예제 #1
0
파일: Math+NNT.cpp 프로젝트: imace/nnt
NNT_BEGIN_C

real distance_points2d(real x0, real y0, real x1, real y1) {
    real v0 = x0 - x1;
    real v1 = y0 - y1;
    return sqrtr(v0 * v0 + v1 * v1);
}
예제 #2
0
파일: sa.c 프로젝트: drigz/5R1
real bump(real x, real y)
{
    real cxs = cosr(x); cxs *= cxs;
    real cys = cosr(y); cys *= cys;

    return fabsr((cxs*cxs + cys*cys - 2*cxs*cys) / sqrtr(x*x+2*y*y));
}
예제 #3
0
real Vector3::Magnitude(void) const
{
	real ret = 0;
			
	for(uint d = 0; d < 3; d++)
	{	
		ret += v[d] * v[d];
	}
			
	return sqrtr(ret);
}
예제 #4
0
파일: sa.c 프로젝트: drigz/5R1
real randn()
{
    static bool prepped = false;
    static real prepped_result = 0;

    if (prepped)
    {
        prepped = false;
        return prepped_result;
    }
    else
    {
        real u1 = randf(), u2 = randf();
        real len = sqrtr(-2 * logr(u1));
        prepped = true;
        prepped_result = len * sinr(2*M_PI*u2);

        return len * cosr(2*M_PI*u2);
    }
}
예제 #5
0
파일: sa.c 프로젝트: drigz/5R1
real sa(unsigned seed)
{
    srandom(seed);

    real T;
    if (initial_temp_method != constant)
        T = INFINITY;
    else
        T = initial_temp;

    real step_size_x = init_step_size, step_size_y = init_step_size;
    real pos_x = 5, pos_y = 5;
    real obj = bump(pos_x, pos_y);
    real obj_pen = obj;

    int samples_remaining = 5000-1;

    real obj_d[5000];
    int n_obj_d = 0;
    real accepts[5000];
    int n_accepts = 0;

    int num_trials = 0, num_acceptances = 0;
    int initial_trials = 500;
    int max_trials = temp_length;
    int max_acceptances = 0.6*temp_length;

    real alpha = 0.1, omega = 2.1;

    real best_obj = obj;
    real best_x = pos_x, best_y = pos_y;
    int best_time = samples_remaining;

    while (samples_remaining > 0)
    {
        if (best_time - samples_remaining > 500)
        {
            best_time = samples_remaining;
            pos_x = best_x;
            pos_y = best_y;
            obj = best_obj;
            obj_pen = best_obj + penalty_weight * penalty(pos_x, pos_y) / T;

            step_size_x = step_size_y = init_step_size;
        }

        real step_x, step_y;
        if (step_method == gaussian)
        {
            step_x = step_size_x * randn();
            step_y = step_size_y * randn();
        }
        else
        {
            step_x = step_size_x * (2*randf()-1);
            step_y = step_size_y * (2*randf()-1);
        }

        real new_x = pos_x+step_x, new_y = pos_y+step_y;

        real new_pen = penalty_weight * penalty(new_x, new_y);

        if (T == INFINITY && new_pen != 0)
            continue;

        real new_obj = bump(new_x, new_y);
        real new_obj_pen = new_obj + new_pen / T;
        samples_remaining--;

        num_trials++;

        if (new_pen == 0)
        {
            if (new_obj > best_obj)
            {
                best_obj = new_obj;
                best_x = new_x;
                best_y = new_y;
                best_time = samples_remaining;
            }
        }

        real p;
        if (step_method == parks)
        {
            real step_norm = sqrtr(step_x*step_x + step_y*step_y);
            p = exp(- (obj_pen - new_obj_pen) / (T * step_norm));
        }
        else
        {
            p = exp(- (obj_pen - new_obj_pen) / T);
        }

        if (randf() < p)
        {
            num_acceptances++;
            obj_d[n_obj_d++] = new_obj_pen - obj_pen;
            pos_x = new_x;
            pos_y = new_y;
            obj = new_obj;
            obj_pen = new_obj_pen;

