*  B       (input/output) REAL array, dimension (LDB,NRHS) */
/*          On entry, the N-by-NRHS right hand side matrix B. */
/*          On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y', */
/*          B is overwritten by diag(S) * B. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= max(1,N). */

/*  X       (output) REAL array, dimension (LDX,NRHS) */
/*          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to */
/*          the original system of equations.  Note that if EQUED = 'Y', */
/*          A and B are modified on exit, and the solution to the */
/*          equilibrated system is inv(diag(S))*X. */

/*  LDX     (input) INTEGER */
/*          The leading dimension of the array X.  LDX >= max(1,N). */

/*  RCOND   (output) REAL */
/*          The estimate of the reciprocal condition number of the matrix */
/*          A after equilibration (if done).  If RCOND is less than the */
/*          machine precision (in particular, if RCOND = 0), the matrix */
/*          is singular to working precision.  This condition is */
/*          indicated by a return code of INFO > 0. */

/*  FERR    (output) REAL array, dimension (NRHS) */
/*          The estimated forward error bound for each solution vector */
/*          X(j) (the j-th column of the solution matrix X). */
/*          If XTRUE is the true solution corresponding to X(j), FERR(j) */
/*          is an estimated upper bound for the magnitude of the largest */
/*          element in (X(j) - XTRUE) divided by the magnitude of the */
/*          largest element in X(j).  The estimate is as reliable as */
/*          the estimate for RCOND, and is almost always a slight */
/*          overestimate of the true error. */

/*  BERR    (output) REAL array, dimension (NRHS) */
/*          The componentwise relative backward error of each solution */
/*          vector X(j) (i.e., the smallest relative change in */
/*          any element of A or B that makes X(j) an exact solution). */

/*  WORK    (workspace) REAL array, dimension (3*N) */

/*  IWORK   (workspace) INTEGER array, dimension (N) */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, and i is */
/*                <= N:  the leading minor of order i of A is */
/*                       not positive definite, so the factorization */
/*                       could not be completed, and the solution has not */
/*                       been computed. RCOND = 0 is returned. */
/*                = N+1: U is nonsingular, but RCOND is less than machine */
/*                       precision, meaning that the matrix is singular */
/*                       to working precision.  Nevertheless, the */
/*                       solution and error bounds are computed because */
/*                       there are a number of situations where the */
/*                       computed solution can be more accurate than the */
/*                       value of RCOND would suggest. */

/*  Further Details */
/*  =============== */

/*  The band storage scheme is illustrated by the following example, when */
/*  N = 6, KD = 2, and UPLO = 'U': */

/*  Two-dimensional storage of the symmetric matrix A: */

/*     a11  a12  a13 */
/*          a22  a23  a24 */
/*               a33  a34  a35 */
/*                    a44  a45  a46 */
/*                         a55  a56 */
/*     (aij=conjg(aji))         a66 */

/*  Band storage of the upper triangle of A: */

/*      *    *   a13  a24  a35  a46 */
/*      *   a12  a23  a34  a45  a56 */
/*     a11  a22  a33  a44  a55  a66 */

/*  Similarly, if UPLO = 'L' the format of A is as follows: */

/*     a11  a22  a33  a44  a55  a66 */
/*     a21  a32  a43  a54  a65   * */
/*     a31  a42  a53  a64   *    * */

/*  Array elements marked * are not used by the routine. */

/*  ===================================================================== */

    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    afb_dim1 = *ldafb;
    afb_offset = 1 + afb_dim1;
    afb -= afb_offset;
    --s;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    x_dim1 = *ldx;
    x_offset = 1 + x_dim1;
    x -= x_offset;
    --ferr;
    --berr;
    --work;
    --iwork;

    /* Function Body */
    *info = 0;
    nofact = lsame_(fact, "N");
    equil = lsame_(fact, "E");
    upper = lsame_(uplo, "U");
    if (nofact || equil) {
	*(unsigned char *)equed = 'N';
	rcequ = FALSE_;
    } else {
	rcequ = lsame_(equed, "Y");
	smlnum = slamch_("Safe minimum");
	bignum = 1.f / smlnum;
    }

