예제 #1
0
/* ARGSUSED */
int
sys_profil(struct proc *p, void *v, register_t *retval)
{
	struct sys_profil_args /* {
		syscallarg(caddr_t) samples;
		syscallarg(size_t) size;
		syscallarg(u_long) offset;
		syscallarg(u_int) scale;
	} */ *uap = v;
	struct uprof *upp;
	int s;

	if (SCARG(uap, scale) > (1 << 16))
		return (EINVAL);
	if (SCARG(uap, scale) == 0) {
		stopprofclock(p);
		return (0);
	}
	upp = &p->p_p->ps_prof;

	/* Block profile interrupts while changing state. */
	s = splstatclock();
	upp->pr_off = SCARG(uap, offset);
	upp->pr_scale = SCARG(uap, scale);
	upp->pr_base = (caddr_t)SCARG(uap, samples);
	upp->pr_size = SCARG(uap, size);
	startprofclock(p);
	splx(s);

	return (0);
}
/*
 * sysctl helper routine for kern.profiling subtree.  enables/disables
 * kernel profiling and gives out copies of the profiling data.
 */
static int
sysctl_kern_profiling(SYSCTLFN_ARGS)
{
	struct gmonparam *gp = &_gmonparam;
	int error;
	struct sysctlnode node;

	node = *rnode;

	switch (node.sysctl_num) {
	case GPROF_STATE:
		node.sysctl_data = &gp->state;
		break;
	case GPROF_COUNT:
		node.sysctl_data = gp->kcount;
		node.sysctl_size = gp->kcountsize;
		break;
	case GPROF_FROMS:
		node.sysctl_data = gp->froms;
		node.sysctl_size = gp->fromssize;
		break;
	case GPROF_TOS:
		node.sysctl_data = gp->tos;
		node.sysctl_size = gp->tossize;
		break;
	case GPROF_GMONPARAM:
		node.sysctl_data = gp;
		node.sysctl_size = sizeof(*gp);
		break;
	default:
		return (EOPNOTSUPP);
	}

	error = sysctl_lookup(SYSCTLFN_CALL(&node));
	if (error || newp == NULL)
		return (error);

	if (node.sysctl_num == GPROF_STATE) {
		mutex_spin_enter(&proc0.p_stmutex);
		if (gp->state == GMON_PROF_OFF)
			stopprofclock(&proc0);
		else
			startprofclock(&proc0);
		mutex_spin_exit(&proc0.p_stmutex);
	}

	return (0);
}
예제 #3
0
/*
 * Return kernel profiling information.
 */
int
sysctl_doprof(int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp,
    size_t newlen)
{
	struct gmonparam *gp = &_gmonparam;
	int error;

	/* all sysctl names at this level are terminal */
	if (namelen != 1)
		return (ENOTDIR);		/* overloaded */

	switch (name[0]) {
	case GPROF_STATE:
		error = sysctl_int(oldp, oldlenp, newp, newlen, &gp->state);
		if (error)
			return (error);
		if (gp->state == GMON_PROF_OFF)
			stopprofclock(&proc0);
		else
			startprofclock(&proc0);
		return (0);
	case GPROF_COUNT:
		return (sysctl_struct(oldp, oldlenp, newp, newlen,
		    gp->kcount, gp->kcountsize));
	case GPROF_FROMS:
		return (sysctl_struct(oldp, oldlenp, newp, newlen,
		    gp->froms, gp->fromssize));
	case GPROF_TOS:
		return (sysctl_struct(oldp, oldlenp, newp, newlen,
		    gp->tos, gp->tossize));
	case GPROF_GMONPARAM:
		return (sysctl_rdstruct(oldp, oldlenp, newp, gp, sizeof *gp));
	default:
		return (EOPNOTSUPP);
	}
	/* NOTREACHED */
}
예제 #4
0
파일: kern_fork.c 프로젝트: 0xffea/xnu
/*
 * forkproc
 *
 * Description:	Create a new process structure, given a parent process
 *		structure.
 *
 * Parameters:	parent_proc		The parent process
 *
 * Returns:	!NULL			The new process structure
 *		NULL			Error (insufficient free memory)
 *
 * Note:	When successful, the newly created process structure is
 *		partially initialized; if a caller needs to deconstruct the
 *		returned structure, they must call forkproc_free() to do so.
 */
proc_t
forkproc(proc_t parent_proc)
{
	proc_t child_proc;	/* Our new process */
	static int nextpid = 0, pidwrap = 0, nextpidversion = 0;
	int error = 0;
	struct session *sessp;
	uthread_t parent_uthread = (uthread_t)get_bsdthread_info(current_thread());

	MALLOC_ZONE(child_proc, proc_t , sizeof *child_proc, M_PROC, M_WAITOK);
	if (child_proc == NULL) {
		printf("forkproc: M_PROC zone exhausted\n");
		goto bad;
	}
	/* zero it out as we need to insert in hash */
	bzero(child_proc, sizeof *child_proc);

	MALLOC_ZONE(child_proc->p_stats, struct pstats *,
			sizeof *child_proc->p_stats, M_PSTATS, M_WAITOK);
	if (child_proc->p_stats == NULL) {
		printf("forkproc: M_SUBPROC zone exhausted (p_stats)\n");
		FREE_ZONE(child_proc, sizeof *child_proc, M_PROC);
		child_proc = NULL;
		goto bad;
	}
	MALLOC_ZONE(child_proc->p_sigacts, struct sigacts *,
			sizeof *child_proc->p_sigacts, M_SIGACTS, M_WAITOK);
	if (child_proc->p_sigacts == NULL) {
		printf("forkproc: M_SUBPROC zone exhausted (p_sigacts)\n");
		FREE_ZONE(child_proc->p_stats, sizeof *child_proc->p_stats, M_PSTATS);
		FREE_ZONE(child_proc, sizeof *child_proc, M_PROC);
		child_proc = NULL;
		goto bad;
	}

	/* allocate a callout for use by interval timers */
	child_proc->p_rcall = thread_call_allocate((thread_call_func_t)realitexpire, child_proc);
	if (child_proc->p_rcall == NULL) {
		FREE_ZONE(child_proc->p_sigacts, sizeof *child_proc->p_sigacts, M_SIGACTS);
		FREE_ZONE(child_proc->p_stats, sizeof *child_proc->p_stats, M_PSTATS);
		FREE_ZONE(child_proc, sizeof *child_proc, M_PROC);
		child_proc = NULL;
		goto bad;
	}