            accepts[n_accepts++] = new_obj_pen;

            if (T != INFINITY && step_method == parks)
            {
                step_size_x = (1-alpha)*step_size_x + alpha*omega*fabsr(step_x);
                step_size_y = (1-alpha)*step_size_y + alpha*omega*fabsr(step_y);
            }
        }

        bool reduced_T = false;

        if (T == INFINITY)
        {
            if (num_trials >= initial_trials)
            {
                if (initial_temp_method == kirkpatrick)
                    T = T_kirkpatrick(obj_d, n_obj_d);
                else if (initial_temp_method == white)
                    T = std(obj_d, n_obj_d);
                else
                {
                    fprintf(stderr, "unknown temp method");
                    exit(1);
                }
                reduced_T = true;
            }
        }
        else if (num_trials >= max_trials || num_acceptances >= max_acceptances)
        {
            if (temp_decay_method == huang)
            {
                real factor;
                if (n_accepts < 2)
                    factor = 0.5;
                else
                {
                    factor = exp(-0.7*T/std(accepts, n_accepts));
                    if (factor < 0.5)
                        factor = 0.5;
                }
                T *= factor;
            }
            else
                T *= temp_decay;
            reduced_T = true;
        }

        if (reduced_T)
        {
            //printf("%g\n", T);
            n_obj_d = 0;
            num_trials = 0;
            num_acceptances = 0;
            n_accepts = 1;
            accepts[0] = obj_pen;
        }
    }

    return best_obj;
}
예제 #6
0
파일: nffactor.c 프로젝트: BENGMN/soen490
/* Naive recombination of modular factors: combine up to maxK modular
 * factors, degree <= klim and divisible by hint
 *
 * target = polynomial we want to factor
 * famod = array of modular factors.  Product should be congruent to
 * target/lc(target) modulo p^a
 * For true factors: S1,S2 <= p^b, with b <= a and p^(b-a) < 2^31 */
static GEN
nfcmbf(nfcmbf_t *T, GEN p, long a, long maxK, long klim)
{
  GEN pol = T->pol, nf = T->nf, famod = T->fact, dn = T->dn;
  GEN bound = T->bound;
  GEN nfpol = gel(nf,1);
  long K = 1, cnt = 1, i,j,k, curdeg, lfamod = lg(famod)-1, dnf = degpol(nfpol);
  GEN res = cgetg(3, t_VEC);
  pari_sp av0 = avma;
  GEN pk = gpowgs(p,a), pks2 = shifti(pk,-1);

  GEN ind      = cgetg(lfamod+1, t_VECSMALL);
  GEN degpol   = cgetg(lfamod+1, t_VECSMALL);
  GEN degsofar = cgetg(lfamod+1, t_VECSMALL);
  GEN listmod  = cgetg(lfamod+1, t_COL);
  GEN fa       = cgetg(lfamod+1, t_COL);
  GEN lc = absi(leading_term(pol)), lt = is_pm1(lc)? NULL: lc;
  GEN C2ltpol, C = T->L->topowden, Tpk = T->L->Tpk;
  GEN Clt  = mul_content(C, lt);
  GEN C2lt = mul_content(C,Clt);
  const double Bhigh = get_Bhigh(lfamod, dnf);
  trace_data _T1, _T2, *T1, *T2;
  pari_timer ti;

  TIMERstart(&ti);

  if (maxK < 0) maxK = lfamod-1;