/*     Test the input parameters. */

    if (! nofact && ! equil && ! lsame_(fact, "F")) {
	*info = -1;
    } else if (! upper && ! lsame_(uplo, "L")) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*kd < 0) {
	*info = -4;
    } else if (*nrhs < 0) {
	*info = -5;
    } else if (*ldab < *kd + 1) {
	*info = -7;
    } else if (*ldafb < *kd + 1) {
	*info = -9;
    } else if (lsame_(fact, "F") && ! (rcequ || lsame_(
	    equed, "N"))) {
	*info = -10;
    } else {
	if (rcequ) {
	    smin = bignum;
	    smax = 0.f;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
		r__1 = smin, r__2 = s[j];
		smin = dmin(r__1,r__2);
/* Computing MAX */
		r__1 = smax, r__2 = s[j];
		smax = dmax(r__1,r__2);
	    }
	    if (smin <= 0.f) {
		*info = -11;
	    } else if (*n > 0) {
		scond = dmax(smin,smlnum) / dmin(smax,bignum);
	    } else {
		scond = 1.f;
	    }
	}
	if (*info == 0) {
	    if (*ldb < max(1,*n)) {
		*info = -13;
	    } else if (*ldx < max(1,*n)) {
		*info = -15;
	    }
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SPBSVX", &i__1);
	return 0;
    }

    if (equil) {

/*        Compute row and column scalings to equilibrate the matrix A. */

	spbequ_(uplo, n, kd, &ab[ab_offset], ldab, &s[1], &scond, &amax, &
		infequ);
	if (infequ == 0) {

/*           Equilibrate the matrix. */

	    slaqsb_(uplo, n, kd, &ab[ab_offset], ldab, &s[1], &scond, &amax, 
		    equed);
	    rcequ = lsame_(equed, "Y");
	}
    }

/*     Scale the right-hand side. */

    if (rcequ) {
	i__1 = *nrhs;
	for (j = 1; j <= i__1; ++j) {
	    i__2 = *n;
	    for (i__ = 1; i__ <= i__2; ++i__) {
		b[i__ + j * b_dim1] = s[i__] * b[i__ + j * b_dim1];
	    }
	}
    }

    if (nofact || equil) {

/*        Compute the Cholesky factorization A = U'*U or A = L*L'. */

	if (upper) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
		i__2 = j - *kd;
		j1 = max(i__2,1);
		i__2 = j - j1 + 1;
		scopy_(&i__2, &ab[*kd + 1 - j + j1 + j * ab_dim1], &c__1, &
			afb[*kd + 1 - j + j1 + j * afb_dim1], &c__1);
	    }
	} else {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
		i__2 = j + *kd;
		j2 = min(i__2,*n);
		i__2 = j2 - j + 1;
		scopy_(&i__2, &ab[j * ab_dim1 + 1], &c__1, &afb[j * afb_dim1 
			+ 1], &c__1);
	    }
	}

	spbtrf_(uplo, n, kd, &afb[afb_offset], ldafb, info);

/*        Return if INFO is non-zero. */

	if (*info > 0) {
	    *rcond = 0.f;
	    return 0;
	}
    }

/*     Compute the norm of the matrix A. */

    anorm = slansb_("1", uplo, n, kd, &ab[ab_offset], ldab, &work[1]);

/*     Compute the reciprocal of the condition number of A. */

    spbcon_(uplo, n, kd, &afb[afb_offset], ldafb, &anorm, rcond, &work[1], &
	    iwork[1], info);

/*     Compute the solution matrix X. */

    slacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
    spbtrs_(uplo, n, kd, nrhs, &afb[afb_offset], ldafb, &x[x_offset], ldx, 
	    info);

