예제 #1
0
AudioDecoderSpeex::AudioDecoderSpeex()
    : _speex_dec_state(speex_decoder_init(&speex_wb_mode)) 
{
    if (!_speex_dec_state) {
        throw MediaException(_("AudioDecoderSpeex: state initialization failed."));
    }

    speex_bits_init(&_speex_bits);

    speex_decoder_ctl(_speex_dec_state, SPEEX_GET_FRAME_SIZE, &_speex_framesize);

#ifdef RESAMPLING_SPEEX
    int err = 0;
    _resampler = speex_resampler_init(1, 16000, 44100,
        SPEEX_RESAMPLER_QUALITY_DEFAULT, &err);

    if (err != RESAMPLER_ERR_SUCCESS) {
        throw MediaException(_("AudioDecoderSpeex: initialization failed."));
    }

    spx_uint32_t num = 0, den = 0;

    speex_resampler_get_ratio (_resampler, &num, &den);
    assert(num && den);

    boost::rational<boost::uint32_t> numsamples(den, num);

    numsamples *= _speex_framesize * 2 /* convert to stereo */;

    _target_frame_size = boost::rational_cast<boost::uint32_t>(numsamples);
#endif
}
  // Resamples input data to an output buffer, according to |mBufferSampleRate| and
  // the playbackRate/detune.
  // The number of frames consumed/produced depends on the amount of space
  // remaining in both the input and output buffer, and the playback rate (that
  // is, the ratio between the output samplerate and the input samplerate).
  void CopyFromInputBufferWithResampling(AudioBlock* aOutput,
                                         uint32_t aChannels,
                                         uint32_t* aOffsetWithinBlock,
                                         uint32_t aAvailableInOutput,
                                         StreamTime* aCurrentPosition,
                                         uint32_t aBufferMax)
  {
    if (*aOffsetWithinBlock == 0) {
      aOutput->AllocateChannels(aChannels);
    }
    SpeexResamplerState* resampler = mResampler;
    MOZ_ASSERT(aChannels > 0);

    if (mBufferPosition < aBufferMax) {
      uint32_t availableInInputBuffer = aBufferMax - mBufferPosition;
      uint32_t ratioNum, ratioDen;
      speex_resampler_get_ratio(resampler, &ratioNum, &ratioDen);
      // Limit the number of input samples copied and possibly
      // format-converted for resampling by estimating how many will be used.
      // This may be a little small if still filling the resampler with
      // initial data, but we'll get called again and it will work out.
      uint32_t inputLimit = aAvailableInOutput * ratioNum / ratioDen + 10;
      if (!BegunResampling()) {
        // First time the resampler is used.
        uint32_t inputLatency = speex_resampler_get_input_latency(resampler);
        inputLimit += inputLatency;
        // If starting after mStart, then play from the beginning of the
        // buffer, but correct for input latency.  If starting before mStart,
        // then align the resampler so that the time corresponding to the
        // first input sample is mStart.
        int64_t skipFracNum = static_cast<int64_t>(inputLatency) * ratioDen;
        double leadTicks = mStart - *aCurrentPosition;
        if (leadTicks > 0.0) {
          // Round to nearest output subsample supported by the resampler at
          // these rates.
          int64_t leadSubsamples = leadTicks * ratioNum + 0.5;
          MOZ_ASSERT(leadSubsamples <= skipFracNum,
                     "mBeginProcessing is wrong?");
          skipFracNum -= leadSubsamples;
        }
        speex_resampler_set_skip_frac_num(resampler,
                                  std::min<int64_t>(skipFracNum, UINT32_MAX));

        mBeginProcessing = -STREAM_TIME_MAX;
      }
      inputLimit = std::min(inputLimit, availableInInputBuffer);

      MOZ_ASSERT(mBuffer.mVolume == 1.0f);
      for (uint32_t i = 0; true; ) {
        uint32_t inSamples = inputLimit;

        uint32_t outSamples = aAvailableInOutput;
        float* outputData =
          aOutput->ChannelFloatsForWrite(i) + *aOffsetWithinBlock;

        if (mBuffer.mBufferFormat == AUDIO_FORMAT_FLOAT32) {
          const float* inputData =
            mBuffer.ChannelData<float>()[i] + mBufferPosition;
          WebAudioUtils::SpeexResamplerProcess(resampler, i,
                                               inputData, &inSamples,
                                               outputData, &outSamples);
        } else {
          MOZ_ASSERT(mBuffer.mBufferFormat == AUDIO_FORMAT_S16);
          const int16_t* inputData =
            mBuffer.ChannelData<int16_t>()[i] + mBufferPosition;
          WebAudioUtils::SpeexResamplerProcess(resampler, i,
                                               inputData, &inSamples,
                                               outputData, &outSamples);
        }
        if (++i == aChannels) {
          mBufferPosition += inSamples;
          MOZ_ASSERT(mBufferPosition <= mBufferEnd || mLoop);
          *aOffsetWithinBlock += outSamples;
          *aCurrentPosition += outSamples;
          if (inSamples == availableInInputBuffer && !mLoop) {
            // We'll feed in enough zeros to empty out the resampler's memory.
            // This handles the output latency as well as capturing the low
            // pass effects of the resample filter.
            mRemainingResamplerTail =
              2 * speex_resampler_get_input_latency(resampler) - 1;
          }
          return;
        }
      }
    } else {
      for (uint32_t i = 0; true; ) {
        uint32_t inSamples = mRemainingResamplerTail;
        uint32_t outSamples = aAvailableInOutput;
        float* outputData =
          aOutput->ChannelFloatsForWrite(i) + *aOffsetWithinBlock;

        // AudioDataValue* for aIn selects the function that does not try to
        // copy and format-convert input data.
        WebAudioUtils::SpeexResamplerProcess(resampler, i,
                         static_cast<AudioDataValue*>(nullptr), &inSamples,
                         outputData, &outSamples);
        if (++i == aChannels) {
          MOZ_ASSERT(inSamples <= mRemainingResamplerTail);
          mRemainingResamplerTail -= inSamples;
          *aOffsetWithinBlock += outSamples;
          *aCurrentPosition += outSamples;
          break;
        }
      }
    }
  }