예제 #1
0
void GraphicsBoard::setHighlights(const QList<Chess::Square>& squares)
{
	clearHighlights();
	if (squares.isEmpty())
		return;

	TargetHighlights* targets = new TargetHighlights(this);

	QRectF rect;
	rect.setSize(QSizeF(m_squareSize / 3, m_squareSize / 3));
	rect.moveCenter(QPointF(0, 0));
	QPen pen(Qt::white, m_squareSize / 20);
	QBrush brush(Qt::black);

	for (const auto& sq : squares)
	{
		QGraphicsEllipseItem* dot = new QGraphicsEllipseItem(rect, targets);

		dot->setCacheMode(DeviceCoordinateCache);
		dot->setPen(pen);
		dot->setBrush(brush);
		dot->setPos(squarePos(sq));
	}

	m_highlightAnim = new QPropertyAnimation(targets, "opacity");
	targets->setParent(m_highlightAnim);

	m_highlightAnim->setStartValue(0.0);
	m_highlightAnim->setEndValue(1.0);
	m_highlightAnim->setDuration(500);
	m_highlightAnim->setEasingCurve(QEasingCurve::InOutQuad);
	m_highlightAnim->start(QAbstractAnimation::KeepWhenStopped);
}
예제 #2
0
void GraphicsBoard::setSquare(const Chess::Square& square, GraphicsPiece* piece)
{
	Q_ASSERT(square.isValid());

	int index = squareIndex(square);
	delete m_squares[index];

	if (piece == nullptr)
		m_squares[index] = nullptr;
	else
	{
		m_squares[index] = piece;
		piece->setContainer(this);
		piece->setParentItem(this);
		piece->setPos(squarePos(square));
	}
}
예제 #3
0
///////////////////////////////////////////////////////////////////
// Create information about the terrain and wave vertices.
void WaterManager::CreateSuperfancyInfo(CSimulation2* simulation)
{
	if (m_VBWaves)
	{
		g_VBMan.Release(m_VBWaves);
		m_VBWaves = NULL;
	}
	if (m_VBWavesIndices)
	{
		g_VBMan.Release(m_VBWavesIndices);
		m_VBWavesIndices = NULL;
	}

	CTerrain* terrain = g_Game->GetWorld()->GetTerrain();
	ssize_t mapSize = terrain->GetVerticesPerSide();
	
	CmpPtr<ICmpWaterManager> cmpWaterManager(*simulation, SYSTEM_ENTITY);
	if (!cmpWaterManager)
		return;	// REALLY shouldn't happen and will most likely crash.

	// Using this to get some more optimization on circular maps
	CmpPtr<ICmpRangeManager> cmpRangeManager(*simulation, SYSTEM_ENTITY);
	if (!cmpRangeManager)
		return;
	bool circular = cmpRangeManager->GetLosCircular();
	float mSize = mapSize*mapSize;
	float halfSize = (mapSize/2.0);

	// Warning: this won't work with multiple water planes
	m_WaterHeight = cmpWaterManager->GetExactWaterLevel(0,0);
	
	// TODO: change this whenever we incrementally update because it's def. not too efficient
	delete[] m_WaveX;
	delete[] m_WaveZ;
	delete[] m_DistanceToShore;
	delete[] m_FoamFactor;
	
	m_WaveX = new float[mapSize*mapSize];
	m_WaveZ = new float[mapSize*mapSize];
	m_DistanceToShore = new float[mapSize*mapSize];
	m_FoamFactor = new float[mapSize*mapSize];

	u16* heightmap = terrain->GetHeightMap();
	
	// some temporary stuff for wave intensity
	// not really used too much right now.
	u8* waveForceHQ = new u8[mapSize*mapSize];
	u16 waterHeightInu16 = m_WaterHeight/HEIGHT_SCALE;

	// used to cache terrain normals since otherwise we'd recalculate them a lot (I'm blurring the "normal" map).
	// this might be updated to actually cache in the terrain manager but that's not for now.
	CVector3D* normals = new CVector3D[mapSize*mapSize];

