예제 #1
0
void
gmersennemod(
	int 	n,
	giant 	g
)
/* g := g (mod 2^n - 1) */
{
    int the_sign;
    giant scratch3 = borrowGiant(g->capacity);
    giant scratch4 = borrowGiant(1);

    if ((the_sign = gsign(g)) < 0) absg(g);
    while (bitlen(g) > n) {
	gtog(g,scratch3);
	gshiftright(n,scratch3);
	addg(scratch3,g);
	gshiftleft(n,scratch3);
	subg(scratch3,g);
    }
    if(isZero(g)) goto out;
    int_to_giant(1,scratch3);
    gshiftleft(n,scratch3);
    int_to_giant(1,scratch4);
    subg(scratch4,scratch3);
    if(gcompg(g,scratch3) >= 0) subg(scratch3,g);
    if (the_sign < 0) {
	g->sign = -g->sign;
	addg(scratch3,g);
    }
out:
    returnGiant(scratch3);
    returnGiant(scratch4);
}
예제 #2
0
int binvaux(giant p, giant x)
/* Binary inverse method.
   Returns zero if no inverse exists, in which case x becomes
   GCD(x,p). */
{
    giant scratch7;
    giant u0;
    giant u1;
    giant v0;
    giant v1;
    int result = 1;
    int giantSize;
    PROF_START;

    if(isone(x)) return(result);
    giantSize = 4 * abs(p->sign);
    scratch7 = borrowGiant(giantSize);
    u0 = borrowGiant(giantSize);
    u1 = borrowGiant(giantSize);
    v0 = borrowGiant(giantSize);
    v1 = borrowGiant(giantSize);
    int_to_giant(1, v0); gtog(x, v1);
    int_to_giant(0,x); gtog(p, u1);
    while(!isZero(v1)) {
        gtog(u1, u0); bdivg(v1, u0);
        gtog(x, scratch7);
        gtog(v0, x);
        mulg(u0, v0);
        subg(v0,scratch7);
        gtog(scratch7, v0);

        gtog(u1, scratch7);
        gtog(v1, u1);
        mulg(u0, v1);
        subg(v1,scratch7);
        gtog(scratch7, v1);
    }
    if (!isone(u1)) {
        gtog(u1,x);
        if(x->sign<0) addg(p, x);
        result = 0;
        goto done;
    }
    if (x->sign<0) addg(p, x);
  done:
    returnGiant(scratch7);
    returnGiant(u0);
    returnGiant(u1);
    returnGiant(v0);
    returnGiant(v1);
    PROF_END(binvauxTime);
    return(result);
}
예제 #3
0
static void numer_times(giant x1, giant z1, giant x2, giant z2, giant res,
	curveParams *par)
/* Numerator algebra.
    res := (x1 x2 - a z1 z2)^2 -
  	          4 b(x1 z2 + x2 z1 + c z1 z2) z1 z2
 */
{
    giant t1;
    giant t2;
    giant t3;
    giant t4;

    PROF_START;
    t1 = borrowGiant(par->maxDigits);
    t2 = borrowGiant(par->maxDigits);
    t3 = borrowGiant(par->maxDigits);
    t4 = borrowGiant(par->maxDigits);

    gtog(x1, t1); mulg(x2, t1); feemod(par, t1);
    gtog(z1, t2); mulg(z2, t2); feemod(par, t2);
    gtog(t1, res);
    if(!isZero(par->a)) {
	gtog(par->a, t3);
      	mulg(t2, t3); feemod(par, t3);
      	subg(t3, res);
    }
    gsquare(res); feemod(par, res);
    if(isZero(par->b))
        goto done;
    if(par->curveType != FCT_Weierstrass) {	// i.e., !isZero(par->c)
        gtog(par->c, t3);
    	mulg(t2, t3); feemod(par, t3);
    } else int_to_giant(0, t3);
    gtog(z1, t4); mulg(x2, t4); feemod(par, t4);
    addg(t4, t3);
    gtog(x1, t4); mulg(z2, t4); feemod(par, t4);
    addg(t4, t3); mulg(par->b, t3); feemod(par, t3);
    mulg(t2, t3); gshiftleft(2, t3); feemod(par, t3);
    subg(t3, res);
    feemod(par, res);

done:
    returnGiant(t1);
    returnGiant(t2);
    returnGiant(t3);
    returnGiant(t4);
    PROF_END(numerTimesTime);
}
예제 #4
0
int signature_compare(giant p0x, giant p1x, giant p2x, curveParams *par)
/* Returns non-zero iff p0x cannot be the x-coordinate of the sum of two points whose respective x-coordinates are p1x, p2x. */
{
        int ret = 0;
        giant t1;
	giant t2;
        giant t3;
        giant t4;
        giant t5;

