void do_pgr_driving_many_to_dist( pgr_edge_t *data_edges, size_t total_tuples, int64_t *start_vertex, size_t s_len, float8 distance, bool directedFlag, bool equiCostFlag, General_path_element_t **ret_path, size_t *path_count, char ** err_msg) { try { graphType gType = directedFlag? DIRECTED: UNDIRECTED; const auto initial_size = total_tuples; std::deque< Path >paths; std::set< int64_t > s_start_vertices(start_vertex, start_vertex + s_len); std::vector< int64_t > start_vertices(s_start_vertices.begin(), s_start_vertices.end()); if (directedFlag) { Pgr_base_graph< DirectedGraph > digraph(gType, initial_size); digraph.graph_insert_data(data_edges, total_tuples); pgr_drivingDistance(digraph, paths, start_vertices, distance, equiCostFlag); } else { Pgr_base_graph< UndirectedGraph > undigraph(gType, initial_size); undigraph.graph_insert_data(data_edges, total_tuples); pgr_drivingDistance(undigraph, paths, start_vertices, distance, equiCostFlag); } size_t count(count_tuples(paths)); if (count == 0) { *err_msg = strdup("NOTICE: No return values was found"); *ret_path = noResult(path_count, (*ret_path)); return; } *ret_path = get_memory(count, (*ret_path)); auto trueCount(collapse_paths(ret_path, paths)); *path_count = trueCount; #ifndef DEBUG *err_msg = strdup("OK"); #else *err_msg = strdup(log.str().c_str()); #endif return; } catch ( ... ) { *err_msg = strdup("Caught unknown expection!"); *ret_path = noResult(path_count, (*ret_path)); return; } }
// CREATE OR REPLACE FUNCTION pgr_dijkstra( // sql text, // start_vids anyarray, // end_vids anyarray, // directed boolean default true, void do_pgr_many_to_many_dijkstra( pgr_edge_t *data_edges, size_t total_edges, int64_t *start_vidsArr, size_t size_start_vidsArr, int64_t *end_vidsArr, size_t size_end_vidsArr, bool directed, bool only_cost, bool normal, General_path_element_t **return_tuples, size_t *return_count, char ** log_msg, char ** notice_msg, char ** err_msg) { std::ostringstream log; std::ostringstream err; std::ostringstream notice; try { pgassert(total_edges != 0); pgassert(!(*log_msg)); pgassert(!(*notice_msg)); pgassert(!(*err_msg)); pgassert(!(*return_tuples)); pgassert(*return_count == 0); graphType gType = directed? DIRECTED: UNDIRECTED; log << "Inserting vertices into a c++ vector structure"; std::vector<int64_t> start_vertices(start_vidsArr, start_vidsArr + size_start_vidsArr); std::vector< int64_t > end_vertices(end_vidsArr, end_vidsArr + size_end_vidsArr); std::deque< Path >paths; if (directed) { log << "\nWorking with directed Graph"; pgrouting::DirectedGraph digraph(gType); digraph.insert_edges(data_edges, total_edges); paths = pgr_dijkstra( digraph, start_vertices, end_vertices, only_cost, normal); } else { log << "\nWorking with Undirected Graph"; pgrouting::UndirectedGraph undigraph(gType); undigraph.insert_edges(data_edges, total_edges); paths = pgr_dijkstra( undigraph, start_vertices, end_vertices, only_cost, normal); } size_t count(0); count = count_tuples(paths); if (count == 0) { (*return_tuples) = NULL; (*return_count) = 0; notice << "No paths found"; *log_msg = pgr_msg(notice.str().c_str()); return; } (*return_tuples) = pgr_alloc(count, (*return_tuples)); log << "\nConverting a set of paths into the tuples"; (*return_count) = (collapse_paths(return_tuples, paths)); *log_msg = log.str().empty()? *log_msg : pgr_msg(log.str().c_str()); *notice_msg = notice.str().empty()? *notice_msg : pgr_msg(notice.str().c_str()); } catch (AssertFailedException &except) { (*return_tuples) = pgr_free(*return_tuples); (*return_count) = 0; err << except.what(); *err_msg = pgr_msg(err.str().c_str()); *log_msg = pgr_msg(log.str().c_str()); } catch (std::exception &except) { (*return_tuples) = pgr_free(*return_tuples); (*return_count) = 0; err << except.what(); *err_msg = pgr_msg(err.str().c_str()); *log_msg = pgr_msg(log.str().c_str()); } catch(...) { (*return_tuples) = pgr_free(*return_tuples); (*return_count) = 0; err << "Caught unknown exception!"; *err_msg = pgr_msg(err.str().c_str()); *log_msg = pgr_msg(log.str().c_str()); } }
