예제 #1
0
void ins_update_baro() {
#if USE_BAROMETER
  // TODO update kalman filter with baro struct
  if (baro.status == BS_RUNNING) {
    if (!ins_baro_initialised) {
      ins_qfe = baro.absolute;
      ins_baro_initialised = TRUE;
    }
    if (ins.vf_realign) {
      ins.vf_realign = FALSE;
      ins_qfe = baro.absolute;
    }
    else { /* not realigning, so normal update with baro measurement */
      /* altitude decreases with increasing baro.absolute pressure */
      ins_baro_alt = ground_alt - (baro.absolute - ins_qfe) * INS_BARO_SENS;
      /* run the filter */
      EstimatorSetAlt(ins_baro_alt);
      /* set new altitude, just copy old horizontal position */
      struct UtmCoor_f utm;
      UTM_COPY(utm, *stateGetPositionUtm_f());
      utm.alt = ins_alt;
      stateSetPositionUtm_f(&utm);
      struct NedCoor_f ned_vel;
      memcpy(&ned_vel, stateGetSpeedNed_f(), sizeof(struct NedCoor_f));
      ned_vel.z = -ins_alt_dot;
      stateSetSpeedNed_f(&ned_vel);
    }
  }
#endif
}
예제 #2
0
void ins_update_gps(void) {
#if USE_GPS
  struct UtmCoor_f utm;
  utm.east = gps.utm_pos.east / 100.;
  utm.north = gps.utm_pos.north / 100.;
  utm.zone = nav_utm_zone0;

#if !USE_BAROMETER
  float falt = gps.hmsl / 1000.;
  EstimatorSetAlt(falt);
#endif
  utm.alt = ins_alt;
  // set position
  stateSetPositionUtm_f(&utm);

  struct NedCoor_f ned_vel = {
    gps.ned_vel.x / 100.,
    gps.ned_vel.y / 100.,
    gps.ned_vel.z / 100.
  };
  // set velocity
  stateSetSpeedNed_f(&ned_vel);

#endif
}
예제 #3
0
void sim_overwrite_ins(void) {

  struct NedCoor_f ltp_pos;
  VECT3_COPY(ltp_pos, fdm.ltpprz_pos);
  stateSetPositionNed_f(&ltp_pos);

  struct NedCoor_f ltp_speed;
  VECT3_COPY(ltp_speed, fdm.ltpprz_ecef_vel);
  stateSetSpeedNed_f(&ltp_speed);

  struct NedCoor_f ltp_accel;
  VECT3_COPY(ltp_accel, fdm.ltpprz_ecef_accel);
  stateSetAccelNed_f(&ltp_accel);

}
예제 #4
0
void ins_xsens_update_gps(struct GpsState *gps_s)
{
  struct UtmCoor_f utm = utm_float_from_gps(gps_s, nav_utm_zone0);
  utm.alt = gps_s->hmsl / 1000.;

  // set position
  stateSetPositionUtm_f(&utm);

  struct NedCoor_f ned_vel = {
    gps_s->ned_vel.x / 100.,
    gps_s->ned_vel.y / 100.,
    gps_s->ned_vel.z / 100.
  };
  // set velocity
  stateSetSpeedNed_f(&ned_vel);
}
예제 #5
0
static void gps_cb(uint8_t sender_id __attribute__((unused)),
                   uint32_t stamp __attribute__((unused)),
                   struct GpsState *gps_s)
{
  struct UtmCoor_f utm = utm_float_from_gps(gps_s, nav_utm_zone0);

  // set position
  stateSetPositionUtm_f(&utm);

  struct NedCoor_f ned_vel = {
    gps_s->ned_vel.x / 100.,
    gps_s->ned_vel.y / 100.,
    gps_s->ned_vel.z / 100.
  };
  // set velocity
  stateSetSpeedNed_f(&ned_vel);
}
예제 #6
0
void ins_update_gps(void) {
  struct UtmCoor_f utm;
  utm.east = gps.utm_pos.east / 100.;
  utm.north = gps.utm_pos.north / 100.;
  utm.zone = nav_utm_zone0;
  utm.alt = gps.hmsl / 1000.;

  // set position
  stateSetPositionUtm_f(&utm);

  struct NedCoor_f ned_vel = {
    gps.ned_vel.x / 100.,
    gps.ned_vel.y / 100.,
    gps.ned_vel.z / 100.
  };
  // set velocity
  stateSetSpeedNed_f(&ned_vel);
}
예제 #7
0
void ins_propagate() {
  /* untilt accels and speeds */
  FLOAT_RMAT_VECT3_TRANSP_MUL(ins_impl.ltp_accel, (*stateGetNedToBodyRMat_f()), ahrs_impl.accel);
  FLOAT_RMAT_VECT3_TRANSP_MUL(ins_impl.ltp_speed, (*stateGetNedToBodyRMat_f()), ahrs_impl.speed);