  C2ltpol = C2lt? gmul(C2lt,pol): pol;
  {
    GEN q = ceil_safe(sqrtr(T->BS_2));
    GEN t1,t2, ltdn, lt2dn;
    GEN trace1   = cgetg(lfamod+1, t_MAT);
    GEN trace2   = cgetg(lfamod+1, t_MAT);

    ltdn = mul_content(lt, dn);
    lt2dn= mul_content(ltdn, lt);

    for (i=1; i <= lfamod; i++)
    {
      pari_sp av = avma;
      GEN P = gel(famod,i);
      long d = degpol(P);

      degpol[i] = d; P += 2;
      t1 = gel(P,d-1);/* = - S_1 */
      t2 = gsqr(t1);
      if (d > 1) t2 = gsub(t2, gmul2n(gel(P,d-2), 1));
      /* t2 = S_2 Newton sum */
      t2 = typ(t2)!=t_INT? FpX_rem(t2, Tpk, pk): modii(t2, pk);
      if (lt)
      {
        if (typ(t2)!=t_INT) {
          t1 = FpX_red(gmul(ltdn, t1), pk);
          t2 = FpX_red(gmul(lt2dn,t2), pk);
        } else {
          t1 = remii(mulii(ltdn, t1), pk);
          t2 = remii(mulii(lt2dn,t2), pk);
        }
      }
      gel(trace1,i) = gclone( nf_bestlift(t1, NULL, T->L) );
      gel(trace2,i) = gclone( nf_bestlift(t2, NULL, T->L) ); avma = av;
    }
    T1 = init_trace(&_T1, trace1, T->L, q);
    T2 = init_trace(&_T2, trace2, T->L, q);
    for (i=1; i <= lfamod; i++) { 
      gunclone(gel(trace1,i));
      gunclone(gel(trace2,i));
    }
  }
  degsofar[0] = 0; /* sentinel */

  /* ind runs through strictly increasing sequences of length K,
   * 1 <= ind[i] <= lfamod */
nextK:
  if (K > maxK || 2*K > lfamod) goto END;
  if (DEBUGLEVEL > 3)
    fprintferr("\n### K = %d, %Z combinations\n", K,binomial(utoipos(lfamod), K));
  setlg(ind, K+1); ind[1] = 1;
  i = 1; curdeg = degpol[ind[1]];
  for(;;)
  { /* try all combinations of K factors */
    for (j = i; j < K; j++)
    {
      degsofar[j] = curdeg;
      ind[j+1] = ind[j]+1; curdeg += degpol[ind[j+1]];
    }
    if (curdeg <= klim && curdeg % T->hint == 0) /* trial divide */
    {
      GEN t, y, q, list;
      pari_sp av;

      av = avma;
      /* d - 1 test */
      if (T1)
      {
        t = get_trace(ind, T1);
        if (rtodbl(QuickNormL2(t,DEFAULTPREC)) > Bhigh)
        {
          if (DEBUGLEVEL>6) fprintferr(".");
          avma = av; goto NEXT;
        }
      }
      /* d - 2 test */
      if (T2)
      {
        t = get_trace(ind, T2);
        if (rtodbl(QuickNormL2(t,DEFAULTPREC)) > Bhigh)
        {
          if (DEBUGLEVEL>3) fprintferr("|");
          avma = av; goto NEXT;
        }
      }
      avma = av;
      y = lt; /* full computation */
      for (i=1; i<=K; i++)
      {
        GEN q = gel(famod, ind[i]);
        if (y) q = gmul(y, q);
        y = FqX_centermod(q, Tpk, pk, pks2);
      }
      y = nf_pol_lift(y, bound, T);
      if (!y)
      {
        if (DEBUGLEVEL>3) fprintferr("@");
        avma = av; goto NEXT;
      }
      /* try out the new combination: y is the candidate factor */
      q = RgXQX_divrem(C2ltpol, y, nfpol, ONLY_DIVIDES);
      if (!q)
      {
        if (DEBUGLEVEL>3) fprintferr("*");
        avma = av; goto NEXT;
      }

