예제 #1
0
std::pair<exprt,exprt> ranking_synthesis_qbf_bitwiset::ite_template()
{
  exprt function;
  replace_mapt pre_replace_map;
    
  unsigned state_size = get_state_size();
  unsigned bits=log((double)state_size)/log(2.0) + 1;  
  
  symbol_exprt const_sym(CONSTANT_COEFFICIENT_ID, unsignedbv_typet(bits));
  const_coefficient=coefficient(const_sym);
    
  unsigned cnt=0;
  for(bodyt::variable_mapt::const_iterator it=body.variable_map.begin();
      it!=body.variable_map.end();
      it++)
  {
    if(used_variables.find(it->first)==used_variables.end())
      continue;
    
    exprt postsym=symbol_exprt(it->first, ns.lookup(it->first).type);
    exprt presym=symbol_exprt(it->second, ns.lookup(it->second).type);
        
    pre_replace_map[postsym] = presym; // save the corresponding pre-var
    exprt var=postsym;
    adjust_type(var.type());

    unsigned vwidth = safe_width(var, ns);
    for(unsigned i=0; i<vwidth; i++)
    {
      exprt t(ID_extractbit, bool_typet());
      t.copy_to_operands(var);
      t.copy_to_operands(from_integer(i, typet(ID_natural)));
      
      if(it==body.variable_map.begin() && i==0)
        function = t;
      else
      {
        function =           
          if_exprt(equal_exprt(const_coefficient, 
                                  from_integer(cnt, const_coefficient.type())),
                   t,
                   function);        
      }      
      
      cnt++;
    }
  }
  
  exprt pre_function=function;
  replace_expr(pre_replace_map, pre_function);
  
  return std::pair<exprt,exprt>(pre_function, function);
}
예제 #2
0
code_function_callt function_to_call(
  symbol_tablet &symbol_table,
  const irep_idt &id,
  const irep_idt &argument)
{
  // already there?

  symbol_tablet::symbolst::const_iterator s_it=
    symbol_table.symbols.find(id);

  if(s_it==symbol_table.symbols.end())
  {
    // not there
    pointer_typet p(char_type());
    p.subtype().set(ID_C_constant, true);

    code_typet function_type;
    function_type.return_type()=empty_typet();
    function_type.parameters().push_back(
      code_typet::parametert(p));

    symbolt new_symbol;
    new_symbol.name=id;
    new_symbol.base_name=id;
    new_symbol.type=function_type;

    symbol_table.move(new_symbol);

    s_it=symbol_table.symbols.find(id);
    assert(s_it!=symbol_table.symbols.end());
  }

  // signature is expected to be
  // (type *) -> ...
  if(s_it->second.type.id()!=ID_code ||
     to_code_type(s_it->second.type).parameters().size()!=1 ||
     to_code_type(s_it->second.type).parameters()[0].type().id()!=ID_pointer)
  {
    std::string error="function `"+id2string(id)+"' has wrong signature";
    throw error;
  }

  string_constantt function_id_string(argument);

  code_function_callt call;
  call.lhs().make_nil();
  call.function()=
    symbol_exprt(s_it->second.name, s_it->second.type);
  call.arguments().resize(1);
  call.arguments()[0]=
    typecast_exprt(
      address_of_exprt(
        index_exprt(
          function_id_string, from_integer(0, index_type()))),
      to_code_type(s_it->second.type).parameters()[0].type());

  return call;
}
예제 #3
0
bool ranking_synthesis_seneschalt::extract_ranking_relation(exprt &rf)
{
  exprt function = rf;
  replace_mapt post_replace_map;

  for(bodyt::variable_mapt::const_iterator it=body.variable_map.begin();
      it!=body.variable_map.end();
      it++)
  {
    if(used_variables.find(it->first)==used_variables.end())
      continue;
    
    exprt postsym=symbol_exprt(it->first, ns.lookup(it->first).type);
    exprt presym=symbol_exprt(it->second, ns.lookup(it->second).type);
    
    post_replace_map[presym] = postsym;
  }

  for(intermediate_statet::const_iterator it=intermediate_state.begin();
      it!=intermediate_state.end();
      it++)
  {
    const exprt e=symbol_exprt(*it);

    // Get rid of SSA-numbers
    const std::string &str = id2string(*it);
    exprt ne=e;
    ne.set("identifier", str.substr(0, str.find('#')));
    ne.type()=ns.lookup(ne.get("identifier")).type;
  }

  simplify(function, ns);

  exprt post_function = function;
  replace_expr(post_replace_map, post_function);

  rank_relation = binary_relation_exprt(post_function, "<", function);

  return true;
}
예제 #4
0
unsigned ranking_synthesis_qbf_bitwiset::get_state_size(void) const
{
  unsigned res=0;  
      
  for(bodyt::variable_mapt::const_iterator it=body.variable_map.begin();
      it!=body.variable_map.end();
      it++)
    res += safe_width(symbol_exprt(it->first, ns.lookup(it->first).type), ns);    
  
  assert(res>0);
  
  return res;
}
예제 #5
0
exprt get_failed_symbol(
  const symbol_exprt &expr,
  const namespacet &ns)
{
  const symbolt &symbol=ns.lookup(expr);
  irep_idt failed_symbol_id=symbol.type.get("#failed_symbol");

  if(failed_symbol_id==irep_idt())
    return nil_exprt();
    
  const symbolt &failed_symbol=ns.lookup(failed_symbol_id);
  
  return symbol_exprt(failed_symbol_id, failed_symbol.type);
}
예제 #6
0
파일: ranking_sat.cpp 프로젝트: olivo/BP
void ranking_synthesis_satt::show_counterexample(boolbvt &converter)
{  
  if(verbosity<9) return;
  std::string output=" ... NO: ";
  
  for(bodyt::variable_mapt::const_iterator it=body.variable_map.begin();
      it!=body.variable_map.end();
      it++)
  {
    if(used_variables.find(it->first)==used_variables.end())
      continue;
    
    if(it!=body.variable_map.begin()) output += ", ";

    exprt postsym=symbol_exprt(it->first, ns.lookup(it->first).type);
    exprt presym=symbol_exprt(it->second, ns.lookup(it->second).type);
    
    exprt post=converter.get(postsym);
    
    if(post.id()!="nil")
    {
     output += from_expr(ns, "", postsym) + "=" + from_expr(ns, "", post) + " (";
    }
    else
     output += "? (";

    exprt pre=converter.get(presym);
    if(pre.id()!="nil")
      output += from_expr(ns, "", pre);
    else
      output += "?";

    output += ")";
  }

  debug(output);
}
void remove_virtual_functionst::get_functions(
  const exprt &function,
  functionst &functions)
{
  const irep_idt class_id=function.get(ID_C_class);
  const irep_idt component_name=function.get(ID_component_name);
  assert(!class_id.empty());
  functiont root_function;

  // Start from current class, go to parents until something
  // is found.
  irep_idt c=class_id;
  while(!c.empty())
  {
    exprt method=get_method(c, component_name);
    if(method.is_not_nil())
    {
      root_function.class_id=c;
      root_function.symbol_expr=to_symbol_expr(method);
      root_function.symbol_expr.set(ID_C_class, c);
      break; // abort
    }

    const class_hierarchyt::idst &parents=
      class_hierarchy.class_map[c].parents;

    if(parents.empty())
      break;
    c=parents.front();
  }

  if(root_function.class_id.empty())
  {
    // No definition here; this is an abstract function.
    root_function.class_id=class_id;
  }

  // iterate over all children, transitively
  std::set<irep_idt> visited;
  get_child_functions_rec(
    class_id,
    root_function.symbol_expr,
    component_name,
    functions,
    visited);

  if(root_function.symbol_expr!=symbol_exprt())
    functions.push_back(root_function);
}
/// add axioms stating that the return value for two equal string should be the
/// same
/// \par parameters: function application with one string argument
/// \return a string expression
symbol_exprt string_constraint_generatort::add_axioms_for_intern(
  const function_application_exprt &f)
{
  string_exprt str=add_axioms_for_string_expr(args(f, 1)[0]);
  const typet &return_type=f.type();
  typet index_type=str.length().type();

  // initialisation of the missing pool variable
  std::map<irep_idt, string_exprt>::iterator it;
  for(it=symbol_to_string.begin(); it!=symbol_to_string.end(); it++)
    if(pool.find(it->second)==pool.end())
      pool[it->second]=fresh_symbol("pool", return_type);

  // intern(str)=s_0 || s_1 || ...
  // for each string s.
  //    intern(str)=intern(s) || |str|!=|s|
  //    || (|str|==|s| &&exists i<|s|. s[i]!=str[i])

  exprt disj=false_exprt();
  for(it=symbol_to_string.begin(); it!=symbol_to_string.end(); it++)
    disj=or_exprt(
      disj, equal_exprt(pool[str], symbol_exprt(it->first, return_type)));

  axioms.push_back(disj);


  // WARNING: the specification may be incomplete or incorrect
  for(it=symbol_to_string.begin(); it!=symbol_to_string.end(); it++)
    if(it->second!=str)
    {
      symbol_exprt i=fresh_exist_index("index_intern", index_type);
      axioms.push_back(
        or_exprt(
          equal_exprt(pool[it->second], pool[str]),
          or_exprt(
            not_exprt(str.axiom_for_has_same_length_as(it->second)),
            and_exprt(
              str.axiom_for_has_same_length_as(it->second),
              and_exprt(
                not_exprt(equal_exprt(str[i], it->second[i])),
                and_exprt(str.axiom_for_is_strictly_longer_than(i),
                          axiom_for_is_positive_index(i)))))));
    }

  return pool[str];
}
예제 #9
0
파일: step_wp.cpp 프로젝트: bjowac/impara
exprt original(const exprt &src)
{
  if(src.id()==ID_symbol)
  {
    const std::string &identifier=id2string(to_symbol_expr(src).get_identifier());
    std::size_t pos=identifier.rfind('#');
    if(pos==std::string::npos) return src;
    return symbol_exprt(identifier.substr(0,pos), src.type());
  }

  if(src.has_operands())
  {
    exprt tmp=src;