	/*
	 * Find an unused PID.  
	 */

	proc_list_lock();

	nextpid++;
retry:
	/*
	 * If the process ID prototype has wrapped around,
	 * restart somewhat above 0, as the low-numbered procs
	 * tend to include daemons that don't exit.
	 */
	if (nextpid >= PID_MAX) {
		nextpid = 100;
		pidwrap = 1;
	}
	if (pidwrap != 0) {

		/* if the pid stays in hash both for zombie and runniing state */
		if  (pfind_locked(nextpid) != PROC_NULL) {
			nextpid++;
			goto retry;
		}

		if (pgfind_internal(nextpid) != PGRP_NULL) {
			nextpid++;
			goto retry;
		}	
		if (session_find_internal(nextpid) != SESSION_NULL) {
			nextpid++;
			goto retry;
		}	
	}
	nprocs++;
	child_proc->p_pid = nextpid;
	child_proc->p_idversion = nextpidversion++;
#if 1
	if (child_proc->p_pid != 0) {
		if (pfind_locked(child_proc->p_pid) != PROC_NULL)
			panic("proc in the list already\n");
	}
#endif
	/* Insert in the hash */
	child_proc->p_listflag |= (P_LIST_INHASH | P_LIST_INCREATE);
	LIST_INSERT_HEAD(PIDHASH(child_proc->p_pid), child_proc, p_hash);
	proc_list_unlock();


	/*
	 * We've identified the PID we are going to use; initialize the new
	 * process structure.
	 */
	child_proc->p_stat = SIDL;
	child_proc->p_pgrpid = PGRPID_DEAD;

	/*
	 * The zero'ing of the proc was at the allocation time due to need
	 * for insertion to hash.  Copy the section that is to be copied
	 * directly from the parent.
	 */
	bcopy(&parent_proc->p_startcopy, &child_proc->p_startcopy,
	    (unsigned) ((caddr_t)&child_proc->p_endcopy - (caddr_t)&child_proc->p_startcopy));

	/*
	 * Some flags are inherited from the parent.
	 * Duplicate sub-structures as needed.
	 * Increase reference counts on shared objects.
	 * The p_stats and p_sigacts substructs are set in vm_fork.
	 */
	child_proc->p_flag = (parent_proc->p_flag & (P_LP64 | P_TRANSLATED | P_AFFINITY));
	if (parent_proc->p_flag & P_PROFIL)
		startprofclock(child_proc);
	/*
	 * Note that if the current thread has an assumed identity, this
	 * credential will be granted to the new process.
	 */
	child_proc->p_ucred = kauth_cred_get_with_ref();

#ifdef CONFIG_EMBEDDED
	lck_mtx_init(&child_proc->p_mlock, proc_lck_grp, proc_lck_attr);
	lck_mtx_init(&child_proc->p_fdmlock, proc_lck_grp, proc_lck_attr);
#if CONFIG_DTRACE
	lck_mtx_init(&child_proc->p_dtrace_sprlock, proc_lck_grp, proc_lck_attr);
#endif
	lck_spin_init(&child_proc->p_slock, proc_lck_grp, proc_lck_attr);
#else /* !CONFIG_EMBEDDED */
	lck_mtx_init(&child_proc->p_mlock, proc_mlock_grp, proc_lck_attr);
	lck_mtx_init(&child_proc->p_fdmlock, proc_fdmlock_grp, proc_lck_attr);
#if CONFIG_DTRACE
	lck_mtx_init(&child_proc->p_dtrace_sprlock, proc_lck_grp, proc_lck_attr);
#endif
	lck_spin_init(&child_proc->p_slock, proc_slock_grp, proc_lck_attr);
#endif /* !CONFIG_EMBEDDED */
	klist_init(&child_proc->p_klist);

	if (child_proc->p_textvp != NULLVP) {
		/* bump references to the text vnode */
		/* Need to hold iocount across the ref call */
		if (vnode_getwithref(child_proc->p_textvp) == 0) {
			error = vnode_ref(child_proc->p_textvp);
			vnode_put(child_proc->p_textvp);
			if (error != 0)
				child_proc->p_textvp = NULLVP;
		}
	}

	/*
	 * Copy the parents per process open file table to the child; if
	 * there is a per-thread current working directory, set the childs
	 * per-process current working directory to that instead of the
	 * parents.
	 *
	 * XXX may fail to copy descriptors to child
	 */
	child_proc->p_fd = fdcopy(parent_proc, parent_uthread->uu_cdir);

#if SYSV_SHM
	if (parent_proc->vm_shm) {
		/* XXX may fail to attach shm to child */
		(void)shmfork(parent_proc, child_proc);
	}
#endif
	/*
	 * inherit the limit structure to child
	 */
	proc_limitfork(parent_proc, child_proc);

	if (child_proc->p_limit->pl_rlimit[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
		uint64_t rlim_cur = child_proc->p_limit->pl_rlimit[RLIMIT_CPU].rlim_cur;
		child_proc->p_rlim_cpu.tv_sec = (rlim_cur > __INT_MAX__) ? __INT_MAX__ : rlim_cur;
	}

	/* Intialize new process stats, including start time */
	/* <rdar://6640543> non-zeroed portion contains garbage AFAICT */
	bzero(&child_proc->p_stats->pstat_startzero,
	    (unsigned) ((caddr_t)&child_proc->p_stats->pstat_endzero -
	    (caddr_t)&child_proc->p_stats->pstat_startzero));
	bzero(&child_proc->p_stats->user_p_prof, sizeof(struct user_uprof));
	microtime(&child_proc->p_start);
	child_proc->p_stats->p_start = child_proc->p_start;     /* for compat */

	if (parent_proc->p_sigacts != NULL)
		(void)memcpy(child_proc->p_sigacts,
				parent_proc->p_sigacts, sizeof *child_proc->p_sigacts);
	else
		(void)memset(child_proc->p_sigacts, 0, sizeof *child_proc->p_sigacts);

	sessp = proc_session(parent_proc);
	if (sessp->s_ttyvp != NULL && parent_proc->p_flag & P_CONTROLT)
		OSBitOrAtomic(P_CONTROLT, &child_proc->p_flag);
	session_rele(sessp);

	/*
	 * block all signals to reach the process.
	 * no transition race should be occuring with the child yet,
	 * but indicate that the process is in (the creation) transition.
	 */
	proc_signalstart(child_proc, 0);
	proc_transstart(child_proc, 0);

	child_proc->p_pcaction = (parent_proc->p_pcaction) & P_PCMAX;
	TAILQ_INIT(&child_proc->p_uthlist);
	TAILQ_INIT(&child_proc->p_aio_activeq);
	TAILQ_INIT(&child_proc->p_aio_doneq);