/*     Use iterative refinement to improve the computed solution and */
/*     compute error bounds and backward error estimates for it. */

    spbrfs_(uplo, n, kd, nrhs, &ab[ab_offset], ldab, &afb[afb_offset], ldafb, 
	    &b[b_offset], ldb, &x[x_offset], ldx, &ferr[1], &berr[1], &work[1]
, &iwork[1], info);

/*     Transform the solution matrix X to a solution of the original */
/*     system. */

    if (rcequ) {
	i__1 = *nrhs;
	for (j = 1; j <= i__1; ++j) {
	    i__2 = *n;
	    for (i__ = 1; i__ <= i__2; ++i__) {
		x[i__ + j * x_dim1] = s[i__] * x[i__ + j * x_dim1];
	    }
	}
	i__1 = *nrhs;
	for (j = 1; j <= i__1; ++j) {
	    ferr[j] /= scond;
	}
    }

/*     Set INFO = N+1 if the matrix is singular to working precision. */

    if (*rcond < slamch_("Epsilon")) {
	*info = *n + 1;
    }

    return 0;

/*     End of SPBSVX */

} /* spbsvx_ */
예제 #4
0
파일: serrpo.c 프로젝트: 3deggi/levmar-ndk
/* Subroutine */ int serrpo_(char *path, integer *nunit)
{
    /* Builtin functions */
    integer s_wsle(cilist *), e_wsle(void);
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);

    /* Local variables */
    real a[16]	/* was [4][4] */, b[4];
    integer i__, j;
    real w[12], x[4];
    char c2[2];
    real r1[4], r2[4], af[16]	/* was [4][4] */;
    integer iw[4], info;
    real anrm, rcond;
    extern /* Subroutine */ int spbtf2_(char *, integer *, integer *, real *, 
	    integer *, integer *), spotf2_(char *, integer *, real *, 
	    integer *, integer *), alaesm_(char *, logical *, integer 
	    *);
    extern logical lsamen_(integer *, char *, char *);
    extern /* Subroutine */ int chkxer_(char *, integer *, integer *, logical 
	    *, logical *), spbcon_(char *, integer *, integer *, real 
	    *, integer *, real *, real *, real *, integer *, integer *), spbequ_(char *, integer *, integer *, real *, integer *, 
	    real *, real *, real *, integer *), spbrfs_(char *, 
	    integer *, integer *, integer *, real *, integer *, real *, 
	    integer *, real *, integer *, real *, integer *, real *, real *, 
	    real *, integer *, integer *), spbtrf_(char *, integer *, 
	    integer *, real *, integer *, integer *), spocon_(char *, 
	    integer *, real *, integer *, real *, real *, real *, integer *, 
	    integer *), sppcon_(char *, integer *, real *, real *, 
	    real *, real *, integer *, integer *), spoequ_(integer *, 
	    real *, integer *, real *, real *, real *, integer *), spbtrs_(
	    char *, integer *, integer *, integer *, real *, integer *, real *
, integer *, integer *), sporfs_(char *, integer *, 
	    integer *, real *, integer *, real *, integer *, real *, integer *
, real *, integer *, real *, real *, real *, integer *, integer *), spotrf_(char *, integer *, real *, integer *, integer *), spotri_(char *, integer *, real *, integer *, integer *), sppequ_(char *, integer *, real *, real *, real *, real 
	    *, integer *), spprfs_(char *, integer *, integer *, real 
	    *, real *, real *, integer *, real *, integer *, real *, real *, 
	    real *, integer *, integer *), spptrf_(char *, integer *, 
	    real *, integer *), spptri_(char *, integer *, real *, 
	    integer *), spotrs_(char *, integer *, integer *, real *, 
	    integer *, real *, integer *, integer *), spptrs_(char *, 
	    integer *, integer *, real *, real *, integer *, integer *);

    /* Fortran I/O blocks */
    static cilist io___1 = { 0, 0, 0, 0, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SERRPO tests the error exits for the REAL routines */
/*  for symmetric positive definite matrices. */