	PROF_START;

        t1 = borrowGiant(par->maxDigits);
	t2 = borrowGiant(par->maxDigits);
        t3 = borrowGiant(par->maxDigits);
        t4 = borrowGiant(par->maxDigits);
        t5 = borrowGiant(par->maxDigits);

        if(gcompg(p1x, p2x) == 0) {
		int_to_giant(1, t1);
		numer_double(p1x, t1, t2, par);
		denom_double(p1x, t1, t3, par);
		mulg(p0x, t3); subg(t3, t2);
		feemod(par, t2);
        } else {
		numer_plus(p1x, p2x, t1, par);
		gshiftleft(1, t1); feemod(par, t1);
		int_to_giant(1, t3);
		numer_times(p1x, t3, p2x, t3, t2, par);
		int_to_giant(1, t4); int_to_giant(1, t5);
		denom_times(p1x, t4 , p2x, t5, t3, par);
		/* Now we require t3 x0^2 - t1 x0 + t2 == 0. */
		mulg(p0x, t3); feemod(par, t3);
		subg(t1, t3); mulg(p0x, t3);
		feemod(par, t3);
		addg(t3, t2);
		feemod(par, t2);
        }

	if(!isZero(t2)) ret = SIGNATURE_INVALID;
        returnGiant(t1);
        returnGiant(t2);
        returnGiant(t3);
        returnGiant(t4);
        returnGiant(t5);
	PROF_END(sigCompTime);
	return(ret);
}
예제 #5
0
main(int argc, char **argv) {
    giant p = newgiant(CM_SHORTS);
	giant u = newgiant(CM_SHORTS);
	giant v = newgiant(CM_SHORTS);
	giant g[6];
    giant plus_order = newgiant(CM_SHORTS);
    giant minus_order = newgiant(CM_SHORTS);
	giant a = newgiant(CM_SHORTS);
    giant b = newgiant(CM_SHORTS);
    int d, dc, olen, k;

    init_tools(CM_SHORTS);    /* Basic algorithms. */
    printf("Give base prime p:\n"); fflush(stdout);
    gin(p);
    for(dc=0; dc < 6; dc++) g[dc] = newgiant(CM_SHORTS);
    for(dc = 0; dc < DCOUNT; dc++) {
			d = disc12[dc];
			/* Next, seek representation 4N = u^2 + |d| v^2. */
			if(cornacchia4(p, d, u, v) == 0) continue;
/* Here, (u,v) give the quadratic representation of 4p. */
			printf("D: %d\n", d); fflush(stdout);
			gtog(u, g[0]);
			switch(d) {
				case -3: olen = 3;  /* Six orders: p + 1 +- g[0,1,2]. */
						gtog(u, g[1]); gtog(v, g[2]);
						addg(g[2], g[2]); addg(v, g[2]); /* g[2] := 3v. */
						addg(g[2], g[1]); gshiftright(1, g[1]);  /* g[1] = (u + 3v)/2. */
						subg(u, g[2]); gshiftright(1, g[2]); absg(g[2]); /* g[2] = |u-3v|/2. */
						break;
				case -4: olen = 2;  /* Four orders: p + 1 +- g[0,1]. */
						gtog(v, g[1]); addg(g[1], g[1]); /* g[1] = 2v. */
						break;
				default: olen = 1;  /* Two orders: p + 1 +- g[0]. */
			}
			for(k=0; k < olen; k++) {
				 gtog(p, plus_order); iaddg(1, plus_order);
				 gtog(p, minus_order); iaddg(1, minus_order);
				 addg(g[k], plus_order);
				 subg(g[k], minus_order);
				 printf("curve orders: \n");
				 printf("(%d) ", prime_probable(plus_order));
                 gout(plus_order);
				 printf("(%d) ", prime_probable(minus_order));
				 gout(minus_order);
			}
   }
}
예제 #6
0
void make_recip(giant d, giant r)
/* r becomes the steady-state reciprocal
* 2^(2b)/d, where b = bit-length of d-1. */
{
	int		b;
	giant 	tmp, tmp2;