	/* Inherit the parent flags for code sign */
	child_proc->p_csflags = parent_proc->p_csflags;

	/*
	 * All processes have work queue locks; cleaned up by
	 * reap_child_locked()
	 */
	workqueue_init_lock(child_proc);

	/*
	 * Copy work queue information
	 *
	 * Note: This should probably only happen in the case where we are
	 *	creating a child that is a copy of the parent; since this
	 *	routine is called in the non-duplication case of vfork()
	 *	or posix_spawn(), then this information should likely not
	 *	be duplicated.
	 *
	 * <rdar://6640553> Work queue pointers that no longer point to code
	 */
	child_proc->p_wqthread = parent_proc->p_wqthread;
	child_proc->p_threadstart = parent_proc->p_threadstart;
	child_proc->p_pthsize = parent_proc->p_pthsize;
	child_proc->p_targconc = parent_proc->p_targconc;
	if ((parent_proc->p_lflag & P_LREGISTER) != 0) {
		child_proc->p_lflag |= P_LREGISTER;
	}
	child_proc->p_dispatchqueue_offset = parent_proc->p_dispatchqueue_offset;
#if PSYNCH
	pth_proc_hashinit(child_proc);
#endif /* PSYNCH */

#if CONFIG_LCTX
	child_proc->p_lctx = NULL;
	/* Add new process to login context (if any). */
	if (parent_proc->p_lctx != NULL) {
		/*
		 * <rdar://6640564> This should probably be delayed in the
		 * vfork() or posix_spawn() cases.
		 */
		LCTX_LOCK(parent_proc->p_lctx);
		enterlctx(child_proc, parent_proc->p_lctx, 0);
	}
#endif

bad:
	return(child_proc);
}
예제 #5
0
static void
do_fork(struct thread *td, struct fork_req *fr, struct proc *p2, struct thread *td2,
    struct vmspace *vm2, struct file *fp_procdesc)
{
	struct proc *p1, *pptr;
	int trypid;
	struct filedesc *fd;
	struct filedesc_to_leader *fdtol;
	struct sigacts *newsigacts;

	sx_assert(&proctree_lock, SX_SLOCKED);
	sx_assert(&allproc_lock, SX_XLOCKED);

	p1 = td->td_proc;

	trypid = fork_findpid(fr->fr_flags);

	sx_sunlock(&proctree_lock);

	p2->p_state = PRS_NEW;		/* protect against others */
	p2->p_pid = trypid;
	AUDIT_ARG_PID(p2->p_pid);
	LIST_INSERT_HEAD(&allproc, p2, p_list);
	allproc_gen++;
	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
	tidhash_add(td2);
	PROC_LOCK(p2);
	PROC_LOCK(p1);

	sx_xunlock(&allproc_lock);

	bcopy(&p1->p_startcopy, &p2->p_startcopy,
	    __rangeof(struct proc, p_startcopy, p_endcopy));
	pargs_hold(p2->p_args);

	PROC_UNLOCK(p1);

	bzero(&p2->p_startzero,
	    __rangeof(struct proc, p_startzero, p_endzero));

	/* Tell the prison that we exist. */
	prison_proc_hold(p2->p_ucred->cr_prison);

	PROC_UNLOCK(p2);

	/*
	 * Malloc things while we don't hold any locks.
	 */
	if (fr->fr_flags & RFSIGSHARE)
		newsigacts = NULL;
	else
		newsigacts = sigacts_alloc();

	/*
	 * Copy filedesc.
	 */
	if (fr->fr_flags & RFCFDG) {
		fd = fdinit(p1->p_fd, false);
		fdtol = NULL;
	} else if (fr->fr_flags & RFFDG) {
		fd = fdcopy(p1->p_fd);
		fdtol = NULL;
	} else {
		fd = fdshare(p1->p_fd);
		if (p1->p_fdtol == NULL)
			p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL,
			    p1->p_leader);
		if ((fr->fr_flags & RFTHREAD) != 0) {
			/*
			 * Shared file descriptor table, and shared
			 * process leaders.
			 */
			fdtol = p1->p_fdtol;
			FILEDESC_XLOCK(p1->p_fd);
			fdtol->fdl_refcount++;
			FILEDESC_XUNLOCK(p1->p_fd);
		} else {
			/* 
			 * Shared file descriptor table, and different
			 * process leaders.
			 */
			fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
			    p1->p_fd, p2);
		}
	}
	/*
	 * Make a proc table entry for the new process.
	 * Start by zeroing the section of proc that is zero-initialized,
	 * then copy the section that is copied directly from the parent.
	 */

	PROC_LOCK(p2);
	PROC_LOCK(p1);

	bzero(&td2->td_startzero,
	    __rangeof(struct thread, td_startzero, td_endzero));

	bcopy(&td->td_startcopy, &td2->td_startcopy,
	    __rangeof(struct thread, td_startcopy, td_endcopy));

	bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name));
	td2->td_sigstk = td->td_sigstk;
	td2->td_flags = TDF_INMEM;
	td2->td_lend_user_pri = PRI_MAX;

#ifdef VIMAGE
	td2->td_vnet = NULL;
	td2->td_vnet_lpush = NULL;
#endif

	/*
	 * Allow the scheduler to initialize the child.
	 */
	thread_lock(td);
	sched_fork(td, td2);
	thread_unlock(td);

	/*
	 * Duplicate sub-structures as needed.
	 * Increase reference counts on shared objects.
	 */
	p2->p_flag = P_INMEM;
	p2->p_flag2 = p1->p_flag2 & (P2_NOTRACE | P2_NOTRACE_EXEC | P2_TRAPCAP);
	p2->p_swtick = ticks;
	if (p1->p_flag & P_PROFIL)
		startprofclock(p2);

	/*
	 * Whilst the proc lock is held, copy the VM domain data out
	 * using the VM domain method.
	 */
	vm_domain_policy_init(&p2->p_vm_dom_policy);
	vm_domain_policy_localcopy(&p2->p_vm_dom_policy,
	    &p1->p_vm_dom_policy);

	if (fr->fr_flags & RFSIGSHARE) {
		p2->p_sigacts = sigacts_hold(p1->p_sigacts);
	} else {
		sigacts_copy(newsigacts, p1->p_sigacts);
		p2->p_sigacts = newsigacts;
	}

	if (fr->fr_flags & RFTSIGZMB)
	        p2->p_sigparent = RFTSIGNUM(fr->fr_flags);
	else if (fr->fr_flags & RFLINUXTHPN)
	        p2->p_sigparent = SIGUSR1;
	else
	        p2->p_sigparent = SIGCHLD;

	p2->p_textvp = p1->p_textvp;
	p2->p_fd = fd;
	p2->p_fdtol = fdtol;

	if (p1->p_flag2 & P2_INHERIT_PROTECTED) {
		p2->p_flag |= P_PROTECTED;
		p2->p_flag2 |= P2_INHERIT_PROTECTED;
	}