/*  Arguments */
/*  ========= */

/*  PATH    (input) CHARACTER*3 */
/*          The LAPACK path name for the routines to be tested. */

/*  NUNIT   (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    infoc_1.nout = *nunit;
    io___1.ciunit = infoc_1.nout;
    s_wsle(&io___1);
    e_wsle();
    s_copy(c2, path + 1, (ftnlen)2, (ftnlen)2);

/*     Set the variables to innocuous values. */

    for (j = 1; j <= 4; ++j) {
	for (i__ = 1; i__ <= 4; ++i__) {
	    a[i__ + (j << 2) - 5] = 1.f / (real) (i__ + j);
	    af[i__ + (j << 2) - 5] = 1.f / (real) (i__ + j);
/* L10: */
	}
	b[j - 1] = 0.f;
	r1[j - 1] = 0.f;
	r2[j - 1] = 0.f;
	w[j - 1] = 0.f;
	x[j - 1] = 0.f;
	iw[j - 1] = j;
/* L20: */
    }
    infoc_1.ok = TRUE_;

    if (lsamen_(&c__2, c2, "PO")) {

/*        Test error exits of the routines that use the Cholesky */
/*        decomposition of a symmetric positive definite matrix. */

/*        SPOTRF */

	s_copy(srnamc_1.srnamt, "SPOTRF", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	spotrf_("/", &c__0, a, &c__1, &info);
	chkxer_("SPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	spotrf_("U", &c_n1, a, &c__1, &info);
	chkxer_("SPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	spotrf_("U", &c__2, a, &c__1, &info);
	chkxer_("SPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        SPOTF2 */

	s_copy(srnamc_1.srnamt, "SPOTF2", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	spotf2_("/", &c__0, a, &c__1, &info);
	chkxer_("SPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	spotf2_("U", &c_n1, a, &c__1, &info);
	chkxer_("SPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	spotf2_("U", &c__2, a, &c__1, &info);
	chkxer_("SPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        SPOTRI */

	s_copy(srnamc_1.srnamt, "SPOTRI", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	spotri_("/", &c__0, a, &c__1, &info);
	chkxer_("SPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	spotri_("U", &c_n1, a, &c__1, &info);
	chkxer_("SPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	spotri_("U", &c__2, a, &c__1, &info);
	chkxer_("SPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        SPOTRS */

	s_copy(srnamc_1.srnamt, "SPOTRS", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	spotrs_("/", &c__0, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("SPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	spotrs_("U", &c_n1, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("SPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	spotrs_("U", &c__0, &c_n1, a, &c__1, b, &c__1, &info);
	chkxer_("SPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	spotrs_("U", &c__2, &c__1, a, &c__1, b, &c__2, &info);
	chkxer_("SPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	spotrs_("U", &c__2, &c__1, a, &c__2, b, &c__1, &info);
	chkxer_("SPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        SPORFS */

	s_copy(srnamc_1.srnamt, "SPORFS", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	sporfs_("/", &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &c__1, 
		r1, r2, w, iw, &info);
	chkxer_("SPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	sporfs_("U", &c_n1, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &c__1, 
		r1, r2, w, iw, &info);
	chkxer_("SPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	sporfs_("U", &c__0, &c_n1, a, &c__1, af, &c__1, b, &c__1, x, &c__1, 
		r1, r2, w, iw, &info);
	chkxer_("SPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	sporfs_("U", &c__2, &c__1, a, &c__1, af, &c__2, b, &c__2, x, &c__2, 
		r1, r2, w, iw, &info);
	chkxer_("SPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	sporfs_("U", &c__2, &c__1, a, &c__2, af, &c__1, b, &c__2, x, &c__2, 
		r1, r2, w, iw, &info);
	chkxer_("SPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 9;
	sporfs_("U", &c__2, &c__1, a, &c__2, af, &c__2, b, &c__1, x, &c__2, 
		r1, r2, w, iw, &info);
	chkxer_("SPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 11;
	sporfs_("U", &c__2, &c__1, a, &c__2, af, &c__2, b, &c__2, x, &c__1, 
		r1, r2, w, iw, &info);
	chkxer_("SPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        SPOCON */