  //Add g to the accelerations
  ins_impl.ltp_accel.z += 9.81;

  //Save the accelerations and speeds
  stateSetAccelNed_f(&ins_impl.ltp_accel);
  stateSetSpeedNed_f(&ins_impl.ltp_speed);

  //Don't set the height if we use the one from the gps
#if !USE_GPS_HEIGHT
  //Set the height and save the position
  ins_impl.ltp_pos.z = -(ahrs_impl.altitude * INT32_POS_OF_CM_NUM) / INT32_POS_OF_CM_DEN;
  stateSetPositionNed_i(&ins_impl.ltp_pos);
#endif
}
예제 #8
0
void ahrs_propagate(void) {
  struct NedCoor_f accel;
  struct FloatRates body_rates;
  struct FloatEulers eulers;

  // realign all the filter if needed
  // a complete init cycle is required
  if (ins_impl.reset) {
    ins_impl.reset = FALSE;
    ins.status = INS_UNINIT;
    ahrs.status = AHRS_UNINIT;
    init_invariant_state();
  }

  // fill command vector
  struct Int32Rates gyro_meas_body;
  INT32_RMAT_TRANSP_RATEMULT(gyro_meas_body, imu.body_to_imu_rmat, imu.gyro);
  RATES_FLOAT_OF_BFP(ins_impl.cmd.rates, gyro_meas_body);
  struct Int32Vect3 accel_meas_body;
  INT32_RMAT_TRANSP_VMULT(accel_meas_body, imu.body_to_imu_rmat, imu.accel);
  ACCELS_FLOAT_OF_BFP(ins_impl.cmd.accel, accel_meas_body);

  // update correction gains
  error_output(&ins_impl);

  // propagate model
  struct inv_state new_state;
  runge_kutta_4_float((float*)&new_state,
      (float*)&ins_impl.state, INV_STATE_DIM,
      (float*)&ins_impl.cmd, INV_COMMAND_DIM,
      invariant_model, dt);
  ins_impl.state = new_state;

  // normalize quaternion
  FLOAT_QUAT_NORMALIZE(ins_impl.state.quat);

  // set global state
  FLOAT_EULERS_OF_QUAT(eulers, ins_impl.state.quat);
#if INS_UPDATE_FW_ESTIMATOR
  // Some stupid lines of code for neutrals
  eulers.phi -= ins_roll_neutral;
  eulers.theta -= ins_pitch_neutral;
  stateSetNedToBodyEulers_f(&eulers);
#else
  stateSetNedToBodyQuat_f(&ins_impl.state.quat);
#endif
  RATES_DIFF(body_rates, ins_impl.cmd.rates, ins_impl.state.bias);
  stateSetBodyRates_f(&body_rates);
  stateSetPositionNed_f(&ins_impl.state.pos);
  stateSetSpeedNed_f(&ins_impl.state.speed);
  // untilt accel and remove gravity
  FLOAT_QUAT_RMAT_B2N(accel, ins_impl.state.quat, ins_impl.cmd.accel);
  FLOAT_VECT3_SMUL(accel, accel, 1. / (ins_impl.state.as));
  FLOAT_VECT3_ADD(accel, A);
  stateSetAccelNed_f(&accel);

  //------------------------------------------------------------//

  RunOnceEvery(3,{
      DOWNLINK_SEND_INV_FILTER(DefaultChannel, DefaultDevice,
        &ins_impl.state.quat.qi,
        &eulers.phi,
        &eulers.theta,
        &eulers.psi,
        &ins_impl.state.speed.x,
        &ins_impl.state.speed.y,
        &ins_impl.state.speed.z,
        &ins_impl.state.pos.x,
        &ins_impl.state.pos.y,
        &ins_impl.state.pos.z,
        &ins_impl.state.bias.p,
        &ins_impl.state.bias.q,
        &ins_impl.state.bias.r,
        &ins_impl.state.as,
        &ins_impl.state.hb,
        &ins_impl.meas.baro_alt,
        &ins_impl.meas.pos_gps.z)
      });