      /* found a factor */
      list = cgetg(K+1, t_VEC);
      gel(listmod,cnt) = list;
      for (i=1; i<=K; i++) list[i] = famod[ind[i]];

      y = Q_primpart(y);
      gel(fa,cnt++) = QXQX_normalize(y, nfpol);
      /* fix up pol */
      pol = q;
      for (i=j=k=1; i <= lfamod; i++)
      { /* remove used factors */
        if (j <= K && i == ind[j]) j++;
        else
        {
          famod[k] = famod[i];
          update_trace(T1, k, i);
          update_trace(T2, k, i);
          degpol[k] = degpol[i]; k++;
        }
      }
      lfamod -= K;
      if (lfamod < 2*K) goto END;
      i = 1; curdeg = degpol[ind[1]];

      if (C2lt) pol = Q_primpart(pol);
      if (lt) lt = absi(leading_term(pol));
      Clt  = mul_content(C, lt);
      C2lt = mul_content(C,Clt);
      C2ltpol = C2lt? gmul(C2lt,pol): pol;
      if (DEBUGLEVEL > 2)
      {
        fprintferr("\n"); msgTIMER(&ti, "to find factor %Z",y);
        fprintferr("remaining modular factor(s): %ld\n", lfamod);
      }
      continue;
    }

NEXT:
    for (i = K+1;;)
    {
      if (--i == 0) { K++; goto nextK; }
      if (++ind[i] <= lfamod - K + i)
      {
        curdeg = degsofar[i-1] + degpol[ind[i]];
        if (curdeg <= klim) break;
      }
    }
  }
END:
  if (degpol(pol) > 0)
  { /* leftover factor */
    if (signe(leading_term(pol)) < 0) pol = gneg_i(pol);

    if (C2lt && lfamod < 2*K) pol = QXQX_normalize(Q_primpart(pol), nfpol);
    setlg(famod, lfamod+1);
    gel(listmod,cnt) = shallowcopy(famod);
    gel(fa,cnt++) = pol;
  }
  if (DEBUGLEVEL>6) fprintferr("\n");
  if (cnt == 2) { 
    avma = av0; 
    gel(res,1) = mkvec(T->pol);
    gel(res,2) = mkvec(T->fact);
  }
  else
  {
    setlg(listmod, cnt); setlg(fa, cnt);
    gel(res,1) = fa;
    gel(res,2) = listmod;
    res = gerepilecopy(av0, res);
  }
  return res;
}
예제 #7
0
파일: nffactor.c 프로젝트: BENGMN/soen490
static GEN
nf_LLL_cmbf(nfcmbf_t *T, GEN p, long k, long rec)
{
  nflift_t *L = T->L;
  GEN pk = L->pk, PRK = L->prk, PRKinv = L->iprk, GSmin = L->GSmin;
  GEN Tpk = L->Tpk;

  GEN famod = T->fact, nf = T->nf, ZC = T->ZC, Br = T->Br;
  GEN Pbase = T->polbase, P = T->pol, dn = T->dn;
  GEN nfT = gel(nf,1);
  GEN Btra;
  long dnf = degpol(nfT), dP = degpol(P);

  double BitPerFactor = 0.5; /* nb bits / modular factor */
  long i, C, tmax, n0;
  GEN lP, Bnorm, Tra, T2, TT, CM_L, m, list, ZERO;
  double Bhigh;
  pari_sp av, av2, lim;
  long ti_LLL = 0, ti_CF = 0;
  pari_timer ti2, TI;

  lP = absi(leading_term(P));
  if (is_pm1(lP)) lP = NULL;

  n0 = lg(famod) - 1;
 /* Lattice: (S PRK), small vector (vS vP). To find k bound for the image,
  * write S = S1 q + S0, P = P1 q + P0
  * |S1 vS + P1 vP|^2 <= Bhigh for all (vS,vP) assoc. to true factors */
  Btra = mulrr(ZC, mulsr(dP*dP, normlp(Br, 2, dnf)));
  Bhigh = get_Bhigh(n0, dnf);
  C = (long)ceil(sqrt(Bhigh/n0)) + 1; /* C^2 n0 ~ Bhigh */
  Bnorm = dbltor( n0 * C * C + Bhigh );
  ZERO = zeromat(n0, dnf);

  av = avma; lim = stack_lim(av, 1);
  TT = cgetg(n0+1, t_VEC);
  Tra  = cgetg(n0+1, t_MAT);
  for (i=1; i<=n0; i++) TT[i] = 0;
  CM_L = gscalsmat(C, n0);
  /* tmax = current number of traces used (and computed so far) */
  for(tmax = 0;; tmax++)
  {
    long a, b, bmin, bgood, delta, tnew = tmax + 1, r = lg(CM_L)-1;
    GEN oldCM_L, M_L, q, S1, P1, VV;
    int first = 1;