    Forall_operands(it, tmp)
    {
      exprt tmp2=original(*it);
      *it=tmp2;
    }
예제 #10
0
파일: stack_depth.cpp 프로젝트: smaorus/rvt
symbol_exprt add_stack_depth_symbol(symbol_tablet &symbol_table)
{
  const irep_idt identifier="$stack_depth";
  signedbv_typet type(sizeof(int)*8);

  symbolt new_symbol;
  new_symbol.name=identifier;
  new_symbol.base_name=identifier;
  new_symbol.pretty_name=identifier;
  new_symbol.type=type;
  new_symbol.is_static_lifetime=true;
  new_symbol.value=from_integer(0, type);
  new_symbol.mode=ID_C;
  new_symbol.is_thread_local=true;
  new_symbol.is_lvalue=true;

  symbol_table.move(new_symbol);

  return symbol_exprt(identifier, type);
}
예제 #11
0
symbol_exprt goto_convertt::exception_flag()
{
  irep_idt id="$exception_flag";

  symbol_tablet::symbolst::const_iterator s_it=
    symbol_table.symbols.find(id);
  
  if(s_it==symbol_table.symbols.end())
  {
    symbolt new_symbol;
    new_symbol.base_name="$exception_flag";
    new_symbol.name=id;
    new_symbol.is_lvalue=true;
    new_symbol.is_thread_local=true;
    new_symbol.is_file_local=false;
    new_symbol.type=bool_typet();
    symbol_table.move(new_symbol);
  }
  
  return symbol_exprt(id, bool_typet());
}
예제 #12
0
void linkingt::duplicate_non_type_symbol(
  symbolt &old_symbol,
  symbolt &new_symbol)
{
  // We first take care of file-local non-type symbols.
  // These are static functions, or static variables
  // inside function bodies.
  if(new_symbol.is_file_local ||
     old_symbol.is_file_local)
  {
    // we just always rename these
    irep_idt old_identifier=new_symbol.name;
    irep_idt new_identifier=rename(old_identifier);
    replace_symbol.insert(
        old_identifier,
        symbol_exprt(new_identifier, new_symbol.type));

    new_symbol.name=new_identifier;
    
    // move over!
    bool result=main_context.move(new_symbol);
    assert(!result);
    
    return;
  }
  
  // see if it is a function or a variable

  bool is_code_old_symbol=old_symbol.type.id()==ID_code;
  bool is_code_new_symbol=new_symbol.type.id()==ID_code;

  if(is_code_old_symbol!=is_code_new_symbol)
  {
    err_location(new_symbol.location);
    str << "error: conflicting definition for symbol \""
        << old_symbol.display_name()
        << "\"" << std::endl;
    str << "old definition: " << to_string(old_symbol.type)
        << std::endl;
    str << "Module: " << old_symbol.module << std::endl;
    str << "new definition: " << to_string(new_symbol.type)
        << std::endl;
    str << "Module: " << new_symbol.module;
    throw 0;
  }

  if(is_code_old_symbol)
  {
    // Both are functions.
    // We don't compare the types, they will be too different;
    // we just care about the code

    if(!new_symbol.value.is_nil())
    {
      if(old_symbol.value.is_nil())
      {
        // the one with body wins!
        old_symbol.value=new_symbol.value;
        old_symbol.type=new_symbol.type; // for argument identifiers
      }
      else if(to_code_type(old_symbol.type).get_inlined())
      {
        // ok
      }
      else if(base_type_eq(old_symbol.type, new_symbol.type, ns))
      {
        // keep the one in old_symbol -- libraries come last!
        str << "warning: function `" << old_symbol.name << "' in module `" << 
          new_symbol.module << "' is shadowed by a definition in module `" << 
          old_symbol.module << "'";
        warning();
      }
      else
      {
        err_location(new_symbol.value);
        str << "error: duplicate definition of function `"
            << old_symbol.name
            << "'" << std::endl;
        str << "In module `" << old_symbol.module
            << "' and module `" << new_symbol.module << "'";
        throw 0;
      }
    }
  }
  else
  {
    // both are variables

    if(!base_type_eq(old_symbol.type, new_symbol.type, ns))
    {
      if(ns.follow(old_symbol.type).id()==ID_array &&
         ns.follow(new_symbol.type).id()==ID_array)
      {
        if(to_array_type(ns.follow(old_symbol.type)).size().is_nil() &&
           to_array_type(ns.follow(new_symbol.type)).size().is_not_nil())
          old_symbol.type=new_symbol.type; // store new type
      }
      else if(ns.follow(old_symbol.type).id()==ID_pointer &&
              ns.follow(new_symbol.type).id()==ID_array)
      {
        // store new type
        old_symbol.type=new_symbol.type;
      }
      else if(ns.follow(old_symbol.type).id()==ID_array &&
              ns.follow(new_symbol.type).id()==ID_pointer)
      {
        // ignore
      }
      else if(ns.follow(old_symbol.type).id()==ID_pointer &&
              ns.follow(new_symbol.type).id()==ID_pointer)
      {
        // ignore, generally ok
      }
      else if(old_symbol.type.id()==ID_incomplete_struct &&
              new_symbol.type.id()==ID_struct)
      {
        // store new type
        old_symbol.type=new_symbol.type;
      }
      else if(old_symbol.type.id()==ID_struct &&
              new_symbol.type.id()==ID_incomplete_struct)
      {
        // ignore
      }
      else
      {
        err_location(new_symbol.location);
        str << "error: conflicting definition for variable `"
            << old_symbol.name
            << "'" << std::endl;
        str << "old definition: " << to_string_verbose(old_symbol.type)
            << std::endl;
        str << "Module: " << old_symbol.module << std::endl;
        str << "new definition: " << to_string_verbose(new_symbol.type)
            << std::endl;
        str << "Module: " << new_symbol.module;
        throw 0;
      }
    }

    // care about initializers    

    if(!new_symbol.value.is_nil() &&
       !new_symbol.value.get_bool(ID_C_zero_initializer))
    {
      if(old_symbol.value.is_nil() ||
         old_symbol.value.get_bool(ID_C_zero_initializer))
      {
        // new_symbol wins
        old_symbol.value=new_symbol.value;
      }
      else
      {
        // try simplifier
        exprt tmp_old=old_symbol.value,
              tmp_new=new_symbol.value;
              
        simplify(tmp_old, ns);
        simplify(tmp_new, ns);
        
        if(base_type_eq(tmp_old, tmp_new, ns))
        {
          // ok, the same
        }
        else
        {
          err_location(new_symbol.value);
          str << "error: conflicting initializers for variable `"
              << old_symbol.name
              << "'" << std::endl;
          str << "old value: " << to_string(tmp_old)
              << std::endl;
          str << "Module: " << old_symbol.module << std::endl;
          str << "new value: " << to_string(tmp_new)
              << std::endl;
          str << "Module: " << new_symbol.module;
          throw 0;
        }
      }
    }
  }
}
예제 #13
0
codet java_bytecode_convertt::convert_instructions(
  const instructionst &instructions,
  const code_typet &method_type)
{
  // Run a worklist algorithm, assuming that the bytecode has not
  // been tampered with. See "Leroy, X. (2003). Java bytecode
  // verification: algorithms and formalizations. Journal of Automated
  // Reasoning, 30(3-4), 235-269." for a more complete treatment.

  // first pass: get targets and map addresses to instructions
  
  struct converted_instructiont
  {
    converted_instructiont(
      const instructionst::const_iterator &it,
      const codet &_code):source(it), code(_code), done(false)
    {
    }

    instructionst::const_iterator source;
    std::list<unsigned> successors;
    std::set<unsigned> predecessors;
    codet code;
    stackt stack;
    bool done;
  };
  
  typedef std::map<unsigned, converted_instructiont> address_mapt;
  address_mapt address_map;
  std::set<unsigned> targets;

  for(instructionst::const_iterator
      i_it=instructions.begin();
      i_it!=instructions.end();
      i_it++)
  {
    std::pair<address_mapt::iterator, bool> a_entry=
      address_map.insert(std::make_pair(
          i_it->address,
          converted_instructiont(i_it, code_skipt())));
    assert(a_entry.second);
    // addresses are strictly increasing, hence we must have inserted
    // a new maximal key
    assert(a_entry.first==--address_map.end());

    if(i_it->statement!="goto" &&
       i_it->statement!="return" &&
       !(i_it->statement==patternt("?return")) &&
       i_it->statement!="athrow")
    {
      instructionst::const_iterator next=i_it;
      if(++next!=instructions.end())
        a_entry.first->second.successors.push_back(next->address);
    }

    if(i_it->statement=="goto" ||
       i_it->statement==patternt("if_?cmp??") ||
       i_it->statement==patternt("if??") ||
       i_it->statement=="ifnonnull" ||
       i_it->statement=="ifnull")
    {
      assert(!i_it->args.empty());

      const unsigned target=safe_string2unsigned(
        id2string(to_constant_expr(i_it->args[0]).get_value()));
      targets.insert(target);

      a_entry.first->second.successors.push_back(target);
    }
    else if(i_it->statement=="tableswitch" ||
            i_it->statement=="lookupswitch")
    {
      bool is_label=true;
      for(instructiont::argst::const_iterator
          a_it=i_it->args.begin();
          a_it!=i_it->args.end();
          a_it++, is_label=!is_label)
      {
        if(is_label)
        {
          const unsigned target=safe_string2unsigned(
            id2string(to_constant_expr(*a_it).get_value()));
          targets.insert(target);
          a_entry.first->second.successors.push_back(target);
        }
      }
    }
  }

  for(address_mapt::iterator
      it=address_map.begin();
      it!=address_map.end();
      ++it)
  {
    for(unsigned s : it->second.successors)
    {
      address_mapt::iterator a_it=address_map.find(s);
      assert(a_it!=address_map.end());

      a_it->second.predecessors.insert(it->first);
    }
  }

  std::set<unsigned> working_set;
  if(!instructions.empty())
    working_set.insert(instructions.front().address);

  while(!working_set.empty())
  {
    std::set<unsigned>::iterator cur=working_set.begin();
    address_mapt::iterator a_it=address_map.find(*cur);
    assert(a_it!=address_map.end());
    working_set.erase(cur);

    if(a_it->second.done) continue;
    working_set.insert(a_it->second.successors.begin(),
                       a_it->second.successors.end());

    instructionst::const_iterator i_it=a_it->second.source;
    stack.swap(a_it->second.stack);
    a_it->second.stack.clear();
    codet &c=a_it->second.code;

    assert(stack.empty() ||
           a_it->second.predecessors.size()<=1 ||
           has_prefix(stack.front().get_string(ID_C_base_name),
                      "$stack"));

    irep_idt statement=i_it->statement;
    exprt arg0=i_it->args.size()>=1?i_it->args[0]:nil_exprt();
    exprt arg1=i_it->args.size()>=2?i_it->args[1]:nil_exprt();

    const bytecode_infot &bytecode_info=get_bytecode_info(statement);