	if (isZero(d) || (d->sign < 0))
	{
		exit(SIGN);
	}
	tmp = popg();
	tmp2 = popg();
	itog(1, r);
	subg(r, d);
	b = bitlen(d);
	addg(r, d);
	gshiftleft(b, r);
	gtog(r, tmp2);
	while (1)
	{
		gtog(r, tmp);
		squareg(tmp);
		gshiftright(b, tmp);
		mulg(d, tmp);
		gshiftright(b, tmp);
		addg(r, r);
		subg(tmp, r);
		if (gcompg(r, tmp2) <= 0)
			break;
		gtog(r, tmp2);
	}
	itog(1, tmp);
	gshiftleft(2 * b, tmp);
	gtog(r, tmp2);
	mulg(d, tmp2);
	subg(tmp2, tmp);
	itog(1, tmp2);
	while (tmp->sign < 0)
	{
		subg(tmp2, r);
		addg(d, tmp);
	}
	pushg(2);
}
예제 #7
0
void ellDoubleProj(pointProj pt, curveParams *cp)
/* pt := 2 pt on the curve. */
{
	giant x = pt->x, y = pt->y, z = pt->z;
	giant t1;
	giant t2;
	giant t3;

	if(isZero(y) || isZero(z)) {
		int_to_giant(1,x); int_to_giant(1,y); int_to_giant(0,z);
		return;
	}
	t1 = borrowGiant(cp->maxDigits);
	t2 = borrowGiant(cp->maxDigits);
	t3 = borrowGiant(cp->maxDigits);

	if((cp->a->sign >= 0) || (cp->a->n[0] != 3)) { /* Path prior to Apr2001. */
		gtog(z,t1); gsquare(t1); feemod(cp, t1);
		gsquare(t1); feemod(cp, t1);
		mulg(cp->a, t1); feemod(cp, t1);			/* t1 := a z^4. */
		gtog(x, t2); gsquare(t2); feemod(cp, t2);
			smulg(3, t2);                           /* t2 := 3x^2. */
		addg(t2, t1); feemod(cp, t1);	 			/* t1 := slope m. */
	} else { /* New optimization for a = -3 (post Apr 2001). */
		gtog(z, t1); gsquare(t1); feemod(cp, t1);   /* t1 := z^2. */
		gtog(x, t2); subg(t1, t2);                  /* t2 := x-z^2. */
		addg(x, t1); smulg(3, t1);                  /* t1 := 3(x+z^2). */
		mulg(t2, t1); feemod(cp, t1);               /* t1 := slope m. */
	}
	mulg(y, z); addg(z,z); feemod(cp, z);	  	/* z := 2 y z. */
	gtog(y, t2); gsquare(t2); feemod(cp, t2); 	/* t2 := y^2. */
	gtog(t2, t3); gsquare(t3); feemod(cp, t3);	/* t3 := y^4. */
	gshiftleft(3, t3);  				/* t3 := 8 y^4. */
	mulg(x, t2); gshiftleft(2, t2); feemod(cp, t2);	/* t2 := 4xy^2. */
	gtog(t1, x); gsquare(x); feemod(cp, x);
	subg(t2, x); subg(t2, x); feemod(cp, x);	/* x done. */
	gtog(t1, y); subg(x, t2); mulg(t2, y); subg(t3, y);
	feemod(cp, y);
	returnGiant(t1);
	returnGiant(t2);
	returnGiant(t3);
}
예제 #8
0
void make_base_prim(curveParams *cp)
/* Jams cp->basePrime with 2^q-k. Assumes valid maxDigits, q, k. */
{
    giant tmp = borrowGiant(cp->maxDigits);

    CKASSERT(cp->primeType != FPT_General);
    int_to_giant(1, cp->basePrime);
    gshiftleft((int)cp->q, cp->basePrime);
    int_to_giant(cp->k, tmp);
    subg(tmp, cp->basePrime);
    returnGiant(tmp);
}
예제 #9
0
void modg_via_recip(giant d, giant r, giant n)
/* This is the fastest mod of the present collection.
* n := n % d, where r is the precalculated
* steady-state reciprocal of d. */
{
	int		s = (bitlen(r) - 1), sign = n->sign;
	giant 	tmp, tmp2;

	if (isZero(d) || (d->sign < 0))
	{
		exit(SIGN);
	}

	tmp = popg();
	tmp2 = popg();

	n->sign = abs(n->sign);
	while (1)
	{
		gtog(n, tmp); gshiftright(s - 1, tmp);
		mulg(r, tmp);
		gshiftright(s + 1, tmp);
		mulg(d, tmp);
		subg(tmp, n);
		if (gcompg(n, d) >= 0)
			subg(d, n);
		if (gcompg(n, d) < 0)
			break;
	}
	if (sign >= 0)
		goto done;
	if (isZero(n))
		goto done;
	negg(n);
	addg(d, n);
done:
	pushg(2);
	return;
}
예제 #10
0
static void numer_double(giant x, giant z, giant res, curveParams *par)
/* Numerator algebra.
   res := (x^2 - a z^2)^2 - 4 b (2 x + c z) z^3.
 */
{
    giant t1;
    giant t2;