	s_copy(srnamc_1.srnamt, "SPOCON", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	spocon_("/", &c__0, a, &c__1, &anrm, &rcond, w, iw, &info);
	chkxer_("SPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	spocon_("U", &c_n1, a, &c__1, &anrm, &rcond, w, iw, &info);
	chkxer_("SPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	spocon_("U", &c__2, a, &c__1, &anrm, &rcond, w, iw, &info);
	chkxer_("SPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        SPOEQU */

	s_copy(srnamc_1.srnamt, "SPOEQU", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	spoequ_(&c_n1, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("SPOEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	spoequ_(&c__2, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("SPOEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

    } else if (lsamen_(&c__2, c2, "PP")) {

/*        Test error exits of the routines that use the Cholesky */
/*        decomposition of a symmetric positive definite packed matrix. */

/*        SPPTRF */

	s_copy(srnamc_1.srnamt, "SPPTRF", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	spptrf_("/", &c__0, a, &info);
	chkxer_("SPPTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	spptrf_("U", &c_n1, a, &info);
	chkxer_("SPPTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        SPPTRI */

	s_copy(srnamc_1.srnamt, "SPPTRI", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	spptri_("/", &c__0, a, &info);
	chkxer_("SPPTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	spptri_("U", &c_n1, a, &info);
	chkxer_("SPPTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        SPPTRS */

	s_copy(srnamc_1.srnamt, "SPPTRS", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	spptrs_("/", &c__0, &c__0, a, b, &c__1, &info);
	chkxer_("SPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	spptrs_("U", &c_n1, &c__0, a, b, &c__1, &info);
	chkxer_("SPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	spptrs_("U", &c__0, &c_n1, a, b, &c__1, &info);
	chkxer_("SPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	spptrs_("U", &c__2, &c__1, a, b, &c__1, &info);
	chkxer_("SPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        SPPRFS */

	s_copy(srnamc_1.srnamt, "SPPRFS", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	spprfs_("/", &c__0, &c__0, a, af, b, &c__1, x, &c__1, r1, r2, w, iw, &
		info);
	chkxer_("SPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	spprfs_("U", &c_n1, &c__0, a, af, b, &c__1, x, &c__1, r1, r2, w, iw, &
		info);
	chkxer_("SPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	spprfs_("U", &c__0, &c_n1, a, af, b, &c__1, x, &c__1, r1, r2, w, iw, &
		info);
	chkxer_("SPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	spprfs_("U", &c__2, &c__1, a, af, b, &c__1, x, &c__2, r1, r2, w, iw, &
		info);
	chkxer_("SPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 9;
	spprfs_("U", &c__2, &c__1, a, af, b, &c__2, x, &c__1, r1, r2, w, iw, &
		info);
	chkxer_("SPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        SPPCON */

	s_copy(srnamc_1.srnamt, "SPPCON", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	sppcon_("/", &c__0, a, &anrm, &rcond, w, iw, &info);
	chkxer_("SPPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	sppcon_("U", &c_n1, a, &anrm, &rcond, w, iw, &info);
	chkxer_("SPPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        SPPEQU */

	s_copy(srnamc_1.srnamt, "SPPEQU", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	sppequ_("/", &c__0, a, r1, &rcond, &anrm, &info);
	chkxer_("SPPEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	sppequ_("U", &c_n1, a, r1, &rcond, &anrm, &info);
	chkxer_("SPPEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

    } else if (lsamen_(&c__2, c2, "PB")) {

/*        Test error exits of the routines that use the Cholesky */
/*        decomposition of a symmetric positive definite band matrix. */