    // deal with _idx suffixes
    if(statement.size()>=2 &&
       statement[statement.size()-2]=='_' &&
       isdigit(statement[statement.size()-1]))
    {
      arg0=constant_exprt(
        std::string(id2string(statement), statement.size()-1, 1),
        integer_typet());
      statement=std::string(id2string(statement), 0, statement.size()-2);
    }
    
    exprt::operandst op=pop(bytecode_info.pop);
    exprt::operandst results;
    results.resize(bytecode_info.push, nil_exprt());
    
    if(statement=="aconst_null")
    {
      assert(results.size()==1);
      results[0]=gen_zero(java_reference_type(void_typet()));
    }
    else if(statement=="athrow")
    {
      assert(op.size()==1 && results.size()==1);
      side_effect_expr_throwt throw_expr;
      throw_expr.add_source_location()=i_it->source_location;
      throw_expr.copy_to_operands(op[0]);
      c=code_expressiont(throw_expr);
      results[0]=op[0];
    }
    else if(statement=="checkcast")
    {
      // checkcast throws an exception in case a cast of object
      // on stack to given type fails.
      // The stack isn't modified.
      assert(op.size()==1 && results.size()==1);
      results[0]=op[0];
    }
    else if(statement=="invokedynamic")
    {
      // not used in Java
      code_typet &code_type=to_code_type(arg0.type());
      const code_typet::parameterst &parameters(code_type.parameters());

      pop(parameters.size());

      const typet &return_type=code_type.return_type();

      if(return_type.id()!=ID_empty)
      {
        results.resize(1);
        results[0]=nil_exprt();
      }
    }
    else if(statement=="invokeinterface" ||
            statement=="invokespecial" ||
            statement=="invokevirtual" ||
            statement=="invokestatic")
    {
      const bool use_this(statement != "invokestatic");
      const bool is_virtual(
        statement == "invokevirtual" || statement == "invokeinterface");
      
      code_typet &code_type=to_code_type(arg0.type());
      code_typet::parameterst &parameters(code_type.parameters());

      if(use_this)
      {
        if(parameters.empty() || !parameters[0].get_this())
        {
          const empty_typet empty;
          pointer_typet object_ref_type(empty);
          code_typet::parametert this_p(object_ref_type);
          this_p.set_this();
          this_p.set_base_name("this");
          parameters.insert(parameters.begin(), this_p);
        }
      }

      code_function_callt call;
      call.add_source_location()=i_it->source_location;
      call.arguments() = pop(parameters.size());

      // double-check a bit      
      if(use_this)
      {
        const exprt &this_arg=call.arguments().front();
        assert(this_arg.type().id()==ID_pointer);
      }
      
      // do some type adjustment for the arguments,
      // as Java promotes arguments

      for(unsigned i=0; i<parameters.size(); i++)
      {
        const typet &type=parameters[i].type();
        if(type==java_boolean_type() ||
           type==java_char_type() ||
           type==java_byte_type() ||
           type==java_short_type())
        {
          assert(i<call.arguments().size());
          call.arguments()[i].make_typecast(type);
        }
      }
      
      // do some type adjustment for return values

      const typet &return_type=code_type.return_type();

      if(return_type.id()!=ID_empty)
      {
        // return types are promoted in Java
        call.lhs()=tmp_variable("return", return_type);
        exprt promoted=java_bytecode_promotion(call.lhs());
        results.resize(1);
        results[0]=promoted;
      }

      assert(arg0.id()==ID_virtual_function);

      // does the function symbol exist?
      irep_idt id=arg0.get(ID_identifier);

      if(symbol_table.symbols.find(id)==symbol_table.symbols.end())
      {
        // no, create stub
        symbolt symbol;
        symbol.name=id;
        symbol.base_name=arg0.get(ID_C_base_name);
        symbol.type=arg0.type();
        symbol.value.make_nil();
        symbol.mode=ID_java;
        symbol_table.add(symbol);
      }

      if(is_virtual)
      {
        // dynamic binding
        assert(use_this);
        assert(!call.arguments().empty());
        call.function()=arg0;
      }
      else
      {
        // static binding
	/*if(id == "java::java.lang.String.charAt:(I)C")
	  call.function()=symbol_exprt("java::__CPROVER_uninterpreted_char_at", arg0.type());
	  else*/
	  call.function()=symbol_exprt(arg0.get(ID_identifier), arg0.type());

      }

      call.function().add_source_location()=i_it->source_location;
      c = call;
      
    }
    else if(statement=="return")
    {
      assert(op.empty() && results.empty());
      c=code_returnt();
    }
    else if(statement==patternt("?return"))
    {
      // Return types are promoted in java, so this might need
      // conversion.
      assert(op.size()==1 && results.empty());
      exprt r=op[0];
      if(r.type()!=method_return_type) r=typecast_exprt(r, method_return_type);
      c=code_returnt(r);
    }
    else if(statement==patternt("?astore"))
    {
      assert(op.size()==3 && results.empty());
      
      char type_char=statement[0];
      
      exprt pointer=
        typecast_exprt(op[0], java_array_type(type_char));

      const dereference_exprt deref(pointer, pointer.type().subtype());

      const member_exprt data_ptr(
        deref, "data", pointer_typet(java_type_from_char(type_char)));

      plus_exprt data_plus_offset(data_ptr, op[1], data_ptr.type());
      typet element_type=data_ptr.type().subtype();
      const dereference_exprt element(data_plus_offset, element_type);

      c=code_assignt(element, op[2]);
    }
    else if(statement==patternt("?store"))
    {
      // store value into some local variable
      assert(op.size()==1 && results.empty());

      exprt var=variable(arg0, statement[0]);
      
      const bool is_array('a' == statement[0]);
      
      if(is_array)
        var.type()=op[0].type();

      c=code_assignt(var, op[0]);
    }
    else if(statement==patternt("?aload"))
    {
      assert(op.size() == 2 && results.size() == 1);
      
      char type_char=statement[0];

      exprt pointer=
        typecast_exprt(op[0], java_array_type(type_char));

      const dereference_exprt deref(pointer, pointer.type().subtype());

      const member_exprt data_ptr(
        deref, "data", pointer_typet(java_type_from_char(type_char)));

      plus_exprt data_plus_offset(data_ptr, op[1], data_ptr.type());
      typet element_type=data_ptr.type().subtype();
      dereference_exprt element(data_plus_offset, element_type);

      results[0]=java_bytecode_promotion(element);
    }
    else if(statement==patternt("?load"))
    {
      // load a value from a local variable
      results[0]=variable(arg0, statement[0]);
    }
    else if(statement=="ldc" || statement=="ldc_w" ||
            statement=="ldc2" || statement=="ldc2_w")
    {
      assert(op.empty() && results.size()==1);
      
      // 1) Pushing a String causes a reference to a java.lang.String object
      // to be constructed and pushed onto the operand stack.

      // 2) Pushing an int or a float causes a primitive value to be pushed
      // onto the stack.
      
      // 3) Pushing a Class constant causes a reference to a java.lang.Class
      // to be pushed onto the operand stack
      
      if(arg0.id()==ID_java_string_literal)
      {
        // these need to be references to java.lang.String
        results[0]=arg0;
        symbol_typet string_type("java::java.lang.String");
        results[0].type()=pointer_typet(string_type);
      }
      else if(arg0.id()==ID_type)
      {
        irep_idt class_id=arg0.type().get(ID_identifier);
        symbol_typet java_lang_Class("java::java.lang.Class");
        symbol_exprt symbol_expr(id2string(class_id)+"@class_model", java_lang_Class);
        address_of_exprt address_of_expr(symbol_expr);
        results[0]=address_of_expr;
      }
      else if(arg0.id()==ID_constant)
      {
        results[0]=arg0;
      }
      else
      {
        error() << "unexpected ldc argument" << eom;
        throw 0;
      }
      
    }
    else if(statement=="goto" || statement=="goto_w")
    {
      assert(op.empty() && results.empty());
      irep_idt number=to_constant_expr(arg0).get_value();
      code_gotot code_goto(label(number));
      c=code_goto;
    }
    else if(statement=="iconst_m1")
    {
      assert(results.size()==1);
      results[0]=from_integer(-1, java_int_type());
    }
    else if(statement==patternt("?const"))
    {
      assert(results.size() == 1);

      const char type_char=statement[0];
      const bool is_double('d' == type_char);
      const bool is_float('f' == type_char);

      if(is_double || is_float)
      {
        const ieee_float_spect spec(
            is_float ?
                ieee_float_spect::single_precision() :
                ieee_float_spect::double_precision());

        ieee_floatt value(spec);
        const typet &arg_type(arg0.type());
        if(ID_integer == arg_type.id())
          value.from_integer(arg0.get_int(ID_value));
        else
          value.from_expr(to_constant_expr(arg0));

        results[0] = value.to_expr();
      }
      else
      {
        const unsigned int value(arg0.get_unsigned_int(ID_value));
        const typet type=java_type_from_char(statement[0]);
        results[0] = as_number(value, type);
      }
    }
    else if(statement==patternt("?ipush"))
    {
      assert(results.size()==1);
      results[0]=typecast_exprt(arg0, java_int_type());
    }
    else if(statement==patternt("if_?cmp??"))
    {
      irep_idt number=to_constant_expr(arg0).get_value();
      assert(op.size()==2 && results.empty());

      code_ifthenelset code_branch;
      const irep_idt cmp_op=get_if_cmp_operator(statement);
      
      binary_relation_exprt condition(op[0], cmp_op, op[1]);

      cast_if_necessary(condition);
      code_branch.cond()=condition;
      code_branch.then_case()=code_gotot(label(number));
      code_branch.then_case().add_source_location()=i_it->source_location;
      code_branch.add_source_location()=i_it->source_location;
      
      c=code_branch;
    }
    else if(statement==patternt("if??"))
    {
      const irep_idt id=
        statement=="ifeq"?ID_equal:
        statement=="ifne"?ID_notequal:
        statement=="iflt"?ID_lt:
        statement=="ifge"?ID_ge:
        statement=="ifgt"?ID_gt:
        statement=="ifle"?ID_le:
        (assert(false), "");

      irep_idt number=to_constant_expr(arg0).get_value();
      assert(op.size()==1 && results.empty());

      code_ifthenelset code_branch;
      code_branch.cond()=binary_relation_exprt(op[0], id, gen_zero(op[0].type()));
      code_branch.cond().add_source_location()=i_it->source_location;
      code_branch.then_case()=code_gotot(label(number));
      code_branch.then_case().add_source_location()=i_it->source_location;
      code_branch.add_source_location()=i_it->source_location;

      c=code_branch;
    }
    else if(statement==patternt("ifnonnull"))
    {
      irep_idt number=to_constant_expr(arg0).get_value();
      assert(op.size()==1 && results.empty());
      code_ifthenelset code_branch;
      const typecast_exprt lhs(op[0], pointer_typet());
      const exprt rhs(gen_zero(lhs.type()));
      code_branch.cond()=binary_relation_exprt(lhs, ID_notequal, rhs);
      code_branch.then_case()=code_gotot(label(number));
      code_branch.then_case().add_source_location()=i_it->source_location;
      code_branch.add_source_location()=i_it->source_location;

      c=code_branch;
    }
    else if(statement==patternt("ifnull"))
    {
      assert(op.size()==1 && results.empty());
      irep_idt number=to_constant_expr(arg0).get_value();
      code_ifthenelset code_branch;
      const typecast_exprt lhs(op[0], pointer_typet(empty_typet()));
      const exprt rhs(gen_zero(lhs.type()));
      code_branch.cond()=binary_relation_exprt(lhs, ID_equal, rhs);
      code_branch.then_case()=code_gotot(label(number));
      code_branch.then_case().add_source_location()=i_it->source_location;
      code_branch.add_source_location()=i_it->source_location;