#if LOG_INVARIANT_FILTER
  if (pprzLogFile.fs != NULL) {
    if (!log_started) {
      // log file header
      sdLogWriteLog(&pprzLogFile, "p q r ax ay az gx gy gz gvx gvy gvz mx my mz b qi qx qy qz bp bq br vx vy vz px py pz hb as\n");
      log_started = TRUE;
    }
    else {
      sdLogWriteLog(&pprzLogFile, "%.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f\n",
          ins_impl.cmd.rates.p,
          ins_impl.cmd.rates.q,
          ins_impl.cmd.rates.r,
          ins_impl.cmd.accel.x,
          ins_impl.cmd.accel.y,
          ins_impl.cmd.accel.z,
          ins_impl.meas.pos_gps.x,
          ins_impl.meas.pos_gps.y,
          ins_impl.meas.pos_gps.z,
          ins_impl.meas.speed_gps.x,
          ins_impl.meas.speed_gps.y,
          ins_impl.meas.speed_gps.z,
          ins_impl.meas.mag.x,
          ins_impl.meas.mag.y,
          ins_impl.meas.mag.z,
          ins_impl.meas.baro_alt,
          ins_impl.state.quat.qi,
          ins_impl.state.quat.qx,
          ins_impl.state.quat.qy,
          ins_impl.state.quat.qz,
          ins_impl.state.bias.p,
          ins_impl.state.bias.q,
          ins_impl.state.bias.r,
          ins_impl.state.speed.x,
          ins_impl.state.speed.y,
          ins_impl.state.speed.z,
          ins_impl.state.pos.x,
          ins_impl.state.pos.y,
          ins_impl.state.pos.z,
          ins_impl.state.hb,
          ins_impl.state.as);
    }
  }
#endif
}
예제 #9
0
/**
 *  Propagate the received states into the vehicle
 *  state machine
 */
void ins_vectornav_propagate()
{
  // Acceleration [m/s^2]
  // in fixed point for sending as ABI and telemetry msgs
  ACCELS_BFP_OF_REAL(ins_vn.accel_i, ins_vn.accel);

  // Rates [rad/s]
  static struct FloatRates body_rate;
  // in fixed point for sending as ABI and telemetry msgs
  RATES_BFP_OF_REAL(ins_vn.gyro_i, ins_vn.gyro);
  float_rmat_ratemult(&body_rate, orientationGetRMat_f(&ins_vn.body_to_imu), &ins_vn.gyro); // compute body rates
  stateSetBodyRates_f(&body_rate);   // Set state [rad/s]

  // Attitude [deg]
  ins_vectornav_yaw_pitch_roll_to_attitude(&ins_vn.attitude); // convert to correct units and axis [rad]
  static struct FloatQuat imu_quat; // convert from euler to quat
  float_quat_of_eulers(&imu_quat, &ins_vn.attitude);
  static struct FloatRMat imu_rmat; // convert from quat to rmat
  float_rmat_of_quat(&imu_rmat, &imu_quat);
  static struct FloatRMat ltp_to_body_rmat; // rotate to body frame
  float_rmat_comp(&ltp_to_body_rmat, &imu_rmat, orientationGetRMat_f(&ins_vn.body_to_imu));
  stateSetNedToBodyRMat_f(&ltp_to_body_rmat); // set body states [rad]

  // NED (LTP) velocity [m/s]
  // North east down (NED), also known as local tangent plane (LTP),
  // is a geographical coordinate system for representing state vectors that is commonly used in aviation.
  // It consists of three numbers: one represents the position along the northern axis,
  // one along the eastern axis, and one represents vertical position. Down is chosen as opposed to
  // up in order to comply with the right-hand rule.
  // The origin of this coordinate system is usually chosen to be the aircraft's center of gravity.
  // x = North
  // y = East
  // z = Down
  stateSetSpeedNed_f(&ins_vn.vel_ned); // set state

  // NED (LTP) acceleration [m/s^2]
  static struct FloatVect3 accel_meas_ltp;// first we need to rotate linear acceleration from imu-frame to body-frame
  float_rmat_transp_vmult(&accel_meas_ltp, orientationGetRMat_f(&ins_vn.body_to_imu), &(ins_vn.lin_accel));
  static struct NedCoor_f ltp_accel; // assign to NedCoord_f struct
  VECT3_ASSIGN(ltp_accel, accel_meas_ltp.x, accel_meas_ltp.y, accel_meas_ltp.z);
  stateSetAccelNed_f(&ltp_accel); // then set the states
  ins_vn.ltp_accel_f = ltp_accel;