    PROF_START;
    t1 = borrowGiant(par->maxDigits);
    t2 = borrowGiant(par->maxDigits);

    gtog(x, t1); gsquare(t1); feemod(par, t1);
    gtog(z, res); gsquare(res); feemod(par, res);
    gtog(res, t2);
    if(!isZero(par->a) ) {
        if(!isone(par->a)) { /* Speedup - REC 17 Jan 1997. */
	    mulg(par->a, res); feemod(par, res);
        }
        subg(res, t1); feemod(par, t1);
    }
    gsquare(t1); feemod(par, t1);
    /* t1 := (x^2 - a z^2)^2. */
    if(isZero(par->b))  {   /* Speedup - REC 17 Jan 1997. */
	gtog(t1, res);
        goto done;
    }
    if(par->curveType != FCT_Weierstrass) {	// i.e., !isZero(par->c)
    						// Speedup - REC 17 Jan 1997.
	gtog(z, res); mulg(par->c, res); feemod(par, res);
    } else {
        int_to_giant(0, res);
    }
    addg(x, res); addg(x, res); mulg(par->b, res);
    feemod(par, res);
    gshiftleft(2, res); mulg(z, res); feemod(par, res);
    mulg(t2, res); feemod(par, res);
    negg(res); addg(t1, res);
    feemod(par, res);

done:
    returnGiant(t1);
    returnGiant(t2);
    PROF_END(numerDoubleTime);
}
예제 #11
0
static void denom_times(giant x1, giant z1, giant x2, giant z2, giant res,
	curveParams *par)
/* Denominator algebra.
    res := (x1 z2 - x2 z1)^2
 */
{
    giant t1;

    PROF_START;
    t1 = borrowGiant(par->maxDigits);

    gtog(x1, res); mulg(z2, res); feemod(par, res);
    gtog(z1, t1); mulg(x2, t1); feemod(par, t1);
    subg(t1, res); gsquare(res); feemod(par, res);

    returnGiant(t1);
    PROF_END(denomTimesTime);
}
예제 #12
0
/*
 * New optimzation of curveOrderJustify using known reciprocal, 11 June 1997.
 * g is set to be within [2, curveOrder-2].
 */
static void curveOrderJustifyWithRecip(giant g, giant curveOrder, giant recip)
{
    giant tmp;

    CKASSERT(!isZero(curveOrder));

    modg_via_recip(curveOrder, recip, g);	// g now in [0, curveOrder-1]

    if(isZero(g)) {
    	/*
	 * First degenerate case - (g == 0) : set g := 2
	 */
	dbgLog(("curveOrderJustify: case 1\n"));
   	int_to_giant(2, g);
	return;
    }
    if(isone(g)) {
    	/*
	 * Second case - (g == 1) : set g := 2
	 */
 	dbgLog(("curveOrderJustify: case 2\n"));
   	int_to_giant(2, g);
	return;
    }
    tmp = borrowGiant(g->capacity);
    gtog(g, tmp);
    iaddg(1, tmp);
    if(gcompg(tmp, curveOrder) == 0) {
    	/*
	 * Third degenerate case - (g == (curveOrder-1)) : set g -= 1
	 */
	dbgLog(("curveOrderJustify: case 3\n"));
	int_to_giant(1, tmp);
	subg(tmp, g);
    }
    returnGiant(tmp);
    return;
}
예제 #13
0
void
main(
	void
)
{
	giant 		x = newgiant(INFINITY), y = newgiant(INFINITY),
				p = newgiant(INFINITY), r = newgiant(100);
	int 		j;

   	printf("Give two integers x, y on separate lines:\n");
   	gin(x); 
   	gin(y); 

   	gtog(y, p);  /* p := y */
   	mulg(x, p);
   	printf("y * x = "); 
   	gout(p);

  	gtog(y, p);
   	subg(x, p);
   	printf("y - x = "); 
   	gout(p);

   	gtog(y, p);
   	addg(x, p);
   	printf("y + x = "); 
   	gout(p);

   	gtog(y, p);
   	divg(x, p);
   	printf("y div x = "); 
   	gout(p);

   	gtog(y, p);
   	modg(x, p);
   	printf("y mod x = "); 
   	gout(p);

   	gtog(y, p);
   	gcdg(x, p);
   	printf("GCD(x, y) = "); 
   	gout(p);
 