      c=code_branch;
    }
    else if(statement=="iinc")
    {
      code_assignt code_assign;
      code_assign.lhs()=variable(arg0, 'i');
      code_assign.rhs()=plus_exprt(
                          variable(arg0, 'i'),
                          typecast_exprt(arg1, java_int_type()));
      c=code_assign;
    }
    else if(statement==patternt("?xor"))
    {
      assert(op.size()==2 && results.size()==1);
      results[0]=bitxor_exprt(op[0], op[1]);
    }
    else if(statement==patternt("?or"))
    {
      assert(op.size()==2 && results.size()==1);
      results[0]=bitor_exprt(op[0], op[1]);
    }
    else if(statement==patternt("?and"))
    {
      assert(op.size()==2 && results.size()==1);
      results[0]=bitand_exprt(op[0], op[1]);
    }
    else if(statement==patternt("?shl"))
    {
      assert(op.size()==2 && results.size()==1);
      results[0]=shl_exprt(op[0], op[1]);
    }
    else if(statement==patternt("?shr"))
    {
      assert(op.size()==2 && results.size()==1);
      results[0]=ashr_exprt(op[0], op[1]);
    }
    else if(statement==patternt("?ushr"))
    {
      assert(op.size()==2 && results.size()==1);
      const typet type(java_type_from_char(statement[0]));

      const unsigned int width(type.get_unsigned_int(ID_width));
      typet target=unsigned_long_int_type();
      target.set(ID_width, width);

      const typecast_exprt lhs(op[0], target);
      const typecast_exprt rhs(op[1], target);

      results[0]=lshr_exprt(lhs, rhs);
    }
    else if(statement==patternt("?add"))
    {
      assert(op.size()==2 && results.size()==1);
      results[0]=plus_exprt(op[0], op[1]);
    }
    else if(statement==patternt("?sub"))
    {
      assert(op.size()==2 && results.size()==1);
      results[0]=minus_exprt(op[0], op[1]);
    }
    else if(statement==patternt("?div"))
    {
      assert(op.size()==2 && results.size()==1);
      results[0]=div_exprt(op[0], op[1]);
    }
    else if(statement==patternt("?mul"))
    {
      assert(op.size()==2 && results.size()==1);
      results[0]=mult_exprt(op[0], op[1]);
    }
    else if(statement==patternt("?neg"))
    {
      assert(op.size()==1 && results.size()==1);
      results[0]=unary_minus_exprt(op[0], op[0].type());
    }
    else if(statement==patternt("?rem"))
    {
      assert(op.size()==2 && results.size()==1);
      if(statement=="frem" || statement=="drem")
        results[0]=rem_exprt(op[0], op[1]);
      else
        results[0]=mod_exprt(op[0], op[1]);
    }
    else if(statement==patternt("?cmp"))
    {
      assert(op.size() == 2 && results.size() == 1);

      // The integer result on the stack is:
      //  0 if op[0] equals op[1]
      // -1 if op[0] is less than op[1]
      //  1 if op[0] is greater than op[1]

      const typet t=java_int_type();

      results[0]=
        if_exprt(binary_relation_exprt(op[0], ID_equal, op[1]), gen_zero(t),
        if_exprt(binary_relation_exprt(op[0], ID_gt, op[1]), from_integer(1, t),
        from_integer(-1, t)));
    }
    else if(statement==patternt("?cmp?"))
    {
      assert(op.size()==2 && results.size()==1);
      const floatbv_typet type(to_floatbv_type(java_type_from_char(statement[0])));
      const ieee_float_spect spec(type);
      const ieee_floatt nan(ieee_floatt::NaN(spec));
      const constant_exprt nan_expr(nan.to_expr());
      const int nan_value(statement[4] == 'l' ? -1 : 1);
      const typet result_type(java_int_type());
      const exprt nan_result(from_integer(nan_value, result_type));

      // (value1 == NaN || value2 == NaN) ? nan_value : value1  < value2 ? -1 : value2 < value1  1 ? 1 : 0;
      // (value1 == NaN || value2 == NaN) ? nan_value : value1 == value2 ? 0  : value1 < value2 -1 ? 1 : 0;

      results[0]=
        if_exprt(or_exprt(ieee_float_equal_exprt(nan_expr, op[0]), ieee_float_equal_exprt(nan_expr, op[1])), nan_result,
        if_exprt(ieee_float_equal_exprt(op[0], op[1]), gen_zero(result_type),
        if_exprt(binary_relation_exprt(op[0], ID_lt, op[1]), from_integer(-1, result_type), from_integer(1, result_type))));
    }
    else if(statement==patternt("?cmpl"))
    {
      assert(op.size()==2 && results.size()==1);
      results[0]=binary_relation_exprt(op[0], ID_lt, op[1]);
    }
    else if(statement=="dup")
    {
      assert(op.size()==1 && results.size()==2);
      results[0]=results[1]=op[0];
    }
    else if(statement=="dup_x1")
    {
      assert(op.size()==2 && results.size()==3);
      results[0]=op[1];
      results[1]=op[0];
      results[2]=op[1];
    }
    else if(statement=="dup_x2")
    {
      assert(op.size()==3 && results.size()==4);
      results[0]=op[2];
      results[1]=op[0];
      results[2]=op[1];
      results[3]=op[2];
    }
    // dup2* behaviour depends on the size of the operands on the
    // stack
    else if(statement=="dup2")
    {
      assert(!stack.empty() && results.empty());

      if(stack.back().type().get_unsigned_int(ID_width)==32)
        op=pop(2);
      else
        op=pop(1);

      results.insert(results.end(), op.begin(), op.end());
      results.insert(results.end(), op.begin(), op.end());
    }
    else if(statement=="dup2_x1")
    {
      assert(!stack.empty() && results.empty());

      if(stack.back().type().get_unsigned_int(ID_width)==32)
        op=pop(3);
      else
        op=pop(2);

      results.insert(results.end(), op.begin()+1, op.end());
      results.insert(results.end(), op.begin(), op.end());
    }
    else if(statement=="dup2_x2")
    {
      assert(!stack.empty() && results.empty());

      if(stack.back().type().get_unsigned_int(ID_width)==32)
        op=pop(2);
      else
        op=pop(1);

      assert(!stack.empty());
      exprt::operandst op2;

      if(stack.back().type().get_unsigned_int(ID_width)==32)
        op2=pop(2);
      else
        op2=pop(1);

      results.insert(results.end(), op.begin(), op.end());
      results.insert(results.end(), op2.begin(), op2.end());
      results.insert(results.end(), op.begin(), op.end());
    }
    else if(statement=="dconst")
    {
      assert(op.empty() && results.size()==1);
    }
    else if(statement=="fconst")
    {
      assert(op.empty() && results.size()==1);
    }
    else if(statement=="getfield")
    {
      assert(op.size()==1 && results.size()==1);
      results[0]=to_member(op[0], arg0);
    }
    else if(statement=="getstatic")
    {
      assert(op.empty() && results.size()==1);
      symbol_exprt symbol_expr(arg0.type());
      symbol_expr.set_identifier(arg0.get_string(ID_class)+"."+arg0.get_string(ID_component_name));
      results[0]=symbol_expr;
    }
    else if(statement=="putfield")
    {
      assert(op.size()==2 && results.size()==0);
      c = code_assignt(to_member(op[0], arg0), op[1]);
    }
    else if(statement=="putstatic")
    {
      assert(op.size()==1 && results.empty());
      symbol_exprt symbol_expr(arg0.type());
      symbol_expr.set_identifier(arg0.get_string(ID_class)+"."+arg0.get_string(ID_component_name));
      c=code_assignt(symbol_expr, op[0]);
    }
    else if(statement==patternt("?2?")) // i2c etc.
    {
      assert(op.size()==1 && results.size()==1);
      results[0]=typecast_exprt(op[0], java_type_from_char(statement[2]));
    }
    else if(statement=="new")
    {
      // use temporary since the stack symbol might get duplicated
      assert(op.empty() && results.size()==1);
      const pointer_typet ref_type(arg0.type());
      exprt java_new_expr=side_effect_exprt(ID_java_new, ref_type);

      if(!i_it->source_location.get_line().empty())
        java_new_expr.add_source_location()=i_it->source_location;

      const exprt tmp=tmp_variable("new", ref_type);
      c=code_assignt(tmp, java_new_expr);
      results[0]=tmp;
    }
    else if(statement=="newarray" ||
            statement=="anewarray")
    {
      // the op is the array size
      assert(op.size()==1 && results.size()==1);

      char element_type;
      
      if(statement=="newarray")
      {
        irep_idt id=arg0.type().id();

        if(id==ID_bool)
          element_type='z';
        else if(id==ID_char)
          element_type='c';
        else if(id==ID_float)
          element_type='f';
        else if(id==ID_double)
          element_type='d';
        else if(id==ID_byte)
          element_type='b';
        else if(id==ID_short)
          element_type='s';
        else if(id==ID_int)
          element_type='i';
        else if(id==ID_long)
          element_type='j';
        else
          element_type='?';
      }
      else
        element_type='a';

      const pointer_typet ref_type=java_array_type(element_type);

      side_effect_exprt java_new_array(ID_java_new_array, ref_type);
      java_new_array.copy_to_operands(op[0]);

      if(!i_it->source_location.get_line().empty())
        java_new_array.add_source_location()=i_it->source_location;

      const exprt tmp=tmp_variable("newarray", ref_type);
      c=code_assignt(tmp, java_new_array);
      results[0]=tmp;
    }
    else if(statement=="multianewarray")
    {
      // The first argument is the type, the second argument is the dimension.
      // The size of each dimension is on the stack.
      irep_idt number=to_constant_expr(arg1).get_value();
      unsigned dimension=safe_c_str2unsigned(number.c_str());

      op=pop(dimension);
      assert(results.size()==1);

      // arg0.type()
      const pointer_typet ref_type=java_array_type('a');

      side_effect_exprt java_new_array(ID_java_new_array, ref_type);
      java_new_array.operands()=op;

      if(!i_it->source_location.get_line().empty())
        java_new_array.add_source_location()=i_it->source_location;

      const exprt tmp=tmp_variable("newarray", ref_type);
      c=code_assignt(tmp, java_new_array);
      results[0]=tmp;
    }
    else if(statement=="arraylength")
    {
      assert(op.size()==1 && results.size()==1);

      exprt pointer=
        typecast_exprt(op[0], java_array_type(statement[0]));

      const dereference_exprt array(pointer, pointer.type().subtype());
      assert(pointer.type().subtype().id()==ID_symbol);

      const member_exprt length(array, "length", java_int_type());

      results[0]=length;
    }
    else if(statement=="tableswitch" ||
            statement=="lookupswitch")
    {
      assert(op.size()==1 && results.size()==0);

