예제 #1
0
/*
 * Send a control event to the guest.
 */
static size_t send_control_event(VirtIOCrypto *crdev, uint16_t event, 
                                 uint16_t value)
{
	struct virtio_crypto_control cpkt;
	VirtQueueElement elem;
	VirtQueue *vq;

	FUNC_IN;
	stw_p(&cpkt.event, event);
	stw_p(&cpkt.value, value);

	vq = crdev->c_ivq;
	if (!virtio_queue_ready(vq)) {
		return 0;
	}

	if (!virtqueue_pop(vq, &elem)) {
		return 0;
	}
	
	memcpy(elem.in_sg[0].iov_base, &cpkt, sizeof(cpkt));
	
	virtqueue_push(vq, &elem, sizeof(cpkt));
	virtio_notify(&crdev->vdev, vq);
	FUNC_OUT;
	return sizeof(cpkt);
}
예제 #2
0
static void virtio_net_get_config(VirtIODevice *vdev, uint8_t *config)
{
    VirtIONet *n = to_virtio_net(vdev);
    struct virtio_net_config netcfg;

    stw_p(&netcfg.status, n->status);
    memcpy(netcfg.mac, n->mac, ETH_ALEN);
    memcpy(config, &netcfg, sizeof(netcfg));
}
예제 #3
0
void cpu_outw(pio_addr_t addr, uint16_t val)
{
    uint8_t buf[2];

    trace_cpu_out(addr, 'w', val);
    stw_p(buf, val);
    address_space_write(&address_space_io, addr, MEMTXATTRS_UNSPECIFIED,
                        buf, 2);
}
예제 #4
0
파일: memory_ldst.inc.c 프로젝트: 8tab/qemu
/* warning: addr must be aligned */
static inline void glue(address_space_stw_internal, SUFFIX)(ARG1_DECL,
    hwaddr addr, uint32_t val, MemTxAttrs attrs,
    MemTxResult *result, enum device_endian endian)
{
    uint8_t *ptr;
    MemoryRegion *mr;
    hwaddr l = 2;
    hwaddr addr1;
    MemTxResult r;
    bool release_lock = false;

    RCU_READ_LOCK();
    mr = TRANSLATE(addr, &addr1, &l, true);
    if (l < 2 || !IS_DIRECT(mr, true)) {
        release_lock |= prepare_mmio_access(mr);

#if defined(TARGET_WORDS_BIGENDIAN)
        if (endian == DEVICE_LITTLE_ENDIAN) {
            val = bswap16(val);
        }
#else
        if (endian == DEVICE_BIG_ENDIAN) {
            val = bswap16(val);
        }
#endif
        r = memory_region_dispatch_write(mr, addr1, val, 2, attrs);
    } else {
        /* RAM case */
        ptr = MAP_RAM(mr, addr1);
        switch (endian) {
        case DEVICE_LITTLE_ENDIAN:
            stw_le_p(ptr, val);
            break;
        case DEVICE_BIG_ENDIAN:
            stw_be_p(ptr, val);
            break;
        default:
            stw_p(ptr, val);
            break;
        }
        INVALIDATE(mr, addr1, 2);
        r = MEMTX_OK;
    }
    if (result) {
        *result = r;
    }
    if (release_lock) {
        qemu_mutex_unlock_iothread();
    }
    RCU_READ_UNLOCK();
}
예제 #5
0
static void virtio_9p_get_config(VirtIODevice *vdev, uint8_t *config)
{
    int len;
    struct virtio_9p_config *cfg;
    V9fsState *s = VIRTIO_9P(vdev);

    len = strlen(s->tag);
    cfg = g_malloc0(sizeof(struct virtio_9p_config) + len);
    stw_p(&cfg->tag_len, len);
    /* We don't copy the terminating null to config space */
    memcpy(cfg->tag, s->tag, len);
    memcpy(config, cfg, s->config_size);
    g_free(cfg);
}
예제 #6
0
static void spin_write(void *opaque, hwaddr addr, uint64_t value,
                       unsigned len)
{
    SpinState *s = opaque;
    int env_idx = addr / sizeof(SpinInfo);
    CPUPPCState *env;
    SpinInfo *curspin = &s->spin[env_idx];
    uint8_t *curspin_p = (uint8_t*)curspin;

    for (env = first_cpu; env != NULL; env = env->next_cpu) {
        if (env->cpu_index == env_idx) {
            break;
        }
    }