	/* Next, test which of x, y is greater. */
   	if (gcompg(x, y) < 0 ) 
   		printf("y is greater\n");
	else if (gcompg(x,y) == 0) 
		printf("x, y equal\n");
	else 
		printf("x is greater\n");

	/* Next, we see how a giant struct is comprised.
   	 * We make a random, bipolar number of about 100 
   	 * digits in base 65536. 
   	 */
	for (j=0; j < 100; j++) 
	{  /* Fill 100 digits randomly. */
		r->n[j] = (unsigned short)rand();
   	}
   	r->sign = 100 * (1 - 2*(rand()%2));

	/* Next, don't forget to check for leading zero digits,
     * even though such are unlikely. 
     */
   	j = abs(r->sign) - 1;
   	while ((r->n[j] == 0) && (j > 0)) 
   	{
   		--j;
   	}
   	r->sign = (j+1) * ((r->sign > 0) ? 1: -1);
   	printf("The random number: "); gout(r);

	/* Next, compare a large-FFT multiply with a standard,
     * grammar-school multiply. 
     */
   	itog(1, x); 
   	gshiftleft(65536, x); 
   	iaddg(1, x);
   	itog(5, y); 
   	gshiftleft(30000, y); 
   	itog(1, p); 
   	subg(p, y); 
	/* Now we multiply (2^65536 + 1)*(5*(2^30000) - 1). */
   	gtog(y, p);
   	mulg(x, p);  /* Actually invokes FFT method because
					bit lengths of x, y are sufficiently large. */
   	printf("High digit of (2^65536 + 1)*(5*(2^30000) - 1) via FFT mul: %d\n", (int) p->n[abs(p->sign)-1]);
   	fflush(stdout);
   	gtog(y, p);
   	grammarmulg(x, p);  /* Grammar-school method. */
   	printf("High digit via grammar-school mul: %d\n", (int) p->n[abs(p->sign)-1]);
   	fflush(stdout);

	/* Next, perform Fermat test for pseudoprimality. */
   	printf("Give prime candidate p:\n");
   	gin(p); 
   	gtog(p, y);
   	itog(1, x); subg(x, y);
   	itog(2, x);
   	powermodg(x, y, p);
   	if (isone(x)) 
   		printf("p is probably prime.\n");
	else 
		printf("p is composite.\n");
}
예제 #14
0
/*
 * Completely rewritten in CryptKit-18, 13 Jan 1997, for new IEEE-style
 * curveParameters.
 */
void elliptic_add(giant x1, giant x2, giant x3, curveParams *par, int s) {

 /* Addition algorithm for x3 = x1 + x2 on the curve, with sign ambiguity s.
    From theory, we know that if {x1,1} and {x2,1} are on a curve, then
    their elliptic sum (x1,1} + {x2,1} = {x3,1} must have x3 as one of two
    values:

       x3 = U/2 + s*Sqrt[U^2/4 - V]

    where sign s = +-1, and U,V are functions of x1,x2.  Tho present function
    is called a maximum of twice, to settle which of +- is s.  When a call
    is made, it is guaranteed already that x1, x2 both lie on the same curve
    (+- curve); i.e., which curve (+-) is not connected at all with sign s of
    the x3 relation.
  */

    giant cur_n;
    giant t1;
    giant t2;
    giant t3;
    giant t4;
    giant t5;

    PROF_START;
    cur_n = borrowGiant(par->maxDigits);
    t1 = borrowGiant(par->maxDigits);
    t2 = borrowGiant(par->maxDigits);
    t3 = borrowGiant(par->maxDigits);
    t4 = borrowGiant(par->maxDigits);
    t5 = borrowGiant(par->maxDigits);

    if(gcompg(x1, x2)==0) {
	int_to_giant(1, t1);
	numer_double(x1, t1, x3, par);
	denom_double(x1, t1, t2, par);
	binvg_cp(par, t2);
	mulg(t2, x3); feemod(par, x3);
	goto out;
    }
    numer_plus(x1, x2, t1, par);
    int_to_giant(1, t3);
    numer_times(x1, t3, x2, t3, t2, par);
    int_to_giant(1, t4); int_to_giant(1, t5);
    denom_times(x1, t4, x2, t5, t3, par);
    binvg_cp(par, t3);
    mulg(t3, t1); feemod(par, t1); /* t1 := U/2. */
    mulg(t3, t2); feemod(par, t2); /* t2 := V. */
    /* Now x3 will be t1 +- Sqrt[t1^2 - t2]. */
    gtog(t1, t4); gsquare(t4); feemod(par, t4);
    subg(t2, t4);
    make_base(par, cur_n); iaddg(1, cur_n); gshiftright(2, cur_n);
    	/* cur_n := (p+1)/4. */
    feepowermodg(par, t4, cur_n);      /* t4 := t2^((p+1)/4) (mod p). */
    gtog(t1, x3);
    if(s != SIGN_PLUS) negg(t4);
    addg(t4, x3);
    feemod(par, x3);

out:
    returnGiant(cur_n);
    returnGiant(t1);
    returnGiant(t2);
    returnGiant(t3);
    returnGiant(t4);
    returnGiant(t5);