    /* bound for f . S_k(genuine factor) = ZC * bound for T_2(S_tnew) */
    Btra = mulrr(ZC, mulsr(dP*dP, normlp(Br, 2*tnew, dnf)));
    bmin = logint(ceil_safe(sqrtr(Btra)), gen_2, NULL);
    if (DEBUGLEVEL>2)
      fprintferr("\nLLL_cmbf: %ld potential factors (tmax = %ld, bmin = %ld)\n",
                 r, tmax, bmin);

    /* compute Newton sums (possibly relifting first) */
    if (gcmp(GSmin, Btra) < 0)
    {
      nflift_t L1;
      GEN polred;

      bestlift_init(k<<1, nf, T->pr, Btra, &L1);
      polred = ZqX_normalize(Pbase, lP, &L1);
      k      = L1.k;
      pk     = L1.pk;
      PRK    = L1.prk;
      PRKinv = L1.iprk;
      GSmin  = L1.GSmin;
      Tpk    = L1.Tpk;
      famod = hensel_lift_fact(polred, famod, Tpk, p, pk, k);
      for (i=1; i<=n0; i++) TT[i] = 0;
    }
    for (i=1; i<=n0; i++)
    {
      GEN h, lPpow = lP? gpowgs(lP, tnew): NULL;
      GEN z = polsym_gen(gel(famod,i), gel(TT,i), tnew, Tpk, pk);
      gel(TT,i) = z;
      h = gel(z,tnew+1);
      /* make Newton sums integral */
      lPpow = mul_content(lPpow, dn);
      if (lPpow) h = FpX_red(gmul(h,lPpow), pk);
      gel(Tra,i) = nf_bestlift(h, NULL, L); /* S_tnew(famod) */
    }

    /* compute truncation parameter */
    if (DEBUGLEVEL>2) { TIMERstart(&ti2); TIMERstart(&TI); }
    oldCM_L = CM_L;
    av2 = avma;
    b = delta = 0; /* -Wall */
AGAIN:
    M_L = Q_div_to_int(CM_L, utoipos(C));
    VV = get_V(Tra, M_L, PRK, PRKinv, pk, &a);
    if (first)
    { /* initialize lattice, using few p-adic digits for traces */
      bgood = (long)(a - max(32, BitPerFactor * r));
      b = max(bmin, bgood);
      delta = a - b;
    }
    else
    { /* add more p-adic digits and continue reduction */
      if (a < b) b = a;
      b = max(b-delta, bmin);
      if (b - delta/2 < bmin) b = bmin; /* near there. Go all the way */
    }

    /* restart with truncated entries */
    q = int2n(b);
    P1 = gdivround(PRK, q);
    S1 = gdivround(Tra, q);
    T2 = gsub(gmul(S1, M_L), gmul(P1, VV));
    m = vconcat( CM_L, T2 );
    if (first)
    {
      first = 0;
      m = shallowconcat( m, vconcat(ZERO, P1) );
      /*     [ C M_L   0  ]
       * m = [            ]   square matrix
       *     [  T2'   PRK ]   T2' = Tra * M_L  truncated
       */
    }
    CM_L = LLL_check_progress(Bnorm, n0, m, b == bmin, /*dbg:*/ &ti_LLL);
    if (DEBUGLEVEL>2)
      fprintferr("LLL_cmbf: (a,b) =%4ld,%4ld; r =%3ld -->%3ld, time = %ld\n",
                 a,b, lg(m)-1, CM_L? lg(CM_L)-1: 1, TIMER(&TI));
    if (!CM_L) { list = mkcol(QXQX_normalize(P,nfT)); break; }
    if (b > bmin)
    {
      CM_L = gerepilecopy(av2, CM_L);
      goto AGAIN;
    }
    if (DEBUGLEVEL>2) msgTIMER(&ti2, "for this trace");