	// calculate wave force (not really used right now)
	// and puts into "normals" the terrain normal at that point
	// so as to avoid recalculating terrain normals too often.
	for (ssize_t i = 0; i < mapSize; ++i)
	{
		for (ssize_t j = 0; j < mapSize; ++j)
		{
			normals[j*mapSize + i] = terrain->CalcExactNormal(((float)i)*4.0f,((float)j)*4.0f);
			if (circular && (i-halfSize)*(i-halfSize)+(j-halfSize)*(j-halfSize) > mSize)
			{
				waveForceHQ[j*mapSize + i] = 255;
				continue;
			}
			u8 color = 0;
			for (int v = 0; v <= 18; v += 3){
				if (j-v >= 0 && i-v >= 0 && heightmap[(j-v)*mapSize + i-v] > waterHeightInu16)
				{
					if (color == 0)
						color = 5;
					else
						color++;
				}
			}
			waveForceHQ[j*mapSize + i] = 255 - color * 40;
		}
	}
	// this creates information for waves and stores it in float arrays. PatchRData then puts it in the vertex info for speed.
	for (ssize_t i = 0; i < mapSize; ++i)
	{
		for (ssize_t j = 0; j < mapSize; ++j)
		{
			if (circular && (i-halfSize)*(i-halfSize)+(j-halfSize)*(j-halfSize) > mSize)
			{
				m_WaveX[j*mapSize + i] = 0.0f;
				m_WaveZ[j*mapSize + i] = 0.0f;
				m_DistanceToShore[j*mapSize + i] = 100;
				m_FoamFactor[j*mapSize + i] = 0.0f;
				continue;
			}
			float depth = m_WaterHeight - heightmap[j*mapSize + i]*HEIGHT_SCALE;
			int distanceToShore = 10000;
			
			// calculation of the distance to the shore.
			// TODO: this is fairly dumb, though it returns a good result
			// Could be sped up a fair bit.
			if (depth >= 0)
			{
				// check in the square around.
				for (int xx = -5; xx <= 5; ++xx)
				{
					for (int yy = -5; yy <= 5; ++yy)
					{
						if (i+xx >= 0 && i + xx < mapSize)
							if (j + yy >= 0 && j + yy < mapSize)
							{
								float hereDepth = m_WaterHeight - heightmap[(j+yy)*mapSize + (i+xx)]*HEIGHT_SCALE;
								if (hereDepth < 0 && xx*xx + yy*yy < distanceToShore)
									distanceToShore = xx*xx + yy*yy;
							}
					}
				}
				// refine the calculation if we're close enough
				if (distanceToShore < 9)
				{
					for (float xx = -2.5f; xx <= 2.5f; ++xx)
					{
						for (float yy = -2.5f; yy <= 2.5f; ++yy)
						{
							float hereDepth = m_WaterHeight - terrain->GetExactGroundLevel( (i+xx)*4, (j+yy)*4 );
							if (hereDepth < 0 && xx*xx + yy*yy < distanceToShore)
								distanceToShore = xx*xx + yy*yy;
						}
					}
				}
			}
			else
			{
				for (int xx = -2; xx <= 2; ++xx)
				{
					for (int yy = -2; yy <= 2; ++yy)
					{
						float hereDepth = m_WaterHeight - terrain->GetVertexGroundLevel(i+xx, j+yy);
						if (hereDepth > 0)
							distanceToShore = 0;
					}
				}
				
			}
			// speedup with default values for land squares
			if (distanceToShore == 10000)
			{
				m_WaveX[j*mapSize + i] = 0.0f;
				m_WaveZ[j*mapSize + i] = 0.0f;
				m_DistanceToShore[j*mapSize + i] = 100;
				m_FoamFactor[j*mapSize + i] = 0.0f;
				continue;
			}
			// We'll compute the normals and the "water raise", to know about foam
			// Normals are a pretty good calculation but it's slow since we normalize so much.
			CVector3D normal;
			int waterRaise = 0;
			for (int xx = -4; xx <= 4; xx += 2)	// every 2 tile is good enough.
			{
				for (int yy = -4; yy <= 4; yy += 2)
				{
					if (j+yy < mapSize && i+xx < mapSize && i+xx >= 0 && j+yy >= 0)
						normal += normals[(j+yy)*mapSize + (i+xx)];
					if (terrain->GetVertexGroundLevel(i+xx,j+yy) < heightmap[j*mapSize + i]*HEIGHT_SCALE)
						waterRaise += heightmap[j*mapSize + i]*HEIGHT_SCALE - terrain->GetVertexGroundLevel(i+xx,j+yy);
				}
			}
			// normalizes the terrain info to avoid foam moving at too different speeds.
			normal *= 0.012345679f;
			normal[1] = 0.1f;
			normal = normal.Normalized();

			m_WaveX[j*mapSize + i] = normal[0];
			m_WaveZ[j*mapSize + i] = normal[2];
			// distance is /5.0 to be a [0,1] value.

			m_DistanceToShore[j*mapSize + i] = sqrtf(distanceToShore)/5.0f; // TODO: this can probably be cached as I'm integer here.