      // we turn into switch-case
      code_switcht code_switch;
      code_switch.add_source_location()=i_it->source_location;
      code_switch.value()=op[0];
      code_blockt code_block;
      code_block.add_source_location()=i_it->source_location;

      bool is_label=true;
      for(instructiont::argst::const_iterator
          a_it=i_it->args.begin();
          a_it!=i_it->args.end();
          a_it++, is_label=!is_label)
      {
        if(is_label)
        {
          code_switch_caset code_case;
          code_case.add_source_location()=i_it->source_location;

          irep_idt number=to_constant_expr(*a_it).get_value();
          code_case.code()=code_gotot(label(number));
          code_case.code().add_source_location()=i_it->source_location;
        
          if(a_it==i_it->args.begin())
            code_case.set_default();
          else
          {
            instructiont::argst::const_iterator prev=a_it;
            prev--;
            code_case.case_op()=typecast_exprt(*prev, op[0].type());
            code_case.case_op().add_source_location()=i_it->source_location;
          }
          
          code_block.add(code_case);
        }
      }
      
      code_switch.body()=code_block;
      c=code_switch;
    }
    else if(statement=="pop" || statement=="pop2")
    {
      // these are skips
      c=code_skipt();

      // pop2 removes two single-word items from the stack (e.g. two
      // integers, or an integer and an object reference) or one
      // two-word item (i.e. a double or a long).
      // http://cs.au.dk/~mis/dOvs/jvmspec/ref-pop2.html
      if(statement=="pop2" &&
         op[0].type().get_unsigned_int(ID_width)==32)
        pop(1);
    }
    else if(statement=="instanceof")
    {
      assert(op.size()==1 && results.size()==1);

      results[0]=
        binary_predicate_exprt(op[0], "java_instanceof", arg0);
    }
    else
    {
      c=codet(statement);
      c.operands()=op;
    }
    
    if(!i_it->source_location.get_line().empty())
      c.add_source_location()=i_it->source_location;

    push(results);

    a_it->second.done=true;
    for(std::list<unsigned>::iterator
        it=a_it->second.successors.begin();
        it!=a_it->second.successors.end();
        ++it)
    {
      address_mapt::iterator a_it2=address_map.find(*it);
      assert(a_it2!=address_map.end());

      if(!stack.empty() && a_it2->second.predecessors.size()>1)
      {
        // copy into temporaries
        code_blockt more_code;

        // introduce temporaries when successor is seen for the first
        // time
        if(a_it2->second.stack.empty())
        {
          for(stackt::iterator s_it=stack.begin();
              s_it!=stack.end();
              ++s_it)
          {
            symbol_exprt lhs=tmp_variable("$stack", s_it->type());
            code_assignt a(lhs, *s_it);
            more_code.copy_to_operands(a);

            s_it->swap(lhs);
          }
        }
        else
        {
          assert(a_it2->second.stack.size()==stack.size());
          stackt::const_iterator os_it=a_it2->second.stack.begin();
          for(stackt::iterator s_it=stack.begin();
              s_it!=stack.end();
              ++s_it)
          {
            assert(has_prefix(os_it->get_string(ID_C_base_name),
                              "$stack"));
            symbol_exprt lhs=to_symbol_expr(*os_it);
            code_assignt a(lhs, *s_it);
            more_code.copy_to_operands(a);

            s_it->swap(lhs);
            ++os_it;
          }
        }

        if(results.empty())
        {
          more_code.copy_to_operands(c);
          c.swap(more_code);
        }
        else
        {
          c.make_block();
          forall_operands(o_it, more_code)
            c.copy_to_operands(*o_it);
        }
      }

      a_it2->second.stack=stack;
    }
  }

  // TODO: add exception handlers from exception table
  // review successor computation of athrow!
  code_blockt code;
  
  // temporaries
  for(const auto & var : tmp_vars)
  {
    code.add(code_declt(var));
  }

  for(const auto & it : address_map)
  {
    const unsigned address=it.first;
    assert(it.first==it.second.source->address);
    const codet &c=it.second.code;

    if(targets.find(address)!=targets.end())
      code.add(code_labelt(label(i2string(address)), c));
    else if(c.get_statement()!=ID_skip)
      code.add(c);
  }

  return code;
}
예제 #14
0
symbol_exprt shared_accesst::thread_symbol(unsigned t)
{
  std::string thread_id="thread#"+std::to_string(t);
  return symbol_exprt(thread_id);
}
void cpp_typecheckt::typecheck_compound_declarator(
  const symbolt &symbol,
  const cpp_declarationt &declaration,
  cpp_declaratort &declarator,
  struct_typet::componentst &components,
  const irep_idt &access,
  bool is_static,
  bool is_typedef,
  bool is_mutable)
{
  bool is_cast_operator=
    declaration.type().id()=="cpp-cast-operator";

  if(is_cast_operator)
  {
    assert(declarator.name().get_sub().size()==2 &&
           declarator.name().get_sub().front().id()==ID_operator);

    typet type=static_cast<typet &>(declarator.name().get_sub()[1]);
    declarator.type().subtype()=type;

    irept name(ID_name);
    name.set(ID_identifier, "("+cpp_type2name(type)+")");
    declarator.name().get_sub().back().swap(name);
  }

  typet final_type=
    declarator.merge_type(declaration.type());

  // this triggers template elaboration
  elaborate_class_template(final_type);

  typecheck_type(final_type);
  
  cpp_namet cpp_name;
  cpp_name.swap(declarator.name());
  
  irep_idt base_name;
  
  if(cpp_name.is_nil())
  {
    // Yes, there can be members without name.
    base_name=irep_idt();
  }
  else if(cpp_name.is_simple_name())
  {
    base_name=cpp_name.get_base_name();
  }
  else
  {
    err_location(cpp_name.location());
    str << "declarator in compound needs to be simple name";
    throw 0;
  }


  bool is_method=!is_typedef && final_type.id()==ID_code;
  bool is_constructor=declaration.is_constructor();
  bool is_destructor=declaration.is_destructor();
  bool is_virtual=declaration.member_spec().is_virtual();
  bool is_explicit=declaration.member_spec().is_explicit();
  bool is_inline=declaration.member_spec().is_inline();

  final_type.set(ID_C_member_name, symbol.name);

  // first do some sanity checks

  if(is_virtual && !is_method)
  {
    err_location(cpp_name.location());
    str << "only methods can be virtual";
    throw 0;
  }

  if(is_inline && !is_method)
  {
    err_location(cpp_name.location());
    str << "only methods can be inlined";
    throw 0;
  }

  if(is_virtual && is_static)
  {
    err_location(cpp_name.location());
    str << "static methods cannot be virtual";
    throw 0;
  }

  if(is_cast_operator && is_static)
  {
    err_location(cpp_name.location());
    str << "cast operators cannot be static`";
    throw 0;
  }

  if(is_constructor && is_virtual)
  {
    err_location(cpp_name.location());
    str << "constructors cannot be virtual";
    throw 0;
  }

  if(!is_constructor && is_explicit)
  {
    err_location(cpp_name.location());
    str << "only constructors can be explicit";
    throw 0;
  }

  if(is_constructor &&
     base_name!=id2string(symbol.base_name))
  {
    err_location(cpp_name.location());
    str << "member function must return a value or void";
    throw 0;
  }

  if(is_destructor &&
     base_name!="~"+id2string(symbol.base_name))
  {
    err_location(cpp_name.location());
    str << "destructor with wrong name";
    throw 0;
  }

  // now do actual work

  struct_typet::componentt component;

  irep_idt identifier=
    language_prefix+
    cpp_scopes.current_scope().prefix+
    id2string(base_name);

  component.set(ID_name, identifier);
  component.type()=final_type;
  component.set(ID_access, access);
  component.set(ID_base_name, base_name);
  component.set(ID_pretty_name, base_name);
  component.location()=cpp_name.location();

  if(cpp_name.is_operator())
  {
    component.set("is_operator", true);
    component.type().set("#is_operator", true);
  }

  if(is_cast_operator)
    component.set("is_cast_operator", true);

  if(declaration.member_spec().is_explicit())
    component.set("is_explicit", true);

  typet &method_qualifier=
    (typet &)declarator.add("method_qualifier");

  if(is_static)
  {
    component.set(ID_is_static, true);
    component.type().set("#is_static", true);
  }

  if(is_typedef)
    component.set("is_type", true);

  if(is_mutable)
    component.set("is_mutable", true);

  exprt &value=declarator.value();
  irept &initializers=declarator.member_initializers();

  if(is_method)
  {
    component.set(ID_is_inline, declaration.member_spec().is_inline());

    // the 'virtual' name of the function
    std::string virtual_name=
    component.get_string(ID_base_name)+
      id2string(
        function_identifier(static_cast<const typet &>(component.find(ID_type))));

    if(method_qualifier.id()==ID_const)
      virtual_name += "$const";

    if(component.type().get(ID_return_type) == ID_destructor)
      virtual_name= "@dtor";
    
    // The method may be virtual implicitly.
    std::set<irep_idt> virtual_bases;

    for(struct_typet::componentst::const_iterator
        it=components.begin();
        it!=components.end();
        it++)
    {
      if(it->get_bool("is_virtual"))
      {
        if(it->get("virtual_name")==virtual_name)
        {
          is_virtual=true;
          const code_typet& code_type = to_code_type(it->type());
          assert(code_type.arguments().size()>0);
          const typet& pointer_type = code_type.arguments()[0].type();
          assert(pointer_type.id() == ID_pointer);
          virtual_bases.insert(pointer_type.subtype().get(ID_identifier));
        }
      }
    }

    if(!is_virtual)
    {
      typecheck_member_function(
        symbol.name, component, initializers,
        method_qualifier, value);

      if(!value.is_nil() && !is_static)
      {
        err_location(cpp_name.location());
        str << "no initialization allowed here";
        throw 0;
      }
    }
    else // virtual
    {
      component.type().set("#is_virtual", true);
      component.type().set("#virtual_name",virtual_name);

      // Check if it is a pure virtual method
      if(is_virtual)
      {
        if(value.is_not_nil() && value.id() == ID_constant)
        {
          mp_integer i;
          to_integer(value, i);
          if(i!=0)
          {
            err_location(declarator.name().location());
            str << "expected 0 to mark pure virtual method, got " << i;
          }
          component.set("is_pure_virtual", true);
          value.make_nil();
        }
      }

      typecheck_member_function(
        symbol.name,
        component,
        initializers,
        method_qualifier,
        value);

      // get the virtual-table symbol type
      irep_idt vt_name = "virtual_table::"+symbol.name.as_string();

      contextt::symbolst::iterator vtit =
        context.symbols.find(vt_name);

      if(vtit == context.symbols.end())
      {
        // first time: create a virtual-table symbol type 
        symbolt vt_symb_type;
        vt_symb_type.name= vt_name;
        vt_symb_type.base_name="virtual_table::"+symbol.base_name.as_string();
        vt_symb_type.pretty_name = vt_symb_type.base_name;
        vt_symb_type.mode=ID_cpp;
        vt_symb_type.module=module;
        vt_symb_type.location=symbol.location;
        vt_symb_type.type = struct_typet();
        vt_symb_type.type.set(ID_name, vt_symb_type.name);
        vt_symb_type.is_type = true;

        bool failed = context.move(vt_symb_type);
        assert(!failed);
        vtit = context.symbols.find(vt_name);