void do_pgr_bdAstar( Pgr_edge_xy_t *edges, size_t total_edges, int64_t *start_vidsArr, size_t size_start_vidsArr, int64_t *end_vidsArr, size_t size_end_vidsArr, bool directed, int heuristic, double factor, double epsilon, bool only_cost, General_path_element_t **return_tuples, size_t *return_count, char ** log_msg, char ** notice_msg, char ** err_msg) { std::ostringstream log; std::ostringstream err; std::ostringstream notice; try { pgassert(!(*log_msg)); pgassert(!(*notice_msg)); pgassert(!(*err_msg)); pgassert(!(*return_tuples)); pgassert(*return_count == 0); pgassert(total_edges != 0); log << "Inserting vertices into a c++ vector structure"; std::vector<int64_t> start_vertices(start_vidsArr, start_vidsArr + size_start_vidsArr); std::vector< int64_t > end_vertices(end_vidsArr, end_vidsArr + size_end_vidsArr); graphType gType = directed? DIRECTED: UNDIRECTED; std::deque<Path> paths; log << "starting process\n"; if (directed) { log << "Working with directed Graph\n"; pgrouting::xyDirectedGraph digraph( pgrouting::extract_vertices(edges, total_edges), gType); digraph.insert_edges(edges, total_edges); paths = pgr_bdAstar(digraph, start_vertices, end_vertices, heuristic, factor, epsilon, log, only_cost); } else { log << "Working with Undirected Graph\n"; pgrouting::xyUndirectedGraph undigraph( pgrouting::extract_vertices(edges, total_edges), gType); undigraph.insert_edges(edges, total_edges); paths = pgr_bdAstar( undigraph, start_vertices, end_vertices, heuristic, factor, epsilon, log, only_cost); } size_t count(0); count = count_tuples(paths); if (count == 0) { (*return_tuples) = NULL; (*return_count) = 0; notice << "No paths found"; *log_msg = pgr_msg(notice.str().c_str()); return; } (*return_tuples) = pgr_alloc(count, (*return_tuples)); log << "\nConverting a set of paths into the tuples"; (*return_count) = (collapse_paths(return_tuples, paths)); #if 0 auto count = path.size(); if (count == 0) { (*return_tuples) = NULL; (*return_count) = 0; notice << "No paths found between start_vid and end_vid vertices"; } else { (*return_tuples) = pgr_alloc(count, (*return_tuples)); size_t sequence = 0; path.generate_postgres_data(return_tuples, sequence); (*return_count) = sequence; } #endif pgassert(*err_msg == NULL); *log_msg = log.str().empty()? nullptr : pgr_msg(log.str().c_str()); *notice_msg = notice.str().empty()? nullptr : pgr_msg(notice.str().c_str()); } catch (AssertFailedException &except) { if (*return_tuples) free(*return_tuples); (*return_count) = 0; err << except.what(); *err_msg = pgr_msg(err.str().c_str()); *log_msg = pgr_msg(log.str().c_str()); } catch (std::exception& except) { if (*return_tuples) free(*return_tuples); (*return_count) = 0; err << except.what(); *err_msg = pgr_msg(err.str().c_str()); *log_msg = pgr_msg(log.str().c_str()); } catch(...) { if (*return_tuples) free(*return_tuples); (*return_count) = 0; err << "Caught unknown exception!"; *err_msg = pgr_msg(err.str().c_str()); *log_msg = pgr_msg(log.str().c_str()); } }
int do_pgr_many_to_one_withPoints( pgr_edge_t *edges, size_t total_edges, Point_on_edge_t *points_p, size_t total_points, pgr_edge_t *edges_of_points, size_t total_edges_of_points, int64_t *start_pidsArr, size_t size_start_pidsArr, int64_t end_vid, char driving_side, bool details, bool directed, bool only_cost, General_path_element_t **return_tuples, size_t *return_count, char ** err_msg) { std::ostringstream log; try { std::vector< Point_on_edge_t > points(points_p, points_p + total_points); int errcode = check_points(points, log); if (errcode) { /* Point(s) with same pid but different edge/fraction/side combination found */ *err_msg = strdup(log.str().c_str()); return errcode; } std::vector< pgr_edge_t > edges_to_modify(edges_of_points, edges_of_points + total_edges_of_points); std::vector< pgr_edge_t > new_edges; create_new_edges( points, edges_to_modify, driving_side, new_edges); std::set< int64_t > s_start_vertices(start_pidsArr, start_pidsArr + size_start_pidsArr); std::vector< int64_t > start_vertices(s_start_vertices.begin(), s_start_vertices.end()); graphType gType = directed? DIRECTED: UNDIRECTED; std::deque< Path > paths; if (directed) { log << "Working with directed Graph\n"; pgrouting::DirectedGraph digraph(gType); digraph.graph_insert_data(edges, total_edges); digraph.graph_insert_data(new_edges); pgr_dijkstra(digraph, paths, start_vertices, end_vid, only_cost); } else { log << "Working with Undirected Graph\n"; pgrouting::UndirectedGraph undigraph(gType); undigraph.graph_insert_data(edges, total_edges); undigraph.graph_insert_data(new_edges); pgr_dijkstra(undigraph, paths, start_vertices, end_vid, only_cost); } #if 0 for (auto &path : paths) { adjust_pids(points, path); } #endif if (!details) { for (auto &path : paths) { eliminate_details(path, edges_to_modify); } } /* * order paths based on the start_pid */ std::sort(paths.begin(), paths.end(), [](const Path &a, const Path &b) { return a.start_id() < b.start_id(); }); size_t count(0); count = count_tuples(paths); if (count == 0) { (*return_tuples) = NULL; (*return_count) = 0; log << "No paths found between Starting and any of the Ending vertices\n"; *err_msg = strdup(log.str().c_str()); return 0; } (*return_tuples) = pgr_alloc(count, (*return_tuples)); log << "Converting a set of paths into the tuples\n"; (*return_count) = (collapse_paths(return_tuples, paths)); #ifndef NDEBUG { std::ostringstream log; log << "OK"; *err_msg = strdup(log.str().c_str()); } #else *err_msg = strdup(log.str().c_str()); #endif return 0; } catch ( ... ) { log << "Caught unknown exception!\n"; *err_msg = strdup(log.str().c_str()); return 1000; } return 0; }
void do_pgr_withPoints( pgr_edge_t *edges, size_t total_edges, Point_on_edge_t *points_p, size_t total_points, pgr_edge_t *edges_of_points, size_t total_edges_of_points, int64_t *start_pidsArr, size_t size_start_pidsArr, int64_t *end_pidsArr, size_t size_end_pidsArr, char driving_side, bool details, bool directed, bool only_cost, bool normal, General_path_element_t **return_tuples, size_t *return_count, char** log_msg, char** notice_msg, char** err_msg) { std::ostringstream log; std::ostringstream notice; std::ostringstream err; try { pgassert(!(*log_msg)); pgassert(!(*notice_msg)); pgassert(!(*err_msg)); pgassert(!(*return_tuples)); pgassert((*return_count) == 0); pgassert(edges || edges_of_points); pgassert(points_p); pgassert(start_pidsArr); pgassert(end_pidsArr); std::vector< Point_on_edge_t > points(points_p, points_p + total_points); if (!normal) { for (auto &point : points) { if (point.side == 'r') { point.side = 'l'; } else if (point.side == 'l') { point.side = 'r'; } point.fraction = 1 - point.fraction; } if (driving_side == 'r') { driving_side = 'l'; } else if (driving_side == 'l') { driving_side = 'r'; } } int errcode = check_points(points, log); if (errcode) { *log_msg = strdup(log.str().c_str()); err << "Unexpected point(s) with same pid" << " but different edge/fraction/side combination found."; *err_msg = pgr_msg(err.str().c_str()); return; } std::vector< pgr_edge_t > edges_to_modify( edges_of_points, edges_of_points + total_edges_of_points); std::vector< pgr_edge_t > new_edges; create_new_edges( points, edges_to_modify, driving_side, new_edges, log); std::vector<int64_t> start_vertices(start_pidsArr, start_pidsArr + size_start_pidsArr); std::vector< int64_t > end_vertices(end_pidsArr, end_pidsArr + size_end_pidsArr); auto vertices(pgrouting::extract_vertices(edges, total_edges)); vertices = pgrouting::extract_vertices(vertices, new_edges); graphType gType = directed? DIRECTED: UNDIRECTED; std::deque< Path > paths; if (directed) { log << "Working with directed Graph\n"; pgrouting::DirectedGraph digraph(vertices, gType); digraph.insert_edges(edges, total_edges); digraph.insert_edges(new_edges); paths = pgr_dijkstra( digraph, start_vertices, end_vertices, only_cost, normal); } else { log << "Working with Undirected Graph\n"; pgrouting::UndirectedGraph undigraph(vertices, gType); undigraph.insert_edges(edges, total_edges); undigraph.insert_edges(new_edges); paths = pgr_dijkstra( undigraph, start_vertices, end_vertices, only_cost, normal); } if (!details) { for (auto &path : paths) { eliminate_details(path, edges_to_modify); } } /* * order paths based on the start_pid, end_pid */ std::sort(paths.begin(), paths.end(), [](const Path &a, const Path &b) -> bool { if (b.start_id() != a.start_id()) { return a.start_id() < b.start_id(); } return a.end_id() < b.end_id(); }); size_t count(0); count = count_tuples(paths); if (count == 0) { (*return_tuples) = NULL; (*return_count) = 0; #if 0 log << "No paths found"; *err_msg = pgr_msg(log.str().c_str()); #endif return; } (*return_tuples) = pgr_alloc(count, (*return_tuples)); log << "Converting a set of paths into the tuples\n"; (*return_count) = (collapse_paths(return_tuples, paths)); *log_msg = log.str().empty()? *log_msg : pgr_msg(log.str().c_str()); *notice_msg = notice.str().empty()? *notice_msg : pgr_msg(notice.str().c_str()); } catch (AssertFailedException &except) { (*return_tuples) = pgr_free(*return_tuples); (*return_count) = 0; err << except.what(); *err_msg = pgr_msg(err.str().c_str()); *log_msg = pgr_msg(log.str().c_str()); } catch (std::exception &except) { (*return_tuples) = pgr_free(*return_tuples); (*return_count) = 0; err << except.what(); *err_msg = pgr_msg(err.str().c_str()); *log_msg = pgr_msg(log.str().c_str()); } catch(...) { (*return_tuples) = pgr_free(*return_tuples); (*return_count) = 0; err << "Caught unknown exception!"; *err_msg = pgr_msg(err.str().c_str()); *log_msg = pgr_msg(log.str().c_str()); } }
int do_pgr_driving_many_to_dist(pgr_edge_t *data_edges, int64_t total_tuples, int64_t *start_vertex, int s_len, float8 distance, bool directedFlag, bool equiCostFlag, pgr_path_element3_t **ret_path, int *path_count, char ** err_msg) { try { // in c code this should this must have been checked: // 1) end_vertex is in the data_edges #if 0 // set to 1 if needed std::ostringstream log; #endif graphType gType = directedFlag? DIRECTED: UNDIRECTED; const int initial_size = 1; std::deque< Path >paths; typedef boost::adjacency_list < boost::vecS, boost::vecS, boost::undirectedS, boost_vertex_t, boost_edge_t > UndirectedGraph; typedef boost::adjacency_list < boost::vecS, boost::vecS, boost::bidirectionalS, boost_vertex_t, boost_edge_t > DirectedGraph; Pgr_dijkstra < DirectedGraph > digraph(gType, initial_size); Pgr_dijkstra < UndirectedGraph > undigraph(gType, initial_size); std::vector< int64_t > start_vertices(start_vertex, start_vertex + s_len); if (directedFlag) { digraph.initialize_graph(data_edges, total_tuples); digraph.dijkstra_dd(paths, start_vertices, distance); } else { undigraph.initialize_graph(data_edges, total_tuples); undigraph.dijkstra_dd(paths, start_vertices, distance); } if (equiCostFlag == false) { int count(count_tuples(paths)); if (count == 0) { *err_msg = strdup("NOTICE: No return values was found"); *ret_path = noPathFound3(-1, path_count, (*ret_path)); return 0; } *ret_path = pgr_get_memory3(count, (*ret_path)); int trueCount(collapse_paths(ret_path, paths)); *path_count = trueCount; // assert (count == trueCount); } else { Path path = equi_cost(paths); size_t count(path.size()); if (count == 0) { *err_msg = strdup("NOTICE: No return values was found"); *ret_path = noPathFound3(-1, path_count, (*ret_path)); return 0; } int trueCount = 0; *ret_path = pgr_get_memory3(count, (*ret_path)); path.dpPrint(ret_path, trueCount); *path_count = trueCount; // assert (count == trueCount); } #if 1 *err_msg = strdup("OK"); #else *err_msg = strdup(log.str().c_str()); #endif return EXIT_SUCCESS; } catch ( ... ) { *err_msg = strdup("Caught unknown expection!"); return -1; } }