	/*
	 * p_limit is copy-on-write.  Bump its refcount.
	 */
	lim_fork(p1, p2);

	thread_cow_get_proc(td2, p2);

	pstats_fork(p1->p_stats, p2->p_stats);

	PROC_UNLOCK(p1);
	PROC_UNLOCK(p2);

	/* Bump references to the text vnode (for procfs). */
	if (p2->p_textvp)
		vrefact(p2->p_textvp);

	/*
	 * Set up linkage for kernel based threading.
	 */
	if ((fr->fr_flags & RFTHREAD) != 0) {
		mtx_lock(&ppeers_lock);
		p2->p_peers = p1->p_peers;
		p1->p_peers = p2;
		p2->p_leader = p1->p_leader;
		mtx_unlock(&ppeers_lock);
		PROC_LOCK(p1->p_leader);
		if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
			PROC_UNLOCK(p1->p_leader);
			/*
			 * The task leader is exiting, so process p1 is
			 * going to be killed shortly.  Since p1 obviously
			 * isn't dead yet, we know that the leader is either
			 * sending SIGKILL's to all the processes in this
			 * task or is sleeping waiting for all the peers to
			 * exit.  We let p1 complete the fork, but we need
			 * to go ahead and kill the new process p2 since
			 * the task leader may not get a chance to send
			 * SIGKILL to it.  We leave it on the list so that
			 * the task leader will wait for this new process
			 * to commit suicide.
			 */
			PROC_LOCK(p2);
			kern_psignal(p2, SIGKILL);
			PROC_UNLOCK(p2);
		} else
			PROC_UNLOCK(p1->p_leader);
	} else {
		p2->p_peers = NULL;
		p2->p_leader = p2;
	}

	sx_xlock(&proctree_lock);
	PGRP_LOCK(p1->p_pgrp);
	PROC_LOCK(p2);
	PROC_LOCK(p1);

	/*
	 * Preserve some more flags in subprocess.  P_PROFIL has already
	 * been preserved.
	 */
	p2->p_flag |= p1->p_flag & P_SUGID;
	td2->td_pflags |= (td->td_pflags & TDP_ALTSTACK) | TDP_FORKING;
	SESS_LOCK(p1->p_session);
	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
		p2->p_flag |= P_CONTROLT;
	SESS_UNLOCK(p1->p_session);
	if (fr->fr_flags & RFPPWAIT)
		p2->p_flag |= P_PPWAIT;

	p2->p_pgrp = p1->p_pgrp;
	LIST_INSERT_AFTER(p1, p2, p_pglist);
	PGRP_UNLOCK(p1->p_pgrp);
	LIST_INIT(&p2->p_children);
	LIST_INIT(&p2->p_orphans);

	callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0);

	/*
	 * If PF_FORK is set, the child process inherits the
	 * procfs ioctl flags from its parent.
	 */
	if (p1->p_pfsflags & PF_FORK) {
		p2->p_stops = p1->p_stops;
		p2->p_pfsflags = p1->p_pfsflags;
	}

	/*
	 * This begins the section where we must prevent the parent
	 * from being swapped.
	 */
	_PHOLD(p1);
	PROC_UNLOCK(p1);

	/*
	 * Attach the new process to its parent.
	 *
	 * If RFNOWAIT is set, the newly created process becomes a child
	 * of init.  This effectively disassociates the child from the
	 * parent.
	 */
	if ((fr->fr_flags & RFNOWAIT) != 0) {
		pptr = p1->p_reaper;
		p2->p_reaper = pptr;
	} else {
		p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ?
		    p1 : p1->p_reaper;
		pptr = p1;
	}
	p2->p_pptr = pptr;
	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
	LIST_INIT(&p2->p_reaplist);
	LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling);
	if (p2->p_reaper == p1)
		p2->p_reapsubtree = p2->p_pid;
	sx_xunlock(&proctree_lock);

	/* Inform accounting that we have forked. */
	p2->p_acflag = AFORK;
	PROC_UNLOCK(p2);

#ifdef KTRACE
	ktrprocfork(p1, p2);
#endif

	/*
	 * Finish creating the child process.  It will return via a different
	 * execution path later.  (ie: directly into user mode)
	 */
	vm_forkproc(td, p2, td2, vm2, fr->fr_flags);

	if (fr->fr_flags == (RFFDG | RFPROC)) {
		VM_CNT_INC(v_forks);
		VM_CNT_ADD(v_forkpages, p2->p_vmspace->vm_dsize +
		    p2->p_vmspace->vm_ssize);
	} else if (fr->fr_flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
		VM_CNT_INC(v_vforks);
		VM_CNT_ADD(v_vforkpages, p2->p_vmspace->vm_dsize +
		    p2->p_vmspace->vm_ssize);
	} else if (p1 == &proc0) {
		VM_CNT_INC(v_kthreads);
		VM_CNT_ADD(v_kthreadpages, p2->p_vmspace->vm_dsize +
		    p2->p_vmspace->vm_ssize);
	} else {
		VM_CNT_INC(v_rforks);
		VM_CNT_ADD(v_rforkpages, p2->p_vmspace->vm_dsize +
		    p2->p_vmspace->vm_ssize);
	}

	/*
	 * Associate the process descriptor with the process before anything
	 * can happen that might cause that process to need the descriptor.
	 * However, don't do this until after fork(2) can no longer fail.
	 */
	if (fr->fr_flags & RFPROCDESC)
		procdesc_new(p2, fr->fr_pd_flags);

	/*
	 * Both processes are set up, now check if any loadable modules want
	 * to adjust anything.
	 */
	EVENTHANDLER_INVOKE(process_fork, p1, p2, fr->fr_flags);

	/*
	 * Set the child start time and mark the process as being complete.
	 */
	PROC_LOCK(p2);
	PROC_LOCK(p1);
	microuptime(&p2->p_stats->p_start);
	PROC_SLOCK(p2);
	p2->p_state = PRS_NORMAL;
	PROC_SUNLOCK(p2);