        // add a virtual-table pointer 
        struct_typet::componentt compo;
        compo.type() = pointer_typet(symbol_typet(vt_name));
        compo.set_name(symbol.name.as_string() +"::@vtable_pointer");
        compo.set(ID_base_name, "@vtable_pointer");
        compo.set(ID_pretty_name, symbol.base_name.as_string() +"@vtable_pointer");
        compo.set("is_vtptr", true);
        compo.set(ID_access, ID_public);
        components.push_back(compo);
        put_compound_into_scope(compo);
      }
      
      assert(vtit->second.type.id()==ID_struct);

      struct_typet &virtual_table=
        to_struct_type(vtit->second.type);

      component.set("virtual_name", virtual_name);
      component.set("is_virtual", is_virtual);

      // add an entry to the virtual table
      struct_typet::componentt vt_entry;
      vt_entry.type() = pointer_typet(component.type());
      vt_entry.set_name(vtit->first.as_string()+"::"+virtual_name);
      vt_entry.set(ID_base_name, virtual_name);
      vt_entry.set(ID_pretty_name, virtual_name);
      vt_entry.set(ID_access, ID_public);
      vt_entry.location() = symbol.location;
      virtual_table.components().push_back(vt_entry);

      // take care of overloading
      while(!virtual_bases.empty())
      {
        irep_idt virtual_base = *virtual_bases.begin();

        // a new function that does 'late casting' of the 'this' parameter
        symbolt func_symb;
        func_symb.name=component.get_name().as_string() + "::" +virtual_base.as_string();
        func_symb.base_name=component.get(ID_base_name);
        func_symb.pretty_name = component.get(ID_base_name);
        func_symb.mode=ID_cpp;
        func_symb.module=module;
        func_symb.location=component.location();
        func_symb.type=component.type();

        // change the type of the 'this' pointer
        code_typet& code_type = to_code_type(func_symb.type);
        code_typet::argumentt& arg= code_type.arguments().front();
        arg.type().subtype().set(ID_identifier, virtual_base);

        // create symbols for the arguments
        code_typet::argumentst& args =  code_type.arguments();
        for(unsigned i=0; i<args.size(); i++)
        {
          code_typet::argumentt& arg = args[i];
          irep_idt base_name = arg.get_base_name();

          if(base_name==irep_idt())
            base_name="arg"+i2string(i);

          symbolt arg_symb;
          arg_symb.name = func_symb.name.as_string() + "::"+ base_name.as_string();
          arg_symb.base_name = base_name;
          arg_symb.pretty_name = base_name;
          arg_symb.mode=ID_cpp;
          arg_symb.location=func_symb.location;
          arg_symb.type = arg.type();

          arg.set(ID_C_identifier, arg_symb.name);

          // add the argument to the symbol table
          bool failed = context.move(arg_symb);
          assert(!failed);
        }

        // do the body of the function
        typecast_exprt late_cast(to_code_type(component.type()).arguments()[0].type());

        late_cast.op0()=
          symbol_expr(namespacet(context).lookup(
            args[0].get(ID_C_identifier)));
        
        if(code_type.return_type().id()!=ID_empty &&
           code_type.return_type().id()!=ID_destructor)
        {
          side_effect_expr_function_callt expr_call;
          expr_call.function() = symbol_exprt(component.get_name(),component.type());
          expr_call.type() = to_code_type(component.type()).return_type();
          expr_call.arguments().reserve(args.size());
          expr_call.arguments().push_back(late_cast);

          for(unsigned i=1; i < args.size(); i++)
          {
            expr_call.arguments().push_back(
              symbol_expr(namespacet(context).lookup(
                args[i].get(ID_C_identifier))));
          }

          code_returnt code_return;
          code_return.return_value() = expr_call;

          func_symb.value = code_return;
        }
        else
        {
          code_function_callt code_func;
          code_func.function() = symbol_exprt(component.get_name(),component.type());
          code_func.arguments().reserve(args.size());
          code_func.arguments().push_back(late_cast);

          for(unsigned i=1; i < args.size(); i++)
          {
            code_func.arguments().push_back(
              symbol_expr(namespacet(context).lookup(
                args[i].get(ID_C_identifier))));
          }

          func_symb.value = code_func;
        }

        // add this new function to the list of components
        
        struct_typet::componentt new_compo = component;
        new_compo.type() = func_symb.type;
        new_compo.set_name(func_symb.name);
        components.push_back(new_compo);

        // add the function to the symbol table
        {
          bool failed = context.move(func_symb);
          assert(!failed);
        }

        // next base
        virtual_bases.erase(virtual_bases.begin());
      }
    }
  }
  
  if(is_static && !is_method) // static non-method member
  {
    // add as global variable to context
    symbolt static_symbol;
    static_symbol.mode=symbol.mode;
    static_symbol.name=identifier;
    static_symbol.type=component.type();
    static_symbol.base_name=component.get(ID_base_name);
    static_symbol.lvalue=true;
    static_symbol.static_lifetime=true;
    static_symbol.location=cpp_name.location();
    static_symbol.is_extern=true;
    
    // TODO: not sure about this: should be defined separately!
    dynamic_initializations.push_back(static_symbol.name);

    symbolt *new_symbol;
    if(context.move(static_symbol, new_symbol))
    {
      err_location(cpp_name.location());
	str << "redeclaration of static member `" 
	    << static_symbol.base_name.as_string()
	    << "'";
      throw 0;
    }

    if(value.is_not_nil())
    {
      if(cpp_is_pod(new_symbol->type))
      {
        new_symbol->value.swap(value);
        c_typecheck_baset::do_initializer(*new_symbol);

        // these are macros if they are PODs and come with a (constant) value
        if(new_symbol->type.get_bool(ID_C_constant))
        {
          simplify(new_symbol->value, *this);
          new_symbol->is_macro=true;
        }
      }
      else
      {
        symbol_exprt symexpr;
        symexpr.set_identifier(new_symbol->name);

        exprt::operandst ops;
        ops.push_back(value);
        codet defcode =
          cpp_constructor(locationt(), symexpr, ops);

        new_symbol->value.swap(defcode);
      }
    }
  }

  // array members must have fixed size
  check_fixed_size_array(component.type());

  put_compound_into_scope(component);

  components.push_back(component);
}
예제 #16
0
void goto_inlinet::parameter_assignments(
  const source_locationt &source_location,
  const irep_idt &function_name,
  const code_typet &code_type,
  const exprt::operandst &arguments,
  goto_programt &dest)
{
  // iterates over the operands
  exprt::operandst::const_iterator it1=arguments.begin();

  const code_typet::parameterst &parameter_types=
    code_type.parameters();
  
  // iterates over the types of the parameters
  for(code_typet::parameterst::const_iterator
      it2=parameter_types.begin();
      it2!=parameter_types.end();
      it2++)
  {
    const code_typet::parametert &parameter=*it2;

    // this is the type the n-th argument should be
    const typet &par_type=ns.follow(parameter.type());

    const irep_idt &identifier=parameter.get_identifier();

    if(identifier==irep_idt())
    {
      error().source_location=source_location;
      error() << "no identifier for function parameter" << eom;
      throw 0;
    }

    {
      const symbolt &symbol=ns.lookup(identifier);

      goto_programt::targett decl=dest.add_instruction();
      decl->make_decl();
      decl->code=code_declt(symbol.symbol_expr());
      decl->code.add_source_location()=source_location;
      decl->source_location=source_location;
      decl->function=function_name; 
    }

    // this is the actual parameter
    exprt actual;

    // if you run out of actual arguments there was a mismatch
    if(it1==arguments.end())
    {
      warning().source_location=source_location;
      warning() << "call to `" << function_name << "': "
                << "not enough arguments, "
                << "inserting non-deterministic value" << eom;

      actual=side_effect_expr_nondett(par_type);
    }
    else
      actual=*it1;

    // nil means "don't assign"
    if(actual.is_nil())
    {    
    }
    else
    {
      // it should be the same exact type as the parameter,
      // subject to some exceptions
      if(!base_type_eq(par_type, actual.type(), ns))
      {
        const typet &f_partype = ns.follow(par_type);
        const typet &f_acttype = ns.follow(actual.type());
        
        // we are willing to do some conversion
        if((f_partype.id()==ID_pointer &&
            f_acttype.id()==ID_pointer) ||
           (f_partype.id()==ID_pointer &&
            f_acttype.id()==ID_array &&
            f_partype.subtype()==f_acttype.subtype()))
        {
          actual.make_typecast(par_type);
        }
        else if((f_partype.id()==ID_signedbv ||
                 f_partype.id()==ID_unsignedbv ||
                 f_partype.id()==ID_bool) &&
                (f_acttype.id()==ID_signedbv ||
                 f_acttype.id()==ID_unsignedbv ||
                 f_acttype.id()==ID_bool))  
        {
          actual.make_typecast(par_type);
        }
        else
        {
          error().source_location=actual.find_source_location();

          error() << "function call: argument `" << identifier
                  << "' type mismatch: argument is `"
                  // << from_type(ns, identifier, actual.type())
                  << actual.type().pretty()
                  << "', parameter is `"
                  << from_type(ns, identifier, par_type)
                  << "'" << eom;
          throw 0;
        }
      }

      // adds an assignment of the actual parameter to the formal parameter
      code_assignt assignment(symbol_exprt(identifier, par_type), actual);
      assignment.add_source_location()=source_location;

      dest.add_instruction(ASSIGN);
      dest.instructions.back().source_location=source_location;
      dest.instructions.back().code.swap(assignment);
      dest.instructions.back().function=function_name;      
    }

    if(it1!=arguments.end())
      ++it1;
  }

  if(it1!=arguments.end())
  {
    // too many arguments -- we just ignore that, no harm done
  }
}
예제 #17
0
std::pair<exprt,exprt> ranking_synthesis_qbf_bitwiset::affine_template(
  const irep_idt &termOp,
  const irep_idt &coefOp)
{
  exprt function;
  replace_mapt pre_replace_map;

  for(bodyt::variable_mapt::const_iterator it=body.variable_map.begin();
      it!=body.variable_map.end();
      it++)
  {
    if(used_variables.find(it->first)==used_variables.end())
      continue;
    
    exprt postsym=symbol_exprt(it->first, ns.lookup(it->first).type);
    exprt presym=symbol_exprt(it->second, ns.lookup(it->second).type);
        
    pre_replace_map[postsym] = presym; // save the corresponding pre-var
    exprt var=postsym;
    adjust_type(var.type());

    exprt co = coefficient(var);
    irep_idt bitop = (coefOp==ID_and)      ? ID_bitand :
                     (coefOp==ID_or)       ? ID_bitor  :
                     (coefOp==ID_notequal) ? ID_bitxor : 
                                             "";

    exprt varblock(bitop, var.type());
    varblock.copy_to_operands(var, co);

    exprt bchain = bitwise_chain(termOp, varblock);

    if(it==body.variable_map.begin()) // first one
      function=bchain;
    else
    {
      if(termOp==ID_notequal)
      {
        exprt t(ID_equal, bool_typet());
        t.move_to_operands(function);
        t.move_to_operands(bchain);
        function=not_exprt(t);
      }
      else
      {
        exprt t(termOp, bool_typet());
        t.move_to_operands(function);
        t.move_to_operands(bchain);
        function=t;
      }
    }
  }