    if (!env) {
        /* Unknown CPU */
        return;
    }

    if (!env->cpu_index) {
        /* primary CPU doesn't spin */
        return;
    }

    curspin_p = &curspin_p[addr % sizeof(SpinInfo)];
    switch (len) {
    case 1:
        stb_p(curspin_p, value);
        break;
    case 2:
        stw_p(curspin_p, value);
        break;
    case 4:
        stl_p(curspin_p, value);
        break;
    }

    if (!(ldq_p(&curspin->addr) & 1)) {
        /* run CPU */
        SpinKick kick = {
            .cpu = ppc_env_get_cpu(env),
            .spin = curspin,
        };

        run_on_cpu(CPU(kick.cpu), spin_kick, &kick);
    }
예제 #7
0
static void spin_write(void *opaque, hwaddr addr, uint64_t value,
                       unsigned len)
{
    SpinState *s = opaque;
    int env_idx = addr / sizeof(SpinInfo);
    CPUState *cpu;
    SpinInfo *curspin = &s->spin[env_idx];
    uint8_t *curspin_p = (uint8_t*)curspin;

    cpu = qemu_get_cpu(env_idx);
    if (cpu == NULL) {
        /* Unknown CPU */
        return;
    }

    if (cpu->cpu_index == 0) {
        /* primary CPU doesn't spin */
        return;
    }

    curspin_p = &curspin_p[addr % sizeof(SpinInfo)];
    switch (len) {
    case 1:
        stb_p(curspin_p, value);
        break;
    case 2:
        stw_p(curspin_p, value);
        break;
    case 4:
        stl_p(curspin_p, value);
        break;
    }

    if (!(ldq_p(&curspin->addr) & 1)) {
        /* run CPU */
        SpinKick kick = {
            .cpu = POWERPC_CPU(cpu),
            .spin = curspin,
        };

        run_on_cpu(cpu, spin_kick, &kick);
    }
예제 #8
0
/* Store System Information */
uint32_t HELPER(stsi)(CPUS390XState *env, uint64_t a0, uint32_t r0,
                      uint32_t r1)
{
    int cc = 0;
    int sel1, sel2;

    if ((r0 & STSI_LEVEL_MASK) <= STSI_LEVEL_3 &&
        ((r0 & STSI_R0_RESERVED_MASK) || (r1 & STSI_R1_RESERVED_MASK))) {
        /* valid function code, invalid reserved bits */
        program_interrupt(env, PGM_SPECIFICATION, 2);
    }

    sel1 = r0 & STSI_R0_SEL1_MASK;
    sel2 = r1 & STSI_R1_SEL2_MASK;

    /* XXX: spec exception if sysib is not 4k-aligned */

    switch (r0 & STSI_LEVEL_MASK) {
    case STSI_LEVEL_1:
        if ((sel1 == 1) && (sel2 == 1)) {
            /* Basic Machine Configuration */
            struct sysib_111 sysib;

            memset(&sysib, 0, sizeof(sysib));
            ebcdic_put(sysib.manuf, "QEMU            ", 16);
            /* same as machine type number in STORE CPU ID */
            ebcdic_put(sysib.type, "QEMU", 4);
            /* same as model number in STORE CPU ID */
            ebcdic_put(sysib.model, "QEMU            ", 16);
            ebcdic_put(sysib.sequence, "QEMU            ", 16);
            ebcdic_put(sysib.plant, "QEMU", 4);
            cpu_physical_memory_rw(a0, (uint8_t *)&sysib, sizeof(sysib), 1);
        } else if ((sel1 == 2) && (sel2 == 1)) {
            /* Basic Machine CPU */
            struct sysib_121 sysib;

            memset(&sysib, 0, sizeof(sysib));
            /* XXX make different for different CPUs? */
            ebcdic_put(sysib.sequence, "QEMUQEMUQEMUQEMU", 16);
            ebcdic_put(sysib.plant, "QEMU", 4);
            stw_p(&sysib.cpu_addr, env->cpu_num);
            cpu_physical_memory_rw(a0, (uint8_t *)&sysib, sizeof(sysib), 1);
        } else if ((sel1 == 2) && (sel2 == 2)) {
            /* Basic Machine CPUs */
            struct sysib_122 sysib;