#ifdef KDTRACE_HOOKS
	/*
	 * Tell the DTrace fasttrap provider about the new process so that any
	 * tracepoints inherited from the parent can be removed. We have to do
	 * this only after p_state is PRS_NORMAL since the fasttrap module will
	 * use pfind() later on.
	 */
	if ((fr->fr_flags & RFMEM) == 0 && dtrace_fasttrap_fork)
		dtrace_fasttrap_fork(p1, p2);
#endif
	/*
	 * Hold the process so that it cannot exit after we make it runnable,
	 * but before we wait for the debugger.
	 */
	_PHOLD(p2);
	if (p1->p_ptevents & PTRACE_FORK) {
		/*
		 * Arrange for debugger to receive the fork event.
		 *
		 * We can report PL_FLAG_FORKED regardless of
		 * P_FOLLOWFORK settings, but it does not make a sense
		 * for runaway child.
		 */
		td->td_dbgflags |= TDB_FORK;
		td->td_dbg_forked = p2->p_pid;
		td2->td_dbgflags |= TDB_STOPATFORK;
	}
	if (fr->fr_flags & RFPPWAIT) {
		td->td_pflags |= TDP_RFPPWAIT;
		td->td_rfppwait_p = p2;
		td->td_dbgflags |= TDB_VFORK;
	}
	PROC_UNLOCK(p2);

	/*
	 * Now can be swapped.
	 */
	_PRELE(p1);
	PROC_UNLOCK(p1);

	/*
	 * Tell any interested parties about the new process.
	 */
	knote_fork(p1->p_klist, p2->p_pid);
	SDT_PROBE3(proc, , , create, p2, p1, fr->fr_flags);

	if (fr->fr_flags & RFPROCDESC) {
		procdesc_finit(p2->p_procdesc, fp_procdesc);
		fdrop(fp_procdesc, td);
	}

	if ((fr->fr_flags & RFSTOPPED) == 0) {
		/*
		 * If RFSTOPPED not requested, make child runnable and
		 * add to run queue.
		 */
		thread_lock(td2);
		TD_SET_CAN_RUN(td2);
		sched_add(td2, SRQ_BORING);
		thread_unlock(td2);
		if (fr->fr_pidp != NULL)
			*fr->fr_pidp = p2->p_pid;
	} else {
		*fr->fr_procp = p2;
	}

	PROC_LOCK(p2);
	/*
	 * Wait until debugger is attached to child.
	 */
	while (td2->td_proc == p2 && (td2->td_dbgflags & TDB_STOPATFORK) != 0)
		cv_wait(&p2->p_dbgwait, &p2->p_mtx);
	_PRELE(p2);
	racct_proc_fork_done(p2);
	PROC_UNLOCK(p2);
}
예제 #6
0
/*
 * General fork call.  Note that another LWP in the process may call exec()
 * or exit() while we are forking.  It's safe to continue here, because
 * neither operation will complete until all LWPs have exited the process.
 */
int
fork1(struct lwp *l1, int flags, int exitsig, void *stack, size_t stacksize,
    void (*func)(void *), void *arg, register_t *retval,
    struct proc **rnewprocp)
{
	struct proc	*p1, *p2, *parent;
	struct plimit   *p1_lim;
	uid_t		uid;
	struct lwp	*l2;
	int		count;
	vaddr_t		uaddr;
	int		tnprocs;
	int		tracefork;
	int		error = 0;

	p1 = l1->l_proc;
	uid = kauth_cred_getuid(l1->l_cred);
	tnprocs = atomic_inc_uint_nv(&nprocs);

	/*
	 * Although process entries are dynamically created, we still keep
	 * a global limit on the maximum number we will create.
	 */
	if (__predict_false(tnprocs >= maxproc))
		error = -1;
	else
		error = kauth_authorize_process(l1->l_cred,
		    KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);

	if (error) {
		static struct timeval lasttfm;
		atomic_dec_uint(&nprocs);
		if (ratecheck(&lasttfm, &fork_tfmrate))
			tablefull("proc", "increase kern.maxproc or NPROC");
		if (forkfsleep)
			kpause("forkmx", false, forkfsleep, NULL);
		return EAGAIN;
	}

	/*
	 * Enforce limits.
	 */
	count = chgproccnt(uid, 1);
	if (__predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
		if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
		    p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
		    &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0) {
			(void)chgproccnt(uid, -1);
			atomic_dec_uint(&nprocs);
			if (forkfsleep)
				kpause("forkulim", false, forkfsleep, NULL);
			return EAGAIN;
		}
	}

	/*
	 * Allocate virtual address space for the U-area now, while it
	 * is still easy to abort the fork operation if we're out of
	 * kernel virtual address space.
	 */
	uaddr = uvm_uarea_alloc();
	if (__predict_false(uaddr == 0)) {
		(void)chgproccnt(uid, -1);
		atomic_dec_uint(&nprocs);
		return ENOMEM;
	}

	/*
	 * We are now committed to the fork.  From here on, we may
	 * block on resources, but resource allocation may NOT fail.
	 */

	/* Allocate new proc. */
	p2 = proc_alloc();

	/*
	 * Make a proc table entry for the new process.
	 * Start by zeroing the section of proc that is zero-initialized,
	 * then copy the section that is copied directly from the parent.
	 */
	memset(&p2->p_startzero, 0,
	    (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
	memcpy(&p2->p_startcopy, &p1->p_startcopy,
	    (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));

	TAILQ_INIT(&p2->p_sigpend.sp_info);

	LIST_INIT(&p2->p_lwps);
	LIST_INIT(&p2->p_sigwaiters);

	/*
	 * Duplicate sub-structures as needed.
	 * Increase reference counts on shared objects.
	 * Inherit flags we want to keep.  The flags related to SIGCHLD
	 * handling are important in order to keep a consistent behaviour
	 * for the child after the fork.  If we are a 32-bit process, the
	 * child will be too.
	 */
	p2->p_flag =
	    p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
	p2->p_emul = p1->p_emul;
	p2->p_execsw = p1->p_execsw;

	if (flags & FORK_SYSTEM) {
		/*
		 * Mark it as a system process.  Set P_NOCLDWAIT so that
		 * children are reparented to init(8) when they exit.
		 * init(8) can easily wait them out for us.
		 */
		p2->p_flag |= (PK_SYSTEM | PK_NOCLDWAIT);
	}

	mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
	mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
	rw_init(&p2->p_reflock);
	cv_init(&p2->p_waitcv, "wait");
	cv_init(&p2->p_lwpcv, "lwpwait");