  // LLA position [rad, rad, m]
  //static struct LlaCoor_f lla_pos; // convert from deg to rad, and from double to float
  ins_vn.lla_pos.lat = RadOfDeg((float)ins_vn.pos_lla[0]); // ins_impl.pos_lla[0] = lat
  ins_vn.lla_pos.lon = RadOfDeg((float)ins_vn.pos_lla[1]); // ins_impl.pos_lla[1] = lon
  ins_vn.lla_pos.alt = ((float)ins_vn.pos_lla[2]); // ins_impl.pos_lla[2] = alt
  LLA_BFP_OF_REAL(gps.lla_pos, ins_vn.lla_pos);
  stateSetPositionLla_i(&gps.lla_pos);

  // ECEF position
  struct LtpDef_f def;
  ltp_def_from_lla_f(&def, &ins_vn.lla_pos);
  struct EcefCoor_f ecef_vel;
  ecef_of_ned_point_f(&ecef_vel, &def, &ins_vn.vel_ned);
  ECEF_BFP_OF_REAL(gps.ecef_vel, ecef_vel);

  // ECEF velocity
  gps.ecef_pos.x = stateGetPositionEcef_i()->x;
  gps.ecef_pos.y = stateGetPositionEcef_i()->y;
  gps.ecef_pos.z = stateGetPositionEcef_i()->z;


#if GPS_USE_LATLONG
  // GPS UTM
  /* Computes from (lat, long) in the referenced UTM zone */
  struct UtmCoor_f utm_f;
  utm_f.zone = nav_utm_zone0;
  /* convert to utm */
  //utm_of_lla_f(&utm_f, &lla_f);
  utm_of_lla_f(&utm_f, &ins_vn.lla_pos);
  /* copy results of utm conversion */
  gps.utm_pos.east = (int32_t)(utm_f.east * 100);
  gps.utm_pos.north = (int32_t)(utm_f.north * 100);
  gps.utm_pos.alt = (int32_t)(utm_f.alt * 1000);
  gps.utm_pos.zone = (uint8_t)nav_utm_zone0;
#endif

  // GPS Ground speed
  float speed = sqrt(ins_vn.vel_ned.x * ins_vn.vel_ned.x + ins_vn.vel_ned.y * ins_vn.vel_ned.y);
  gps.gspeed = ((uint16_t)(speed * 100));

  // GPS course
  gps.course = (int32_t)(1e7 * (atan2(ins_vn.vel_ned.y, ins_vn.vel_ned.x)));

  // Because we have not HMSL data from Vectornav, we are using LLA-Altitude
  // as a workaround
  gps.hmsl = (uint32_t)(gps.lla_pos.alt);

  // set position uncertainty
  ins_vectornav_set_pacc();

  // set velocity uncertainty
  ins_vectornav_set_sacc();

  // check GPS status
  gps.last_msg_time = sys_time.nb_sec;
  gps.last_msg_ticks = sys_time.nb_sec_rem;
  if (gps.fix == GPS_FIX_3D) {
    gps.last_3dfix_time = sys_time.nb_sec;
    gps.last_3dfix_ticks = sys_time.nb_sec_rem;
  }

  // read INS status
  ins_vectornav_check_status();

  // update internal states for telemetry purposes
  // TODO: directly convert vectornav output instead of using state interface
  // to support multiple INS running at the same time
  ins_vn.ltp_pos_i = *stateGetPositionNed_i();
  ins_vn.ltp_speed_i = *stateGetSpeedNed_i();
  ins_vn.ltp_accel_i = *stateGetAccelNed_i();

  // send ABI messages
  uint32_t now_ts = get_sys_time_usec();
  AbiSendMsgGPS(GPS_UBX_ID, now_ts, &gps);
  AbiSendMsgIMU_GYRO_INT32(IMU_ASPIRIN_ID, now_ts, &ins_vn.gyro_i);
  AbiSendMsgIMU_ACCEL_INT32(IMU_ASPIRIN_ID, now_ts, &ins_vn.accel_i);
}
예제 #10
0
void ahrs_propagate(float dt)
{
  struct FloatVect3 accel;
  struct FloatRates body_rates;

  // realign all the filter if needed
  // a complete init cycle is required
  if (ins_impl.reset) {
    ins_impl.reset = FALSE;
    ins.status = INS_UNINIT;
    ahrs.status = AHRS_UNINIT;
    init_invariant_state();
  }