            memset(&sysib, 0, sizeof(sysib));
            stl_p(&sysib.capability, 0x443afc29);
            /* XXX change when SMP comes */
            stw_p(&sysib.total_cpus, 1);
            stw_p(&sysib.active_cpus, 1);
            stw_p(&sysib.standby_cpus, 0);
            stw_p(&sysib.reserved_cpus, 0);
            cpu_physical_memory_rw(a0, (uint8_t *)&sysib, sizeof(sysib), 1);
        } else {
            cc = 3;
        }
        break;
    case STSI_LEVEL_2:
        {
            if ((sel1 == 2) && (sel2 == 1)) {
                /* LPAR CPU */
                struct sysib_221 sysib;

                memset(&sysib, 0, sizeof(sysib));
                /* XXX make different for different CPUs? */
                ebcdic_put(sysib.sequence, "QEMUQEMUQEMUQEMU", 16);
                ebcdic_put(sysib.plant, "QEMU", 4);
                stw_p(&sysib.cpu_addr, env->cpu_num);
                stw_p(&sysib.cpu_id, 0);
                cpu_physical_memory_rw(a0, (uint8_t *)&sysib, sizeof(sysib), 1);
            } else if ((sel1 == 2) && (sel2 == 2)) {
                /* LPAR CPUs */
                struct sysib_222 sysib;

                memset(&sysib, 0, sizeof(sysib));
                stw_p(&sysib.lpar_num, 0);
                sysib.lcpuc = 0;
                /* XXX change when SMP comes */
                stw_p(&sysib.total_cpus, 1);
                stw_p(&sysib.conf_cpus, 1);
                stw_p(&sysib.standby_cpus, 0);
                stw_p(&sysib.reserved_cpus, 0);
                ebcdic_put(sysib.name, "QEMU    ", 8);
                stl_p(&sysib.caf, 1000);
                stw_p(&sysib.dedicated_cpus, 0);
                stw_p(&sysib.shared_cpus, 0);
                cpu_physical_memory_rw(a0, (uint8_t *)&sysib, sizeof(sysib), 1);
            } else {
                cc = 3;
            }
            break;
        }
    case STSI_LEVEL_3:
        {
            if ((sel1 == 2) && (sel2 == 2)) {
                /* VM CPUs */
                struct sysib_322 sysib;

                memset(&sysib, 0, sizeof(sysib));
                sysib.count = 1;
                /* XXX change when SMP comes */
                stw_p(&sysib.vm[0].total_cpus, 1);
                stw_p(&sysib.vm[0].conf_cpus, 1);
                stw_p(&sysib.vm[0].standby_cpus, 0);
                stw_p(&sysib.vm[0].reserved_cpus, 0);
                ebcdic_put(sysib.vm[0].name, "KVMguest", 8);
                stl_p(&sysib.vm[0].caf, 1000);
                ebcdic_put(sysib.vm[0].cpi, "KVM/Linux       ", 16);
                cpu_physical_memory_rw(a0, (uint8_t *)&sysib, sizeof(sysib), 1);
            } else {
                cc = 3;
            }
            break;
        }
    case STSI_LEVEL_CURRENT:
        env->regs[0] = STSI_LEVEL_3;
        break;
    default:
        cc = 3;
        break;
    }

    return cc;
}
예제 #9
0
파일: pc.c 프로젝트: pleed/pyqemu
static void load_linux(void *fw_cfg,
                       const char *kernel_filename,
		       const char *initrd_filename,
		       const char *kernel_cmdline,
                       target_phys_addr_t max_ram_size)
{
    uint16_t protocol;
    int setup_size, kernel_size, initrd_size = 0, cmdline_size;
    uint32_t initrd_max;
    uint8_t header[8192], *setup, *kernel, *initrd_data;
    target_phys_addr_t real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
    FILE *f;
    char *vmode;

    /* Align to 16 bytes as a paranoia measure */
    cmdline_size = (strlen(kernel_cmdline)+16) & ~15;

    /* load the kernel header */
    f = fopen(kernel_filename, "rb");
    if (!f || !(kernel_size = get_file_size(f)) ||
	fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
	MIN(ARRAY_SIZE(header), kernel_size)) {
	fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
		kernel_filename, strerror(errno));
	exit(1);
    }