    PROF_END(ellAddTime);
}
예제 #15
0
static void ell_even(giant x1, giant z1, giant x2, giant z2, curveParams *par) {
    giant t1;
    giant t2;
    giant t3;

    EPROF_START;

    t1 = borrowGiant(par->maxDigits);
    t2 = borrowGiant(par->maxDigits);
    t3 = borrowGiant(par->maxDigits);

    if(par->curveType == FCT_Montgomery) {
	/* Begin Montgomery OPT: 10 Jan 98 REC. */
	gtog(x1, t1); gsquare(t1); feemod(par, t1); /* t1 := x1^2. */
	gtog(z1, t2); gsquare(t2); feemod(par, t2); /* t2 := z1^2. */

	gtog(x1, t3); mulg(z1, t3); feemod(par, t3);
	gtog(t3, z2); mulg(par->c, z2); feemod(par, z2);
	addg(t1, z2); addg(t2, z2); mulg(t3, z2); gshiftleft(2, z2);
	feemod(par, z2);  /* z2 := 4 x1 z1 (x1^2 + c x1 z1 + z1^2). */
	gtog(t1, x2); subg(t2, x2); gsquare(x2); feemod(par, x2);
						/* x2 := (x1^2 - z1^2)^2. */
	/* End OPT: 10 Jan 98 REC. */
    }
    else if((par->curveType == FCT_Weierstrass) && isZero(par->a)) {
	/* Begin Atkin3 OPT: 9 Jan 98 REC. */
	gtog(x1, t1);
	gsquare(t1); feemod(par, t1);
	mulg(x1, t1); feemod(par, t1);   	/* t1 := x^3. */
	gtog(z1, t2);
	gsquare(t2); feemod(par, t2);
	mulg(z1, t2); feemod(par, t2);	/* t2 := z1^3 */
	mulg(par->b, t2); feemod(par, t2); 	/* t2 := b z1^3. */
	gtog(t1, t3); addg(t2, t3);		/* t3 := x^3 + b z1^3 */
	mulg(z1, t3); feemod(par, t3);	/* t3 *= z1
						*     = z1 ( x^3 + b z1^3 ) */
	gshiftleft(2, t3); feemod(par, t3);	/* t3 = 4 z1 (x1^3 + b z1^3) */

	gshiftleft(3, t2);			/* t2 = 8 b z1^3 */
	subg(t2, t1);			/* t1 = x^3 - 8 b z1^3 */
	mulg(x1, t1); feemod(par, t1);	/* t1 = x1 (x1^3 - 8 b z1^3) */

	gtog(t3, z2);
	gtog(t1, x2);
	/* End OPT: 9 Jan 98 REC. */
    }
    else {
	numer_double(x1, z1, t1, par);
	denom_double(x1, z1, t2, par);
	gtog(t1, x2); gtog(t2, z2);
    }
    returnGiant(t1);
    returnGiant(t2);
    returnGiant(t3);

    EPROF_END(ellEvenTime);
    EPROF_INCR(numEllEvens);

    /*
    printf("ell_even end\n");
    printf(" x1 : "); printGiant(x1);
    printf(" z1 : "); printGiant(z1);
    printf(" x2 : "); printGiant(x2);
    printf(" z2 : "); printGiant(z2);
    */
}
예제 #16
0
static void ell_odd(giant x1, giant z1, giant x2, giant z2, giant xxor,
	giant zor, curveParams *par)
{

    giant t1;
    giant t2;