			// computing the amount of foam I want

			depth = clamp(depth,0.0f,10.0f);
			float foamAmount = (waterRaise/255.0f) * (1.0f - depth/10.0f) * (waveForceHQ[j*mapSize+i]/255.0f) * (m_Waviness/8.0f);
			foamAmount += clamp(m_Waviness/2.0f - distanceToShore,0.0f,m_Waviness/2.0f)/(m_Waviness/2.0f) * clamp(m_Waviness/9.0f,0.3f,1.0f);
			foamAmount = foamAmount > 1.0f ? 1.0f: foamAmount;
			
			m_FoamFactor[j*mapSize + i] = foamAmount;
		}
	}

	delete[] normals;
	delete[] waveForceHQ;
	
	// TODO: The rest should be cleaned up
	
	// okay let's create the waves squares. i'll divide the map in arbitrary squares
	// For each of these squares, check if waves are needed.
	// If yes, look for the best positionning (in order to have a nice blending with the shore)
	// Then clean-up: remove squares that are too close to each other
	
	std::vector<CVector2D> waveSquares;
	
	int size = 8;	// I think this is the size of the squares.
	for (int i = 0; i < mapSize/size; ++i)
	{
		for (int j = 0; j < mapSize/size; ++j)
		{
			
			int landTexel = 0;
			int waterTexel = 0;
			CVector3D avnormal (0.0f,0.0f,0.0f);
			CVector2D landPosition(0.0f,0.0f);
			CVector2D waterPosition(0.0f,0.0f);
			for (int xx = 0; xx < size; ++xx)
			{
				for (int yy = 0; yy < size; ++yy)
				{
					if (terrain->GetVertexGroundLevel(i*size+xx,j*size+yy) > m_WaterHeight)
					{
						landTexel++;
						landPosition += CVector2D(i*size+xx,j*size+yy);
					}
					else
					{
						waterPosition += CVector2D(i*size+xx,j*size+yy);
						waterTexel++;
						avnormal += terrain->CalcExactNormal( (i*size+xx)*4.0f,(j*size+yy)*4.0f);
					}
				}
			}
			if (landTexel < size/2)
				continue;

			landPosition /= landTexel;
			waterPosition /= waterTexel;
			
			avnormal[1] = 1.0f;
			avnormal.Normalize();
			avnormal[1] = 0.0f;
			
			// this should help ensure that the shore is pretty flat.
			if (avnormal.Length() <= 0.2f)
				continue;
			
			// To get the best position for squares, I start at the mean "ocean" position
			// And step by step go to the mean "land" position. I keep the position where I change from water to land.
			// If this never happens, the square is scrapped.
			if (terrain->GetExactGroundLevel(waterPosition.X*4.0f,waterPosition.Y*4.0f) > m_WaterHeight)
				continue;
			
			CVector2D squarePos(-1,-1);
			for (u8 i = 0; i < 40; i++)
			{
				squarePos = landPosition * (i/40.0f) + waterPosition * (1.0f-(i/40.0f));
				if (terrain->GetExactGroundLevel(squarePos.X*4.0f,squarePos.Y*4.0f) > m_WaterHeight)
					break;
			}
			if (squarePos.X == -1)
				continue;
			
			u8 enter = 1;
			// okaaaaaay. Got a square. Check for proximity.
			for (unsigned long i = 0; i < waveSquares.size(); i++)
			{
				if ( CVector2D(waveSquares[i]-squarePos).LengthSquared() < 80) {
					enter = 0;
					break;
				}
			}
			if (enter == 1)
				waveSquares.push_back(squarePos);
		}
	}
	
	// Actually create the waves' meshes.
	std::vector<SWavesVertex> waves_vertex_data;
	std::vector<GLushort> waves_indices;
	
	// loop through each square point. Look in the square around it, calculate the normal
	// create the square.
	for (unsigned long i = 0; i < waveSquares.size(); i++)
	{
		CVector2D pos(waveSquares[i]);
		