  // ... and a constant coefficient
  symbol_exprt const_sym(CONSTANT_COEFFICIENT_ID, bool_typet());
  const_coefficient=coefficient(const_sym);

  
  if(termOp==ID_notequal)
  {
    exprt t(ID_equal, bool_typet());
    t.move_to_operands(function);
    t.copy_to_operands(const_coefficient);
    function = not_exprt(t);
  }
  else
  {
    exprt t(termOp, bool_typet());
    t.move_to_operands(function);
    t.copy_to_operands(const_coefficient);
    function = t;
  }

  exprt pre_function=function;
  replace_expr(pre_replace_map, pre_function);

  return std::pair<exprt,exprt>(pre_function, function);
}
예제 #18
0
void ranking_synthesis_qbf_bitwiset::quantify_variables(
  boolbvt &converter,
  qdimacs_coret &solver)
{
  // first quantify all coefficients; those have to be constants
  for(coefficient_mapt::const_iterator it=coefficient_map.begin();
      it!=coefficient_map.end();
      it++)
  {
    const exprt &c = it->second;

    const exprt *sym=&c;
    while(sym->id()==ID_typecast)
      sym=&sym->op0();

    exprt nsym(*sym);
    std::string original_id=sym->get_string(ID_identifier);
    //base_type(nsym, ns);

    for(unsigned i=0; i<bitwise_width; i++)
    {
      if(i!=0) nsym.set(ID_identifier, original_id + "@" + i2string(i));
      quantify_variable(converter, solver, nsym, false);
    }
  }

  for(bodyt::variable_mapt::const_iterator it=body.variable_map.begin();
      it!=body.variable_map.end();
      it++)
  {    
    if(used_variables.find(it->first)==used_variables.end())
      continue;
    
    exprt presym=symbol_exprt(it->second, ns.lookup(it->second).type);    
    //base_type(presym, ns);
    
    #if 0
    std::cout << "Quantifying " << from_expr(pre) << " (" <<
      from_expr(post) << ")" << std::endl;
    #endif

    quantify_variable(converter, solver, presym, true); // x
  }

  for(intermediate_statet::const_iterator it=intermediate_state.begin();
      it!=intermediate_state.end();
      it++)
  {
    if(used_variables.find(*it)==used_variables.end())
        continue;
    
    irep_idt ident=(id2string(*it).substr(0, id2string(*it).rfind('@')));
    ident=(id2string(ident).substr(0, id2string(ident).rfind('#')));
    exprt symbol=symbol_exprt(ident, ns.lookup(ident).type);
    //base_type(symbol, ns);
    
    quantify_variable(converter, solver, symbol, true);
  }

  for(bodyt::variable_mapt::const_iterator it=body.variable_map.begin();
      it!=body.variable_map.end();
      it++)
  {
    if(used_variables.find(it->first)==used_variables.end())
      continue;
    
    exprt postsym=symbol_exprt(it->first, ns.lookup(it->first).type);
    //base_type(postsym, ns);
    
    // we assume that x' is determined by R(x,x')
    quantify_variable(converter, solver, postsym, true); // x'
  }

}
예제 #19
0
ssa_objectt local_SSAt::guard_symbol() const
{
  return ssa_objectt(symbol_exprt("ssa::$guard", bool_typet()), ns);
}
예제 #20
0
cpp_scopet &cpp_typecheckt::typecheck_template_parameters(
  template_typet &type)
{
  cpp_save_scopet cpp_saved_scope(cpp_scopes);

  assert(type.id()==ID_template);

  std::string id_suffix="template::"+i2string(template_counter++);

  // produce a new scope for the template parameters
  cpp_scopet &template_scope=
    cpp_scopes.current_scope().new_scope(
      cpp_scopes.current_scope().prefix+id_suffix);

  template_scope.prefix=template_scope.get_parent().prefix+id_suffix;
  template_scope.id_class=cpp_idt::TEMPLATE_SCOPE;

  cpp_scopes.go_to(template_scope);

  // put template parameters into this scope
  template_typet::template_parameterst &parameters=
    type.template_parameters();

  unsigned anon_count=0;

  for(template_typet::template_parameterst::iterator
      it=parameters.begin();
      it!=parameters.end();
      it++)
  {
    exprt &parameter=*it;

    cpp_declarationt declaration;
    declaration.swap(static_cast<cpp_declarationt &>(parameter));
    
    cpp_declarator_convertert cpp_declarator_converter(*this);

    // there must be _one_ declarator
    assert(declaration.declarators().size()==1);

    cpp_declaratort &declarator=declaration.declarators().front();

    // it may be anonymous
    if(declarator.name().is_nil())
    {
      irept name(ID_name);
      name.set(ID_identifier, "anon#"+i2string(++anon_count));
      declarator.name()=cpp_namet();
      declarator.name().get_sub().push_back(name);
    }

    #if 1
    // The declarator needs to be just a name
    if(declarator.name().get_sub().size()!=1 ||
       declarator.name().get_sub().front().id()!=ID_name)
    {
      err_location(declaration);
      throw "template parameter must be simple name";
    }
    
    cpp_scopet &scope=cpp_scopes.current_scope();
    
    irep_idt base_name=declarator.name().get_sub().front().get(ID_identifier);
    irep_idt identifier=scope.prefix+id2string(base_name);
    
    // add to scope
    cpp_idt &id=scope.insert(base_name);
    id.identifier=identifier;
    id.id_class=cpp_idt::TEMPLATE_PARAMETER;
    
    // is it a type or not?
    if(declaration.get_bool(ID_is_type))
    {
      parameter=exprt(ID_type, typet(ID_symbol));
      parameter.type().set(ID_identifier, identifier);
      parameter.type().add_source_location()=declaration.find_source_location();
    }
    else
    {
      // The type is not checked, as it might depend
      // on earlier parameters.
      typet type=declaration.type();
      parameter=symbol_exprt(identifier, type);
    }

    // There might be a default type or default value.
    // We store it for later, as it can't be typechecked now
    // because of possible dependencies on earlier parameters!
    if(declarator.value().is_not_nil())
      parameter.add(ID_C_default_value)=declarator.value();
    
    #else    
    // is it a type or not?
    cpp_declarator_converter.is_typedef=declaration.get_bool(ID_is_type);

    // say it a template parameter
    cpp_declarator_converter.is_template_parameter=true;

    // There might be a default type or default value.
    // We store it for later, as it can't be typechecked now
    // because of possible dependencies on earlier parameters!
    exprt default_value=declarator.value();
    declarator.value().make_nil();

    const symbolt &symbol=
      cpp_declarator_converter.convert(declaration, declarator);

    if(cpp_declarator_converter.is_typedef)
    {
      parameter=exprt(ID_type, typet(ID_symbol));
      parameter.type().set(ID_identifier, symbol.name);
      parameter.type().add_source_location()=declaration.find_location();
    }
    else
      parameter=symbol.symbol_expr();
      
    // set (non-typechecked) default value
    if(default_value.is_not_nil())
      parameter.add(ID_C_default_value)=default_value;

    parameter.add_source_location()=declaration.find_location();
    #endif
  }

  // continue without adding to the prefix
  template_scope.prefix=template_scope.get_parent().prefix;

  return template_scope;
}
예제 #21
0
void cpp_typecheckt::do_virtual_table(const symbolt &symbol)
{
  assert(symbol.type.id()==ID_struct);

  // builds virtual-table value maps: (class x virtual_name x value)
  std::map<irep_idt, std::map<irep_idt,exprt> > vt_value_maps; 

  const struct_typet &struct_type = to_struct_type(symbol.type);

  for(unsigned i = 0; i < struct_type.components().size(); i++)
  {
    const struct_typet::componentt& compo = struct_type.components()[i];
    if(!compo.get_bool("is_virtual"))
      continue;

    const code_typet& code_type = to_code_type(compo.type());
    assert(code_type.arguments().size() > 0);

    const pointer_typet& pointer_type =
      static_cast<const pointer_typet&>(code_type.arguments()[0].type());

    irep_idt class_id = pointer_type.subtype().get("identifier");

    std::map<irep_idt,exprt>& value_map =
      vt_value_maps[class_id];


    exprt e = symbol_exprt(compo.get_name(),code_type);

    if(compo.get_bool("is_pure_virtual"))
    {
      pointer_typet pointer_type(code_type);
      e = gen_zero(pointer_type);
      assert(e.is_not_nil());
      value_map[compo.get("virtual_name")] = e;
    }
    else
    {
      address_of_exprt address(e);
      value_map[compo.get("virtual_name")] = address;
    }
  }

  // create virtual-table symbol variables
  for(std::map<irep_idt, std::map<irep_idt,exprt> >::const_iterator cit =
      vt_value_maps.begin(); cit != vt_value_maps.end(); cit++)
  {
    const std::map<irep_idt,exprt>& value_map = cit->second;

    const symbolt& late_cast_symb = namespacet(symbol_table).lookup(cit->first); 
    const symbolt& vt_symb_type = namespacet(symbol_table).lookup("virtual_table::"+id2string(late_cast_symb.name));

    symbolt vt_symb_var;
    vt_symb_var.name=  id2string(vt_symb_type.name) + "@"+ id2string(symbol.name);
    vt_symb_var.base_name= id2string(vt_symb_type.base_name) + "@" + id2string(symbol.base_name);
    vt_symb_var.mode=ID_cpp;
    vt_symb_var.module=module;
    vt_symb_var.location=vt_symb_type.location;
    vt_symb_var.type = symbol_typet(vt_symb_type.name);
    vt_symb_var.is_lvalue = true;
    vt_symb_var.is_static_lifetime = true;