  // fill command vector
  struct Int32Rates gyro_meas_body;
  struct Int32RMat *body_to_imu_rmat = orientationGetRMat_i(&imu.body_to_imu);
  int32_rmat_transp_ratemult(&gyro_meas_body, body_to_imu_rmat, &imu.gyro);
  RATES_FLOAT_OF_BFP(ins_impl.cmd.rates, gyro_meas_body);
  struct Int32Vect3 accel_meas_body;
  int32_rmat_transp_vmult(&accel_meas_body, body_to_imu_rmat, &imu.accel);
  ACCELS_FLOAT_OF_BFP(ins_impl.cmd.accel, accel_meas_body);

  // update correction gains
  error_output(&ins_impl);

  // propagate model
  struct inv_state new_state;
  runge_kutta_4_float((float *)&new_state,
                      (float *)&ins_impl.state, INV_STATE_DIM,
                      (float *)&ins_impl.cmd, INV_COMMAND_DIM,
                      invariant_model, dt);
  ins_impl.state = new_state;

  // normalize quaternion
  FLOAT_QUAT_NORMALIZE(ins_impl.state.quat);

  // set global state
  stateSetNedToBodyQuat_f(&ins_impl.state.quat);
  RATES_DIFF(body_rates, ins_impl.cmd.rates, ins_impl.state.bias);
  stateSetBodyRates_f(&body_rates);
  stateSetPositionNed_f(&ins_impl.state.pos);
  stateSetSpeedNed_f(&ins_impl.state.speed);
  // untilt accel and remove gravity
  struct FloatQuat q_b2n;
  float_quat_invert(&q_b2n, &ins_impl.state.quat);
  float_quat_vmult(&accel, &q_b2n, &ins_impl.cmd.accel);
  VECT3_SMUL(accel, accel, 1. / (ins_impl.state.as));
  VECT3_ADD(accel, A);
  stateSetAccelNed_f((struct NedCoor_f *)&accel);

  //------------------------------------------------------------//

#if SEND_INVARIANT_FILTER
  struct FloatEulers eulers;
  FLOAT_EULERS_OF_QUAT(eulers, ins_impl.state.quat);
  RunOnceEvery(3, {
    pprz_msg_send_INV_FILTER(trans, dev, AC_ID,
    &ins_impl.state.quat.qi,
    &eulers.phi,
    &eulers.theta,
    &eulers.psi,
    &ins_impl.state.speed.x,
    &ins_impl.state.speed.y,
    &ins_impl.state.speed.z,
    &ins_impl.state.pos.x,
    &ins_impl.state.pos.y,
    &ins_impl.state.pos.z,
    &ins_impl.state.bias.p,
    &ins_impl.state.bias.q,
    &ins_impl.state.bias.r,
    &ins_impl.state.as,
    &ins_impl.state.hb,
    &ins_impl.meas.baro_alt,
    &ins_impl.meas.pos_gps.z)
  });
#endif

#if LOG_INVARIANT_FILTER
  if (pprzLogFile.fs != NULL) {
    if (!log_started) {
      // log file header
      sdLogWriteLog(&pprzLogFile,
                    "p q r ax ay az gx gy gz gvx gvy gvz mx my mz b qi qx qy qz bp bq br vx vy vz px py pz hb as\n");
      log_started = TRUE;
    } else {
      sdLogWriteLog(&pprzLogFile,
                    "%.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f\n",
                    ins_impl.cmd.rates.p,
                    ins_impl.cmd.rates.q,
                    ins_impl.cmd.rates.r,
                    ins_impl.cmd.accel.x,
                    ins_impl.cmd.accel.y,
                    ins_impl.cmd.accel.z,
                    ins_impl.meas.pos_gps.x,
                    ins_impl.meas.pos_gps.y,
                    ins_impl.meas.pos_gps.z,
                    ins_impl.meas.speed_gps.x,
                    ins_impl.meas.speed_gps.y,
                    ins_impl.meas.speed_gps.z,
                    ins_impl.meas.mag.x,
                    ins_impl.meas.mag.y,
                    ins_impl.meas.mag.z,
                    ins_impl.meas.baro_alt,
                    ins_impl.state.quat.qi,
                    ins_impl.state.quat.qx,
                    ins_impl.state.quat.qy,
                    ins_impl.state.quat.qz,
                    ins_impl.state.bias.p,
                    ins_impl.state.bias.q,
                    ins_impl.state.bias.r,
                    ins_impl.state.speed.x,
                    ins_impl.state.speed.y,
                    ins_impl.state.speed.z,
                    ins_impl.state.pos.x,
                    ins_impl.state.pos.y,
                    ins_impl.state.pos.z,
                    ins_impl.state.hb,
                    ins_impl.state.as);
    }
  }
#endif
}