    EPROF_START;
    t1 = borrowGiant(par->maxDigits);
    t2 = borrowGiant(par->maxDigits);

    if(par->curveType == FCT_Montgomery) {
	/* Begin Montgomery OPT: 10 Jan 98 REC. */
	giant t3 = borrowGiant(par->maxDigits);
	giant t4 = borrowGiant(par->maxDigits);

	gtog(x1, t1); addg(z1, t1);  	/* t1 := x1 + z1. */
	gtog(x2, t2); subg(z2, t2);  	/* t2 := x2 - z2. */
	gtog(x1, t3); subg(z1, t3);  	/* t3 := x1 - z1. */
	gtog(x2, t4); addg(z2, t4);  	/* t4 := x2 + z2. */
	mulg(t2, t1); feemod(par, t1);      /* t1 := (x1 + z1)(x2 - z2) */
	mulg(t4, t3); feemod(par, t3);      /* t4 := (x2 + z2)(x1 - z1) */
	gtog(t1, z2); subg(t3, z2); 	/*???gshiftright(1, z2);*/
			    /* z2 := ((x1 + z1)(x2 - z2) - x2)/2 */
	gsquare(z2); feemod(par,  z2);
	mulg(xxor, z2); feemod(par, z2);
	gtog(t1, x2); addg(t3, x2); 	/*????gshiftright(1, x2);*/
	gsquare(x2); feemod(par, x2);
	mulg(zor, x2); feemod(par, x2);

	returnGiant(t3);
	returnGiant(t4);
    }
    else if((par->curveType == FCT_Weierstrass) && isZero(par->a)) {
	/* Begin Atkin3 OPT: 9 Jan 98 REC. */

	giant t3 = borrowGiant(par->maxDigits);
	giant t4 = borrowGiant(par->maxDigits);

	gtog(x1, t1); mulg(x2, t1);  feemod(par, t1);  /* t1 := x1 x2. */
	gtog(z1, t2); mulg(z2, t2);  feemod(par, t2);  /* t2 := z1 z2. */
	gtog(x1, t3); mulg(z2, t3);  feemod(par, t3);  /* t3 := x1 z2. */
	gtog(z1, t4); mulg(x2, t4);  feemod(par, t4);  /* t4 := x2 z1. */
	gtog(t3, z2); subg(t4, z2); gsquare(z2); feemod(par, z2);
	mulg(xxor, z2); feemod(par, z2);
	gtog(t1, x2); gsquare(x2); feemod(par, x2);
	addg(t4, t3); mulg(t2, t3); feemod(par, t3);
	mulg(par->b, t3); feemod(par, t3);
	addg(t3, t3); addg(t3, t3);
	subg(t3, x2); mulg(zor, x2); feemod(par, x2);

	returnGiant(t3);
	returnGiant(t4);
	/* End OPT: 9 Jan 98 REC. */
    }
    else {
	numer_times(x1, z1, x2, z2, t1, par);
	mulg(zor, t1); feemod(par, t1);
	denom_times(x1, z1, x2, z2, t2, par);
	mulg(xxor, t2); feemod(par, t2);

	gtog(t1, x2); gtog(t2, z2);
    }

    returnGiant(t1);
    returnGiant(t2);

    EPROF_END(ellOddTime);
    EPROF_INCR(numEllOdds);

    /*
    printf("ell_odd end\n");
    printf(" x2 : "); printGiant(x2);
    printf(" z2 : "); printGiant(z2);
    */
}
예제 #17
0
void ellAddProj(pointProj pt0, pointProj pt1, curveParams *cp)
/* pt0 := pt0 + pt1 on the curve. */
{
	giant x0 = pt0->x, y0 = pt0->y, z0 = pt0->z,
		  x1 = pt1->x, y1 = pt1->y, z1 = pt1->z;
	giant t1;
	giant t2;
	giant t3;
	giant t4;
	giant t5;
	giant t6;
	giant t7;

	if(isZero(z0)) {
		gtog(x1,x0); gtog(y1,y0); gtog(z1,z0);
		return;
	}
	if(isZero(z1)) return;

	t1 = borrowGiant(cp->maxDigits);
	t2 = borrowGiant(cp->maxDigits);
	t3 = borrowGiant(cp->maxDigits);
	t4 = borrowGiant(cp->maxDigits);
	t5 = borrowGiant(cp->maxDigits);
	t6 = borrowGiant(cp->maxDigits);
	t7 = borrowGiant(cp->maxDigits);