		CVector3D avgnorm(0.0f,0.0f,0.0f);
		for (int xx = -size/2; xx < size/2; ++xx)
		{
			for (int yy = -size/2; yy < size/2; ++yy)
			{
				avgnorm += terrain->CalcExactNormal((pos.X+xx)*4.0f,(pos.Y+yy)*4.0f);
			}
		}
		avgnorm[1] = 0.1f;
		// okay crank out a square.
		// we have the direction of the square. We'll get the perpendicular vector too
		CVector2D perp(-avgnorm[2],avgnorm[0]);
		perp = perp.Normalized();
		avgnorm = avgnorm.Normalized();
		
		SWavesVertex vertex[4];
		vertex[0].m_Position = CVector3D(pos.X + perp.X*(size/2.2f) - avgnorm[0]*1.0f, 0.0f,pos.Y + perp.Y*(size/2.2f) - avgnorm[2]*1.0f);
		vertex[0].m_Position *= 4.0f;
		vertex[0].m_Position.Y = m_WaterHeight + 1.0f;
		vertex[0].m_UV[1] = 1;
		vertex[0].m_UV[0] = 0;
		
		vertex[1].m_Position = CVector3D(pos.X - perp.X*(size/2.2f) - avgnorm[0]*1.0f, 0.0f,pos.Y - perp.Y*(size/2.2f) - avgnorm[2]*1.0f);
		vertex[1].m_Position *= 4.0f;
		vertex[1].m_Position.Y = m_WaterHeight + 1.0f;
		vertex[1].m_UV[1] = 1;
		vertex[1].m_UV[0] = 1;
		
		vertex[3].m_Position = CVector3D(pos.X + perp.X*(size/2.2f) + avgnorm[0]*(size/1.5f), 0.0f,pos.Y + perp.Y*(size/2.2f) + avgnorm[2]*(size/1.5f));
		vertex[3].m_Position *= 4.0f;
		vertex[3].m_Position.Y = m_WaterHeight + 1.0f;
		vertex[3].m_UV[1] = 0;
		vertex[3].m_UV[0] = 0;
		
		vertex[2].m_Position = CVector3D(pos.X - perp.X*(size/2.2f) + avgnorm[0]*(size/1.5f), 0.0f,pos.Y - perp.Y*(size/2.2f) + avgnorm[2]*(size/1.5f));
		vertex[2].m_Position *= 4.0f;
		vertex[2].m_Position.Y = m_WaterHeight + 1.0f;
		vertex[2].m_UV[1] = 0;
		vertex[2].m_UV[0] = 1;
		
		waves_indices.push_back(waves_vertex_data.size());
		waves_vertex_data.push_back(vertex[0]);
		waves_indices.push_back(waves_vertex_data.size());
		waves_vertex_data.push_back(vertex[1]);
		waves_indices.push_back(waves_vertex_data.size());
		waves_vertex_data.push_back(vertex[2]);
		waves_indices.push_back(waves_vertex_data.size());
		waves_vertex_data.push_back(vertex[3]);
	}

	// no vertex buffers if no data generated
	if (waves_indices.empty())
		return;

	// waves
	// allocate vertex buffer
	m_VBWaves = g_VBMan.Allocate(sizeof(SWavesVertex), waves_vertex_data.size(), GL_STATIC_DRAW, GL_ARRAY_BUFFER);
	m_VBWaves->m_Owner->UpdateChunkVertices(m_VBWaves, &waves_vertex_data[0]);

	// Construct indices buffer
	m_VBWavesIndices = g_VBMan.Allocate(sizeof(GLushort), waves_indices.size(), GL_STATIC_DRAW, GL_ELEMENT_ARRAY_BUFFER);
	m_VBWavesIndices->m_Owner->UpdateChunkVertices(m_VBWavesIndices, &waves_indices[0]);
}
예제 #4
0
void CGrassBlockDrawer::DrawQuad(int x, int y)
{
	const float maxDetailedDist = gd->maxDetailedDist;

	CGrassDrawer::NearGrassStruct* nearGrass = gd->nearGrass;

	if (abs(x - cx) <= gd->detailedBlocks && abs(y - cy) <= gd->detailedBlocks) {
		//! blocks close to the camera
		for (int y2 = y * grassBlockSize; y2 < (y + 1) * grassBlockSize; ++y2) {
			for (int x2 = x * grassBlockSize; x2 < (x + 1) * grassBlockSize; ++x2) {
				if (gd->grassMap[y2 * gs->mapx / grassSquareSize + x2]) {
					float3 squarePos((x2 + 0.5f) * gSSsq, 0.0f, (y2 + 0.5f) * gSSsq);
						squarePos.y = CGround::GetHeightReal(squarePos.x, squarePos.z, false);

					const float sqdist = (camera->GetPos() - squarePos).SqLength();