    i = lg(CM_L) - 1;
    if (i == r && gequal(CM_L, oldCM_L))
    {
      CM_L = oldCM_L;
      avma = av2; continue;
    }

    if (i <= r && i*rec < n0)
    {
      pari_timer ti;
      if (DEBUGLEVEL>2) TIMERstart(&ti);
      list = nf_chk_factors(T, P, Q_div_to_int(CM_L,utoipos(C)), famod, pk);
      if (DEBUGLEVEL>2) ti_CF += TIMER(&ti);
      if (list) break;
      CM_L = gerepilecopy(av2, CM_L);
    }
    if (low_stack(lim, stack_lim(av,1)))
    {
      if(DEBUGMEM>1) pari_warn(warnmem,"nf_LLL_cmbf");
      gerepileall(av, Tpk? 9: 8,
                      &CM_L,&TT,&Tra,&famod,&pk,&GSmin,&PRK,&PRKinv,&Tpk);
    }
  }
  if (DEBUGLEVEL>2)
    fprintferr("* Time LLL: %ld\n* Time Check Factor: %ld\n",ti_LLL,ti_CF);
  return list;
}
예제 #8
0
파일: emgm.cpp 프로젝트: ivcl/SplitVectors
gaussian_model EMclustering::maximization(MatrixXf x, MatrixXf r)
{
	int d = x.rows();
	int n = x.cols();
	int k = r.cols();
	//cerr<<x<<endl;
	VectorXf nk(r.rows());
	nk = r.colwise().sum();
	VectorXf w(nk.size());
	w = nk/n;
	MatrixXf tmp1(x.rows(),r.cols());
	tmp1 = x * r;
	VectorXf tmp2(nk.size());
	tmp2 = nk.array().inverse();
	//cerr<<tmp2<<endl<<endl;
	MatrixXf mu(x.rows(),r.cols());
	mu = tmp1 * tmp2.asDiagonal() ;
	MatrixXf *sigma = new MatrixXf[k];
	for(int i=0;i<k;i++)
		sigma[i].setZero(d,d);
	MatrixXf sqrtr(r.rows(),r.cols());
	sqrtr = r.cwiseSqrt();
	MatrixXf xo(d,n);
	MatrixXf tmp3(d,d);
	tmp3.setIdentity(d,d);
	
	for(int i=0;i<k;i++)
	{
		xo = x.colwise() - mu.col(i);
		VectorXf tmp4(sqrtr.rows());
		tmp4 = sqrtr.col(i);
		tmp4 = tmp4.adjoint();
		xo = xo* tmp4.asDiagonal();
		sigma[i] = xo*xo.adjoint()/nk(i);
		sigma[i] = sigma[i] + tmp3*1e-6; 
		//cerr<<sigma[i]<<endl<<endl;
	}

	gaussian_model model;
	model.mu = mu;
	model.sigma = new MatrixXf[k];
	for(int i=0;i<k;i++)
		model.sigma[i] = sigma[i];
	
	model.weight = w;
	
	nk.resize(0);
	w.resize(0);
	tmp1.resize(0,0);
	tmp2.resize(0);
	tmp3.resize(0,0);
	mu.resize(0,0);
	for(int i=0;i<k;i++)
		sigma[i].resize(0,0);
	delete [] sigma;
	sqrtr.resize(0,0);
	xo.resize(0,0);
	tmp3.resize(0,0);

	//cerr<<"---"<<endl;
	model.weight = model.weight.adjoint();
	//cerr<<model.weight<<endl<<endl;
	//cerr<<model.mu<<endl<<endl;
	//for(int i=0;i<k;i++)
	//{
	//	cerr<<model.sigma[i]<<endl<<endl;
	//}
	return model;
}