/*        SPBTRF */

	s_copy(srnamc_1.srnamt, "SPBTRF", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	spbtrf_("/", &c__0, &c__0, a, &c__1, &info);
	chkxer_("SPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	spbtrf_("U", &c_n1, &c__0, a, &c__1, &info);
	chkxer_("SPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	spbtrf_("U", &c__1, &c_n1, a, &c__1, &info);
	chkxer_("SPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	spbtrf_("U", &c__2, &c__1, a, &c__1, &info);
	chkxer_("SPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        SPBTF2 */

	s_copy(srnamc_1.srnamt, "SPBTF2", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	spbtf2_("/", &c__0, &c__0, a, &c__1, &info);
	chkxer_("SPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	spbtf2_("U", &c_n1, &c__0, a, &c__1, &info);
	chkxer_("SPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	spbtf2_("U", &c__1, &c_n1, a, &c__1, &info);
	chkxer_("SPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	spbtf2_("U", &c__2, &c__1, a, &c__1, &info);
	chkxer_("SPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        SPBTRS */

	s_copy(srnamc_1.srnamt, "SPBTRS", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	spbtrs_("/", &c__0, &c__0, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("SPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	spbtrs_("U", &c_n1, &c__0, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("SPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	spbtrs_("U", &c__1, &c_n1, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("SPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	spbtrs_("U", &c__0, &c__0, &c_n1, a, &c__1, b, &c__1, &info);
	chkxer_("SPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	spbtrs_("U", &c__2, &c__1, &c__1, a, &c__1, b, &c__1, &info);
	chkxer_("SPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	spbtrs_("U", &c__2, &c__0, &c__1, a, &c__1, b, &c__1, &info);
	chkxer_("SPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        SPBRFS */

	s_copy(srnamc_1.srnamt, "SPBRFS", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	spbrfs_("/", &c__0, &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, iw, &info);
	chkxer_("SPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	spbrfs_("U", &c_n1, &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, iw, &info);
	chkxer_("SPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	spbrfs_("U", &c__1, &c_n1, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, iw, &info);
	chkxer_("SPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	spbrfs_("U", &c__0, &c__0, &c_n1, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, iw, &info);
	chkxer_("SPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	spbrfs_("U", &c__2, &c__1, &c__1, a, &c__1, af, &c__2, b, &c__2, x, &
		c__2, r1, r2, w, iw, &info);
	chkxer_("SPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	spbrfs_("U", &c__2, &c__1, &c__1, a, &c__2, af, &c__1, b, &c__2, x, &
		c__2, r1, r2, w, iw, &info);
	chkxer_("SPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 10;
	spbrfs_("U", &c__2, &c__0, &c__1, a, &c__1, af, &c__1, b, &c__1, x, &
		c__2, r1, r2, w, iw, &info);
	chkxer_("SPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 12;
	spbrfs_("U", &c__2, &c__0, &c__1, a, &c__1, af, &c__1, b, &c__2, x, &
		c__1, r1, r2, w, iw, &info);
	chkxer_("SPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        SPBCON */

	s_copy(srnamc_1.srnamt, "SPBCON", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	spbcon_("/", &c__0, &c__0, a, &c__1, &anrm, &rcond, w, iw, &info);
	chkxer_("SPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	spbcon_("U", &c_n1, &c__0, a, &c__1, &anrm, &rcond, w, iw, &info);
	chkxer_("SPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	spbcon_("U", &c__1, &c_n1, a, &c__1, &anrm, &rcond, w, iw, &info);
	chkxer_("SPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	spbcon_("U", &c__2, &c__1, a, &c__1, &anrm, &rcond, w, iw, &info);
	chkxer_("SPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        SPBEQU */

	s_copy(srnamc_1.srnamt, "SPBEQU", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	spbequ_("/", &c__0, &c__0, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("SPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	spbequ_("U", &c_n1, &c__0, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("SPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	spbequ_("U", &c__1, &c_n1, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("SPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	spbequ_("U", &c__2, &c__1, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("SPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
    }

/*     Print a summary line. */

    alaesm_(path, &infoc_1.ok, &infoc_1.nout);

    return 0;

/*     End of SERRPO */

} /* serrpo_ */