    /* kernel protocol version */
#if 0
    fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
#endif
    if (ldl_p(header+0x202) == 0x53726448)
	protocol = lduw_p(header+0x206);
    else {
	/* This looks like a multiboot kernel. If it is, let's stop
	   treating it like a Linux kernel. */
        if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
                           kernel_cmdline, kernel_size, header))
            return;
	protocol = 0;
    }

    if (protocol < 0x200 || !(header[0x211] & 0x01)) {
	/* Low kernel */
	real_addr    = 0x90000;
	cmdline_addr = 0x9a000 - cmdline_size;
	prot_addr    = 0x10000;
    } else if (protocol < 0x202) {
	/* High but ancient kernel */
	real_addr    = 0x90000;
	cmdline_addr = 0x9a000 - cmdline_size;
	prot_addr    = 0x100000;
    } else {
	/* High and recent kernel */
	real_addr    = 0x10000;
	cmdline_addr = 0x20000;
	prot_addr    = 0x100000;
    }

#if 0
    fprintf(stderr,
	    "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
	    "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
	    "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
	    real_addr,
	    cmdline_addr,
	    prot_addr);
#endif

    /* highest address for loading the initrd */
    if (protocol >= 0x203)
	initrd_max = ldl_p(header+0x22c);
    else
	initrd_max = 0x37ffffff;

    if (initrd_max >= max_ram_size-ACPI_DATA_SIZE)
    	initrd_max = max_ram_size-ACPI_DATA_SIZE-1;

    fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
    fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
    fw_cfg_add_bytes(fw_cfg, FW_CFG_CMDLINE_DATA,
                     (uint8_t*)strdup(kernel_cmdline),
                     strlen(kernel_cmdline)+1);

    if (protocol >= 0x202) {
	stl_p(header+0x228, cmdline_addr);
    } else {
	stw_p(header+0x20, 0xA33F);
	stw_p(header+0x22, cmdline_addr-real_addr);
    }

    /* handle vga= parameter */
    vmode = strstr(kernel_cmdline, "vga=");
    if (vmode) {
        unsigned int video_mode;
        /* skip "vga=" */
        vmode += 4;
        if (!strncmp(vmode, "normal", 6)) {
            video_mode = 0xffff;
        } else if (!strncmp(vmode, "ext", 3)) {
            video_mode = 0xfffe;
        } else if (!strncmp(vmode, "ask", 3)) {
            video_mode = 0xfffd;
        } else {
            video_mode = strtol(vmode, NULL, 0);
        }
        stw_p(header+0x1fa, video_mode);
    }

    /* loader type */
    /* High nybble = B reserved for Qemu; low nybble is revision number.
       If this code is substantially changed, you may want to consider
       incrementing the revision. */
    if (protocol >= 0x200)
	header[0x210] = 0xB0;

    /* heap */
    if (protocol >= 0x201) {
	header[0x211] |= 0x80;	/* CAN_USE_HEAP */
	stw_p(header+0x224, cmdline_addr-real_addr-0x200);
    }

    /* load initrd */
    if (initrd_filename) {
	if (protocol < 0x200) {
	    fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
	    exit(1);
	}

	initrd_size = get_image_size(initrd_filename);
        if (initrd_size < 0) {
            fprintf(stderr, "qemu: error reading initrd %s\n",
                    initrd_filename);
            exit(1);
        }

        initrd_addr = (initrd_max-initrd_size) & ~4095;

        initrd_data = qemu_malloc(initrd_size);
        load_image(initrd_filename, initrd_data);

        fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
        fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
        fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);

	stl_p(header+0x218, initrd_addr);
	stl_p(header+0x21c, initrd_size);
    }

    /* load kernel and setup */
    setup_size = header[0x1f1];
    if (setup_size == 0)
	setup_size = 4;
    setup_size = (setup_size+1)*512;
    kernel_size -= setup_size;

    setup  = qemu_malloc(setup_size);
    kernel = qemu_malloc(kernel_size);
    fseek(f, 0, SEEK_SET);
    if (fread(setup, 1, setup_size, f) != setup_size) {
        fprintf(stderr, "fread() failed\n");
        exit(1);
    }
    if (fread(kernel, 1, kernel_size, f) != kernel_size) {
        fprintf(stderr, "fread() failed\n");
        exit(1);
    }
    fclose(f);
    memcpy(setup, header, MIN(sizeof(header), setup_size));

    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
    fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);

    fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
    fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
    fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);

    option_rom[nb_option_roms] = "linuxboot.bin";
    nb_option_roms++;
}