	gtog(x0, t1); gtog(y0,t2); gtog(z0, t3);
	gtog(x1, t4); gtog(y1, t5);
	if(!isone(z1)) {
		gtog(z1, t6);
		gtog(t6, t7); gsquare(t7); feemod(cp, t7);
		mulg(t7, t1); feemod(cp, t1);
		mulg(t6, t7); feemod(cp, t7);
		mulg(t7, t2); feemod(cp, t2);
	}
	gtog(t3, t7); gsquare(t7); feemod(cp, t7);
	mulg(t7, t4); feemod(cp, t4);
	mulg(t3, t7); feemod(cp, t7);
	mulg(t7, t5); feemod(cp, t5);
	negg(t4); addg(t1, t4); feemod(cp, t4);
	negg(t5); addg(t2, t5); feemod(cp, t5);
	if(isZero(t4)) {
		if(isZero(t5)) {
			ellDoubleProj(pt0, cp);
	    	} else {
			int_to_giant(1, x0); int_to_giant(1, y0);
			int_to_giant(0, z0);
		}
		goto out;
	}
	addg(t1, t1); subg(t4, t1); feemod(cp, t1);
	addg(t2, t2); subg(t5, t2); feemod(cp, t2);
	if(!isone(z1)) {
		mulg(t6, t3); feemod(cp, t3);
	}
	mulg(t4, t3); feemod(cp, t3);
	gtog(t4, t7); gsquare(t7); feemod(cp, t7);
	mulg(t7, t4); feemod(cp, t4);
	mulg(t1, t7); feemod(cp, t7);
	gtog(t5, t1); gsquare(t1); feemod(cp, t1);
	subg(t7, t1); feemod(cp, t1);
	subg(t1, t7); subg(t1, t7); feemod(cp, t7);
	mulg(t7, t5); feemod(cp, t5);
	mulg(t2, t4); feemod(cp, t4);
	gtog(t5, t2); subg(t4,t2); feemod(cp, t2);
	if(t2->n[0] & 1) { /* Test if t2 is odd. */
		addg(cp->basePrime, t2);
	}
	gshiftright(1, t2);
	gtog(t1, x0); gtog(t2, y0); gtog(t3, z0);
out:
	returnGiant(t1);
	returnGiant(t2);
	returnGiant(t3);
	returnGiant(t4);
	returnGiant(t5);
	returnGiant(t6);
	returnGiant(t7);
}
예제 #18
0
static int sqrtmod(giant x, curveParams *cp)
/* If Sqrt[x] (mod p) exists, function returns 1, else 0.
   In either case x is modified, but if 1 is returned,
   x:= Sqrt[x] (mod p).
 */
{
	int rtn;
	giant t0 = borrowGiant(cp->maxDigits);
	giant t1 = borrowGiant(cp->maxDigits);
	giant t2 = borrowGiant(cp->maxDigits);
	giant t3 = borrowGiant(cp->maxDigits);
	giant t4 = borrowGiant(cp->maxDigits);

	giant p = cp->basePrime;

    	feemod(cp, x);			/* Justify the argument. */
    	gtog(x, t0);  /* Store x for eventual validity check on square root. */
    	if((p->n[0] & 3) == 3) {  /* The case p = 3 (mod 4). */
		gtog(p, t1);
		iaddg(1, t1); gshiftright(2, t1);
		powermodg(x, t1, cp);
		goto resolve;
    	}
	/* Next, handle case p = 5 (mod 8). */
    	if((p->n[0] & 7) == 5) {
		gtog(p, t1); int_to_giant(1, t2);
		subg(t2, t1); gshiftright(2, t1);
		gtog(x, t2);
		powermodg(t2, t1, cp);  /* t2 := x^((p-1)/4) % p. */
		iaddg(1, t1);
		gshiftright(1, t1); /* t1 := (p+3)/8. */
		if(isone(t2)) {
			powermodg(x, t1, cp);  /* x^((p+3)/8) is root. */
			goto resolve;
		} else {
			int_to_giant(1, t2); subg(t2, t1);
				/* t1 := (p-5)/8. */
			gshiftleft(2,x);
			powermodg(x, t1, cp);
			mulg(t0, x); addg(x, x); feemod(cp, x);
				/* 2x (4x)^((p-5)/8. */
			goto resolve;
		}
	}

	/* Next, handle tougher case: p = 1 (mod 8). */
	int_to_giant(2, t1);
	while(1) {  /* Find appropriate nonresidue. */
		gtog(t1, t2);
		gsquare(t2); subg(x, t2); feemod(cp, t2);
		if(jacobi_symbol(t2, cp) == -1) break;
		iaddg(1, t1);
	}  /* t2 is now w^2 in F_p^2. */
   	int_to_giant(1, t3);
   	gtog(p, t4); iaddg(1, t4); gshiftright(1, t4);
	powFp2(t1, t3, t2, t4, cp);
	gtog(t1, x);

resolve:
   	gtog(x,t1); gsquare(t1); feemod(cp, t1);
    	if(gcompg(t0, t1) == 0) {
		rtn = 1; 	/* Success. */
	}
	else {
		rtn = 0;	/* no square root */
	}
	returnGiant(t0);
	returnGiant(t1);
	returnGiant(t2);
	returnGiant(t3);
	returnGiant(t4);
	return rtn;
}