	/*
	 * Share a lock between the processes if they are to share signal
	 * state: we must synchronize access to it.
	 */
	if (flags & FORK_SHARESIGS) {
		p2->p_lock = p1->p_lock;
		mutex_obj_hold(p1->p_lock);
	} else
		p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);

	kauth_proc_fork(p1, p2);

	p2->p_raslist = NULL;
#if defined(__HAVE_RAS)
	ras_fork(p1, p2);
#endif

	/* bump references to the text vnode (for procfs) */
	p2->p_textvp = p1->p_textvp;
	if (p2->p_textvp)
		vref(p2->p_textvp);

	if (flags & FORK_SHAREFILES)
		fd_share(p2);
	else if (flags & FORK_CLEANFILES)
		p2->p_fd = fd_init(NULL);
	else
		p2->p_fd = fd_copy();

	/* XXX racy */
	p2->p_mqueue_cnt = p1->p_mqueue_cnt;

	if (flags & FORK_SHARECWD)
		cwdshare(p2);
	else
		p2->p_cwdi = cwdinit();

	/*
	 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
	 * we just need increase pl_refcnt.
	 */
	p1_lim = p1->p_limit;
	if (!p1_lim->pl_writeable) {
		lim_addref(p1_lim);
		p2->p_limit = p1_lim;
	} else {
		p2->p_limit = lim_copy(p1_lim);
	}

	if (flags & FORK_PPWAIT) {
		/* Mark ourselves as waiting for a child. */
		l1->l_pflag |= LP_VFORKWAIT;
		p2->p_lflag = PL_PPWAIT;
		p2->p_vforklwp = l1;
	} else {
		p2->p_lflag = 0;
	}
	p2->p_sflag = 0;
	p2->p_slflag = 0;
	parent = (flags & FORK_NOWAIT) ? initproc : p1;
	p2->p_pptr = parent;
	p2->p_ppid = parent->p_pid;
	LIST_INIT(&p2->p_children);

	p2->p_aio = NULL;

#ifdef KTRACE
	/*
	 * Copy traceflag and tracefile if enabled.
	 * If not inherited, these were zeroed above.
	 */
	if (p1->p_traceflag & KTRFAC_INHERIT) {
		mutex_enter(&ktrace_lock);
		p2->p_traceflag = p1->p_traceflag;
		if ((p2->p_tracep = p1->p_tracep) != NULL)
			ktradref(p2);
		mutex_exit(&ktrace_lock);
	}
#endif

	/*
	 * Create signal actions for the child process.
	 */
	p2->p_sigacts = sigactsinit(p1, flags & FORK_SHARESIGS);
	mutex_enter(p1->p_lock);
	p2->p_sflag |=
	    (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
	sched_proc_fork(p1, p2);
	mutex_exit(p1->p_lock);

	p2->p_stflag = p1->p_stflag;

	/*
	 * p_stats.
	 * Copy parts of p_stats, and zero out the rest.
	 */
	p2->p_stats = pstatscopy(p1->p_stats);

	/*
	 * Set up the new process address space.
	 */
	uvm_proc_fork(p1, p2, (flags & FORK_SHAREVM) ? true : false);

	/*
	 * Finish creating the child process.
	 * It will return through a different path later.
	 */
	lwp_create(l1, p2, uaddr, (flags & FORK_PPWAIT) ? LWP_VFORK : 0,
	    stack, stacksize, (func != NULL) ? func : child_return, arg, &l2,
	    l1->l_class);

	/*
	 * Inherit l_private from the parent.
	 * Note that we cannot use lwp_setprivate() here since that
	 * also sets the CPU TLS register, which is incorrect if the
	 * process has changed that without letting the kernel know.
	 */
	l2->l_private = l1->l_private;

	/*
	 * If emulation has a process fork hook, call it now.
	 */
	if (p2->p_emul->e_proc_fork)
		(*p2->p_emul->e_proc_fork)(p2, l1, flags);

	/*
	 * ...and finally, any other random fork hooks that subsystems
	 * might have registered.
	 */
	doforkhooks(p2, p1);

	SDT_PROBE(proc,,,create, p2, p1, flags, 0, 0);

	/*
	 * It's now safe for the scheduler and other processes to see the
	 * child process.
	 */
	mutex_enter(proc_lock);

	if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
		p2->p_lflag |= PL_CONTROLT;

	LIST_INSERT_HEAD(&parent->p_children, p2, p_sibling);
	p2->p_exitsig = exitsig;		/* signal for parent on exit */

	/*
	 * We don't want to tracefork vfork()ed processes because they
	 * will not receive the SIGTRAP until it is too late.
	 */
	tracefork = (p1->p_slflag & (PSL_TRACEFORK|PSL_TRACED)) ==
	    (PSL_TRACEFORK|PSL_TRACED) && (flags && FORK_PPWAIT) == 0;
	if (tracefork) {
		p2->p_slflag |= PSL_TRACED;
		p2->p_opptr = p2->p_pptr;
		if (p2->p_pptr != p1->p_pptr) {
			struct proc *parent1 = p2->p_pptr;

			if (parent1->p_lock < p2->p_lock) {
				if (!mutex_tryenter(parent1->p_lock)) {
					mutex_exit(p2->p_lock);
					mutex_enter(parent1->p_lock);
				}
			} else if (parent1->p_lock > p2->p_lock) {
				mutex_enter(parent1->p_lock);
			}
			parent1->p_slflag |= PSL_CHTRACED;
			proc_reparent(p2, p1->p_pptr);
			if (parent1->p_lock != p2->p_lock)
				mutex_exit(parent1->p_lock);
		}

		/*
		 * Set ptrace status.
		 */
		p1->p_fpid = p2->p_pid;
		p2->p_fpid = p1->p_pid;
	}

	LIST_INSERT_AFTER(p1, p2, p_pglist);
	LIST_INSERT_HEAD(&allproc, p2, p_list);

	p2->p_trace_enabled = trace_is_enabled(p2);
#ifdef __HAVE_SYSCALL_INTERN
	(*p2->p_emul->e_syscall_intern)(p2);
#endif

	/*
	 * Update stats now that we know the fork was successful.
	 */
	uvmexp.forks++;
	if (flags & FORK_PPWAIT)
		uvmexp.forks_ppwait++;
	if (flags & FORK_SHAREVM)
		uvmexp.forks_sharevm++;

	/*
	 * Pass a pointer to the new process to the caller.
	 */
	if (rnewprocp != NULL)
		*rnewprocp = p2;

	if (ktrpoint(KTR_EMUL))
		p2->p_traceflag |= KTRFAC_TRC_EMUL;