					CGrassDrawer::NearGrassStruct* ng = &nearGrass[(y2 & 31) * 32 + (x2 & 31)];

					if (sqdist < (maxDetailedDist * maxDetailedDist)) {
						//! close grass, draw directly
						rng.Seed(y2 * 1025 + x2);

						for (int a = 0; a < gd->numTurfs; a++) {
							const float dx = (x2 + rng.RandFloat()) * gSSsq;
							const float dy = (y2 + rng.RandFloat()) * gSSsq;

							float3 pos(dx, CGround::GetHeightReal(dx, dy, false), dy);
								pos.y -= CGround::GetSlope(dx, dy, false) * 10.0f + 0.03f;

							if (ng->square != y2 * 2048 + x2) {
								const float3 v = squarePos - camera->GetPos();
								ng->rotation = GetHeadingFromVector(v.x, v.z) * 180.0f / 32768 + 180; //FIXME make more random
								ng->square = y2 * 2048 + x2;
							}

							glPushMatrix();
							glTranslatef3(pos);
							glRotatef(ng->rotation, 0.0f, 1.0f, 0.0f);
							glCallList(gd->grassDL);
							glPopMatrix();
						}
					} else {
						//! near but not close, save for later drawing
						CGrassDrawer::InviewNearGrass iv;
							iv.dist = sqdist;
							iv.x = x2;
							iv.y = y2;
						inviewNearGrass.push_back(iv);
						ng->square = -1;
					}
				}
			}
		}

		return;
	}

	const float3 dif(camera->GetPos().x - ((x + 0.5f) * bMSsq), 0.0f, camera->GetPos().z - ((y + 0.5f) * bMSsq));
	const float dist = dif.SqLength2D();

	if (dist < Square(gd->maxGrassDist)) {
		const int curSquare = y * gd->blocksX + x;
		const int curModSquare = (y & 31) * 32 + (x & 31);

		CGrassDrawer::GrassStruct* grass = gd->grass + curModSquare;
		grass->lastSeen = globalRendering->drawFrame;

		if (grass->square != curSquare) {
			grass->square = curSquare;

			delete grass->va;
			grass->va = NULL;
		}

		if (!grass->va) {
			grass->va = new CVertexArray;
			grass->pos = float3((x + 0.5f) * bMSsq, CGround::GetHeightReal((x + 0.5f) * bMSsq, (y + 0.5f) * bMSsq, false), (y + 0.5f) * bMSsq);

			CVertexArray* va = grass->va;
			va->Initialize();

			for (int y2 = y * grassBlockSize; y2 < (y + 1) * grassBlockSize; ++y2) {
				for (int x2 = x * grassBlockSize; x2 < (x + 1) * grassBlockSize; ++x2) {
					if (gd->grassMap[y2 * gs->mapx / grassSquareSize + x2]) {
						rng.Seed(y2 * 1025 + x2);

						for (int a = 0; a < gd->numTurfs; a++) {
							const float dx = (x2 + rng.RandFloat()) * gSSsq;
							const float dy = (y2 + rng.RandFloat()) * gSSsq;
							const float col = 1.0f;

							float3 pos(dx, CGround::GetHeightReal(dx, dy, false) + 0.5f, dy);
								pos.y -= (CGround::GetSlope(dx, dy, false) * 10.0f + 0.03f);

							va->AddVertexTN(pos, 0.0f,         0.0f, float3(-partTurfSize, -partTurfSize, col));
							va->AddVertexTN(pos, 1.0f / 16.0f, 0.0f, float3( partTurfSize, -partTurfSize, col));
							va->AddVertexTN(pos, 1.0f / 16.0f, 1.0f, float3( partTurfSize,  partTurfSize, col));
							va->AddVertexTN(pos, 0.0f,         1.0f, float3(-partTurfSize,  partTurfSize, col));
						}
					}
				}
			}
		}

		CGrassDrawer::InviewGrass ig;
			ig.num = curModSquare;
			ig.dist = dif.Length2D();
		inviewGrass.push_back(ig);
	}
}