	/*
	 * Notify any interested parties about the new process.
	 */
	if (!SLIST_EMPTY(&p1->p_klist)) {
		mutex_exit(proc_lock);
		KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
		mutex_enter(proc_lock);
	}

	/*
	 * Make child runnable, set start time, and add to run queue except
	 * if the parent requested the child to start in SSTOP state.
	 */
	mutex_enter(p2->p_lock);

	/*
	 * Start profiling.
	 */
	if ((p2->p_stflag & PST_PROFIL) != 0) {
		mutex_spin_enter(&p2->p_stmutex);
		startprofclock(p2);
		mutex_spin_exit(&p2->p_stmutex);
	}

	getmicrotime(&p2->p_stats->p_start);
	p2->p_acflag = AFORK;
	lwp_lock(l2);
	KASSERT(p2->p_nrlwps == 1);
	if (p2->p_sflag & PS_STOPFORK) {
		struct schedstate_percpu *spc = &l2->l_cpu->ci_schedstate;
		p2->p_nrlwps = 0;
		p2->p_stat = SSTOP;
		p2->p_waited = 0;
		p1->p_nstopchild++;
		l2->l_stat = LSSTOP;
		KASSERT(l2->l_wchan == NULL);
		lwp_unlock_to(l2, spc->spc_lwplock);
	} else {
		p2->p_nrlwps = 1;
		p2->p_stat = SACTIVE;
		l2->l_stat = LSRUN;
		sched_enqueue(l2, false);
		lwp_unlock(l2);
	}

	/*
	 * Return child pid to parent process,
	 * marking us as parent via retval[1].
	 */
	if (retval != NULL) {
		retval[0] = p2->p_pid;
		retval[1] = 0;
	}
	mutex_exit(p2->p_lock);

	/*
	 * Preserve synchronization semantics of vfork.  If waiting for
	 * child to exec or exit, sleep until it clears LP_VFORKWAIT.
	 */
#if 0
	while (l1->l_pflag & LP_VFORKWAIT) {
		cv_wait(&l1->l_waitcv, proc_lock);
	}
#else
	while (p2->p_lflag & PL_PPWAIT)
		cv_wait(&p1->p_waitcv, proc_lock);
#endif

	/*
	 * Let the parent know that we are tracing its child.
	 */
	if (tracefork) {
		ksiginfo_t ksi;

		KSI_INIT_EMPTY(&ksi);
		ksi.ksi_signo = SIGTRAP;
		ksi.ksi_lid = l1->l_lid;
		kpsignal(p1, &ksi, NULL);
	}
	mutex_exit(proc_lock);

	return 0;
}
예제 #7
0
int
fork1(struct proc *p1, int exitsig, int flags, void *stack, size_t stacksize,
    void (*func)(void *), void *arg, register_t *retval,
    struct proc **rnewprocp)
{
	struct proc *p2;
	uid_t uid;
	struct vmspace *vm;
	int count;
	vaddr_t uaddr;
	int s;
	extern void endtsleep(void *);
	extern void realitexpire(void *);

	/*
	 * Although process entries are dynamically created, we still keep
	 * a global limit on the maximum number we will create. We reserve
	 * the last 5 processes to root. The variable nprocs is the current
	 * number of processes, maxproc is the limit.
	 */
	uid = p1->p_cred->p_ruid;
	if ((nprocs >= maxproc - 5 && uid != 0) || nprocs >= maxproc) {
		static struct timeval lasttfm;

		if (ratecheck(&lasttfm, &fork_tfmrate))
			tablefull("proc");
		return (EAGAIN);
	}
	nprocs++;

	/*
	 * Increment the count of procs running with this uid. Don't allow
	 * a nonprivileged user to exceed their current limit.
	 */
	count = chgproccnt(uid, 1);
	if (uid != 0 && count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur) {
		(void)chgproccnt(uid, -1);
		nprocs--;
		return (EAGAIN);
	}

	uaddr = uvm_km_alloc1(kernel_map, USPACE, USPACE_ALIGN, 1);
	if (uaddr == 0) {
		chgproccnt(uid, -1);
		nprocs--;
		return (ENOMEM);
	}

	/*
	 * From now on, we're committed to the fork and cannot fail.
	 */

	/* Allocate new proc. */
	p2 = pool_get(&proc_pool, PR_WAITOK);

	p2->p_stat = SIDL;			/* protect against others */
	p2->p_exitsig = exitsig;
	p2->p_forw = p2->p_back = NULL;

#ifdef RTHREADS
	if (flags & FORK_THREAD) {
		atomic_setbits_int(&p2->p_flag, P_THREAD);
		p2->p_p = p1->p_p;
		TAILQ_INSERT_TAIL(&p2->p_p->ps_threads, p2, p_thr_link);
	} else {
		process_new(p2, p1);
	}
#else
	process_new(p2, p1);
#endif

	/*
	 * Make a proc table entry for the new process.
	 * Start by zeroing the section of proc that is zero-initialized,
	 * then copy the section that is copied directly from the parent.
	 */
	bzero(&p2->p_startzero,
	    (unsigned) ((caddr_t)&p2->p_endzero - (caddr_t)&p2->p_startzero));
	bcopy(&p1->p_startcopy, &p2->p_startcopy,
	    (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));

	/*
	 * Initialize the timeouts.
	 */
	timeout_set(&p2->p_sleep_to, endtsleep, p2);
	timeout_set(&p2->p_realit_to, realitexpire, p2);

#if defined(__HAVE_CPUINFO)
	p2->p_cpu = p1->p_cpu;
#endif

	/*
	 * Duplicate sub-structures as needed.
	 * Increase reference counts on shared objects.
	 * The p_stats and p_sigacts substructs are set in vm_fork.
	 */
	p2->p_flag = 0;
	p2->p_emul = p1->p_emul;
	if (p1->p_flag & P_PROFIL)
		startprofclock(p2);
	atomic_setbits_int(&p2->p_flag, p1->p_flag & (P_SUGID | P_SUGIDEXEC));
	if (flags & FORK_PTRACE)
		atomic_setbits_int(&p2->p_flag, p1->p_flag & P_TRACED);
#ifdef RTHREADS
	if (flags & FORK_THREAD) {
		/* nothing */
	} else
#endif
	{
		p2->p_p->ps_cred = pool_get(&pcred_pool, PR_WAITOK);
		bcopy(p1->p_p->ps_cred, p2->p_p->ps_cred, sizeof(*p2->p_p->ps_cred));
		p2->p_p->ps_cred->p_refcnt = 1;
		crhold(p1->p_ucred);
	}

	TAILQ_INIT(&p2->p_selects);

	/* bump references to the text vnode (for procfs) */
	p2->p_textvp = p1->p_textvp;
	if (p2->p_textvp)
		VREF(p2->p_textvp);

	if (flags & FORK_CLEANFILES)
		p2->p_fd = fdinit(p1);
	else if (flags & FORK_SHAREFILES)
		p2->p_fd = fdshare(p1);
	else
		p2->p_fd = fdcopy(p1);

	/*
	 * If ps_limit is still copy-on-write, bump refcnt,
	 * otherwise get a copy that won't be modified.
	 * (If PL_SHAREMOD is clear, the structure is shared
	 * copy-on-write.)
	 */
#ifdef RTHREADS
	if (flags & FORK_THREAD) {
		/* nothing */
	} else
#endif
	{
		if (p1->p_p->ps_limit->p_lflags & PL_SHAREMOD)
			p2->p_p->ps_limit = limcopy(p1->p_p->ps_limit);
		else {
			p2->p_p->ps_limit = p1->p_p->ps_limit;
			p2->p_p->ps_limit->p_refcnt++;
		}
	}

	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
		atomic_setbits_int(&p2->p_flag, P_CONTROLT);
	if (flags & FORK_PPWAIT)
		atomic_setbits_int(&p2->p_flag, P_PPWAIT);
	p2->p_pptr = p1;
	if (flags & FORK_NOZOMBIE)
		atomic_setbits_int(&p2->p_flag, P_NOZOMBIE);
	LIST_INIT(&p2->p_children);

#ifdef KTRACE
	/*
	 * Copy traceflag and tracefile if enabled.
	 * If not inherited, these were zeroed above.
	 */
	if (p1->p_traceflag & KTRFAC_INHERIT) {
		p2->p_traceflag = p1->p_traceflag;
		if ((p2->p_tracep = p1->p_tracep) != NULL)
			VREF(p2->p_tracep);
	}
#endif

	/*
	 * set priority of child to be that of parent
	 * XXX should move p_estcpu into the region of struct proc which gets
	 * copied.
	 */
	scheduler_fork_hook(p1, p2);

	/*
	 * Create signal actions for the child process.
	 */
	if (flags & FORK_SIGHAND)
		sigactsshare(p1, p2);
	else
		p2->p_sigacts = sigactsinit(p1);

	/*
	 * If emulation has process fork hook, call it now.
	 */
	if (p2->p_emul->e_proc_fork)
		(*p2->p_emul->e_proc_fork)(p2, p1);

	p2->p_addr = (struct user *)uaddr;

	/*
	 * Finish creating the child process.  It will return through a
	 * different path later.
	 */
	uvm_fork(p1, p2, ((flags & FORK_SHAREVM) ? TRUE : FALSE), stack,
	    stacksize, func ? func : child_return, arg ? arg : p2);

	timeout_set(&p2->p_stats->p_virt_to, virttimer_trampoline, p2);
	timeout_set(&p2->p_stats->p_prof_to, proftimer_trampoline, p2);

	vm = p2->p_vmspace;

	if (flags & FORK_FORK) {
		forkstat.cntfork++;
		forkstat.sizfork += vm->vm_dsize + vm->vm_ssize;
	} else if (flags & FORK_VFORK) {
		forkstat.cntvfork++;
		forkstat.sizvfork += vm->vm_dsize + vm->vm_ssize;
	} else if (flags & FORK_RFORK) {
		forkstat.cntrfork++;
		forkstat.sizrfork += vm->vm_dsize + vm->vm_ssize;
	} else {
		forkstat.cntkthread++;
		forkstat.sizkthread += vm->vm_dsize + vm->vm_ssize;
	}

	/* Find an unused pid satisfying 1 <= lastpid <= PID_MAX */
	do {
		lastpid = 1 + (randompid ? arc4random() : lastpid) % PID_MAX;
	} while (pidtaken(lastpid));
	p2->p_pid = lastpid;

	LIST_INSERT_HEAD(&allproc, p2, p_list);
	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
	LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
	LIST_INSERT_AFTER(p1, p2, p_pglist);
	if (p2->p_flag & P_TRACED) {
		p2->p_oppid = p1->p_pid;
		if (p2->p_pptr != p1->p_pptr)
			proc_reparent(p2, p1->p_pptr);

		/*
		 * Set ptrace status.
		 */
		if (flags & FORK_FORK) {
			p2->p_ptstat = malloc(sizeof(*p2->p_ptstat),
			    M_SUBPROC, M_WAITOK);
			p1->p_ptstat->pe_report_event = PTRACE_FORK;
			p2->p_ptstat->pe_report_event = PTRACE_FORK;
			p1->p_ptstat->pe_other_pid = p2->p_pid;
			p2->p_ptstat->pe_other_pid = p1->p_pid;
		}
	}

#if NSYSTRACE > 0
	if (ISSET(p1->p_flag, P_SYSTRACE))
		systrace_fork(p1, p2);
#endif

	/*
	 * Make child runnable, set start time, and add to run queue.
	 */
	SCHED_LOCK(s);
 	getmicrotime(&p2->p_stats->p_start);
	p2->p_acflag = AFORK;
	p2->p_stat = SRUN;
	setrunqueue(p2);
	SCHED_UNLOCK(s);

	/*
	 * Notify any interested parties about the new process.
	 */
	KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);

	/*
	 * Update stats now that we know the fork was successfull.
	 */
	uvmexp.forks++;
	if (flags & FORK_PPWAIT)
		uvmexp.forks_ppwait++;
	if (flags & FORK_SHAREVM)
		uvmexp.forks_sharevm++;

	/*
	 * Pass a pointer to the new process to the caller.
	 */
	if (rnewprocp != NULL)
		*rnewprocp = p2;

	/*
	 * Preserve synchronization semantics of vfork.  If waiting for
	 * child to exec or exit, set P_PPWAIT on child, and sleep on our
	 * proc (in case of exit).
	 */
	if (flags & FORK_PPWAIT)
		while (p2->p_flag & P_PPWAIT)
			tsleep(p1, PWAIT, "ppwait", 0);

	/*
	 * If we're tracing the child, alert the parent too.
	 */
	if ((flags & FORK_PTRACE) && (p1->p_flag & P_TRACED))
		psignal(p1, SIGTRAP);

	/*
	 * Return child pid to parent process,
	 * marking us as parent via retval[1].
	 */
	if (retval != NULL) {
		retval[0] = p2->p_pid;
		retval[1] = 0;
	}
	return (0);
}