    // do the values
    const struct_typet &vt_type = to_struct_type(vt_symb_type.type);

    exprt values(ID_struct, symbol_typet(vt_symb_type.name));

    for(unsigned i=0; i < vt_type.components().size(); i++)
    {
      const struct_typet::componentt& compo = vt_type.components()[i];
      std::map<irep_idt,exprt>::const_iterator cit2 =
        value_map.find( compo.get("base_name"));
      assert(cit2 != value_map.end());
      const exprt& value = cit2->second;
      assert(value.type() == compo.type());
      values.operands().push_back(value);
    }
    vt_symb_var.value = values;

    bool failed = symbol_table.move(vt_symb_var);
    assert(!failed);
  }
}
예제 #22
0
exprt dereference_rec(
  const exprt &src,
  const ssa_value_domaint &ssa_value_domain,
  const std::string &nondet_prefix,
  const namespacet &ns)
{
  if(src.id()==ID_dereference)
  {
    const exprt &pointer=dereference_rec(
      to_dereference_expr(src).pointer(),
      ssa_value_domain,
      nondet_prefix,
      ns);

    const typet &pointed_type=ns.follow(pointer.type().subtype());

    const ssa_value_domaint::valuest values=ssa_value_domain(pointer, ns);

    exprt result;
    if(values.value_set.empty())
    {
      result=pointed_object(pointer, ns);
    }
    else
    {
      auto it=values.value_set.begin();

      if(values.null || values.unknown ||
         (values.value_set.size()>1 && it->type().get_bool("#dynamic")))
      {
        std::string dyn_type_name=pointed_type.id_string();
        if(pointed_type.id()==ID_struct)
          dyn_type_name+="_"+id2string(to_struct_type(pointed_type).get_tag());
        irep_idt identifier="ssa::"+dyn_type_name+"_obj$unknown";

        result=symbol_exprt(identifier, src.type());
        result.set("#unknown_obj", true);
      }
      else
      {
        result=ssa_alias_value(src, (it++)->get_expr(), ns);
        result.set("#heap_access", result.type().get_bool("#dynamic"));
      }

      for(; it!=values.value_set.end(); ++it)
      {
        exprt guard=ssa_alias_guard(src, it->get_expr(), ns);
        exprt value=ssa_alias_value(src, it->get_expr(), ns);
        result=if_exprt(guard, value, result);
        result.set(
          "#heap_access",
          result.get_bool("#heap_access") ||
          value.type().get_bool("#dynamic"));
      }
    }

    return result;
  }
  else if(src.id()==ID_member)
  {
    member_exprt tmp=to_member_expr(src);
    tmp.struct_op()=
      dereference_rec(tmp.struct_op(), ssa_value_domain, nondet_prefix, ns);
    tmp.set("#heap_access", tmp.struct_op().get_bool("#heap_access"));

    #ifdef DEBUG
    std::cout << "dereference_rec tmp: " << from_expr(ns, "", tmp) << '\n';
    #endif

    if(tmp.struct_op().is_nil())
      return nil_exprt();

    return lift_if(tmp);
  }
  else if(src.id()==ID_address_of)
  {
    address_of_exprt tmp=to_address_of_expr(src);
    tmp.object()=
      dereference_rec(tmp.object(), ssa_value_domain, nondet_prefix, ns);
    tmp.set("#heap_access", tmp.object().get_bool("#heap_access"));

    if(tmp.object().is_nil())
      return nil_exprt();

    return lift_if(tmp);
  }
  else
  {
    exprt tmp=src;
    Forall_operands(it, tmp)
    {
      *it=dereference_rec(*it, ssa_value_domain, nondet_prefix, ns);
      if(it->get_bool("#heap_access"))
        tmp.set("#heap_access", true);
    }
    return tmp;
  }
예제 #23
0
value_set_dereferencet::valuet value_set_dereferencet::build_reference_to(
  const exprt &what,
  const modet mode,
  const exprt &pointer_expr,
  const guardt &guard)
{
  const typet &dereference_type=
    ns.follow(pointer_expr.type()).subtype();

  if(what.id()==ID_unknown ||
     what.id()==ID_invalid)
  {
    invalid_pointer(pointer_expr, guard);
    return valuet();
  }

  if(what.id()!=ID_object_descriptor)
    throw "unknown points-to: "+what.id_string();

  const object_descriptor_exprt &o=to_object_descriptor_expr(what);

  const exprt &root_object=o.root_object();
  const exprt &object=o.object();

  #if 0
  std::cout << "O: " << from_expr(ns, "", root_object) << '\n';
  #endif

  valuet result;

  if(root_object.id()=="NULL-object")
  {
    if(options.get_bool_option("pointer-check"))
    {
      guardt tmp_guard(guard);

      if(o.offset().is_zero())
      {
        tmp_guard.add(null_pointer(pointer_expr));

        dereference_callback.dereference_failure(
          "pointer dereference",
          "NULL pointer", tmp_guard);
      }
      else
      {
        tmp_guard.add(null_object(pointer_expr));

        dereference_callback.dereference_failure(
          "pointer dereference",
          "NULL plus offset pointer", tmp_guard);
      }
    }
  }
  else if(root_object.id()==ID_dynamic_object)
  {
    // const dynamic_object_exprt &dynamic_object=
    //  to_dynamic_object_expr(root_object);

    // the object produced by malloc
    exprt malloc_object=
      ns.lookup(CPROVER_PREFIX "malloc_object").symbol_expr();

    exprt is_malloc_object=same_object(pointer_expr, malloc_object);

    // constraint that it actually is a dynamic object
    exprt dynamic_object_expr(ID_dynamic_object, bool_typet());
    dynamic_object_expr.copy_to_operands(pointer_expr);

    // this is also our guard
    result.pointer_guard=dynamic_object_expr;

    // can't remove here, turn into *p
    result.value=dereference_exprt(pointer_expr, dereference_type);

    if(options.get_bool_option("pointer-check"))
    {
      // if(!dynamic_object.valid().is_true())
      {
        // check if it is still alive
        guardt tmp_guard(guard);
        tmp_guard.add(deallocated(pointer_expr, ns));
        dereference_callback.dereference_failure(
          "pointer dereference",
          "dynamic object deallocated",
          tmp_guard);
      }

      if(options.get_bool_option("bounds-check"))
      {
        if(!o.offset().is_zero())
        {
          // check lower bound
          guardt tmp_guard(guard);
          tmp_guard.add(is_malloc_object);
          tmp_guard.add(
            dynamic_object_lower_bound(
              pointer_expr,
              ns,
              nil_exprt()));
          dereference_callback.dereference_failure(
            "pointer dereference",
            "dynamic object lower bound", tmp_guard);
        }

        {
          // check upper bound

          // we check SAME_OBJECT(__CPROVER_malloc_object, p) &&
          //          POINTER_OFFSET(p)+size>__CPROVER_malloc_size

          guardt tmp_guard(guard);
          tmp_guard.add(is_malloc_object);
          tmp_guard.add(
            dynamic_object_upper_bound(
              pointer_expr,
              dereference_type,
              ns,
              size_of_expr(dereference_type, ns)));
          dereference_callback.dereference_failure(
            "pointer dereference",
            "dynamic object upper bound", tmp_guard);
        }
      }
    }
  }
  else if(root_object.id()==ID_integer_address)
  {
    // This is stuff like *((char *)5).
    // This is turned into an access to __CPROVER_memory[...].

    if(language_mode==ID_java)
    {
      result.value=nil_exprt();
      return result;
    }

    const symbolt &memory_symbol=ns.lookup(CPROVER_PREFIX "memory");
    exprt symbol_expr=symbol_exprt(memory_symbol.name, memory_symbol.type);

    if(base_type_eq(
         ns.follow(memory_symbol.type).subtype(),
         dereference_type, ns))
    {
      // Types match already, what a coincidence!
      // We can use an index expression.

      exprt index_expr=index_exprt(symbol_expr, pointer_offset(pointer_expr));
      index_expr.type()=ns.follow(memory_symbol.type).subtype();
      result.value=index_expr;
    }
    else if(dereference_type_compare(
              ns.follow(memory_symbol.type).subtype(),
              dereference_type))
    {
      exprt index_expr=index_exprt(symbol_expr, pointer_offset(pointer_expr));
      index_expr.type()=ns.follow(memory_symbol.type).subtype();
      result.value=typecast_exprt(index_expr, dereference_type);
    }
    else
    {
      // We need to use byte_extract.
      // Won't do this without a commitment to an endianness.

      if(config.ansi_c.endianness==configt::ansi_ct::endiannesst::NO_ENDIANNESS)
      {
      }
      else
      {
        exprt byte_extract(byte_extract_id(), dereference_type);
        byte_extract.copy_to_operands(
          symbol_expr, pointer_offset(pointer_expr));
        result.value=byte_extract;
      }
    }
  }
  else
  {
    // something generic -- really has to be a symbol
    address_of_exprt object_pointer(object);

    if(o.offset().is_zero())
    {
      equal_exprt equality(pointer_expr, object_pointer);

      if(ns.follow(equality.lhs().type())!=ns.follow(equality.rhs().type()))
        equality.lhs().make_typecast(equality.rhs().type());

      result.pointer_guard=equality;
    }
    else
    {
      result.pointer_guard=same_object(pointer_expr, object_pointer);
    }

    guardt tmp_guard(guard);
    tmp_guard.add(result.pointer_guard);

    valid_check(object, tmp_guard, mode);

    const typet &object_type=ns.follow(object.type());
    const exprt &root_object=o.root_object();
    const typet &root_object_type=ns.follow(root_object.type());

    exprt root_object_subexpression=root_object;

    if(dereference_type_compare(object_type, dereference_type) &&
       o.offset().is_zero())
    {
      // The simplest case: types match, and offset is zero!
      // This is great, we are almost done.

      result.value=object;

      if(object_type!=ns.follow(dereference_type))
        result.value.make_typecast(dereference_type);
    }
    else if(root_object_type.id()==ID_array &&
            dereference_type_compare(
              root_object_type.subtype(),
              dereference_type))
    {
      // We have an array with a subtype that matches
      // the dereferencing type.
      // We will require well-alignedness!

      exprt offset;

      // this should work as the object is essentially the root object
      if(o.offset().is_constant())
        offset=o.offset();
      else
        offset=pointer_offset(pointer_expr);

      exprt adjusted_offset;

      // are we doing a byte?
      mp_integer element_size=
        dereference_type.id()==ID_empty?
        pointer_offset_size(char_type(), ns):
        pointer_offset_size(dereference_type, ns);

      if(element_size==1)
      {
        // no need to adjust offset
        adjusted_offset=offset;
      }
      else if(element_size<=0)
      {
        throw "unknown or invalid type size of:\n"+dereference_type.pretty();
      }
      else
      {
        exprt element_size_expr=
          from_integer(element_size, offset.type());

        adjusted_offset=binary_exprt(
          offset, ID_div, element_size_expr, offset.type());

        // TODO: need to assert well-alignedness
      }

      index_exprt index_expr=
        index_exprt(root_object, adjusted_offset, root_object_type.subtype());

      bounds_check(index_expr, tmp_guard);

      result.value=index_expr;

      if(ns.follow(result.value.type())!=ns.follow(dereference_type))
        result.value.make_typecast(dereference_type);
    }
    else if(get_subexpression_at_offset(
        root_object_subexpression,
        o.offset(),
        dereference_type,
        ns))
    {
      // Successfully found a member, array index, or combination thereof
      // that matches the desired type and offset:
      result.value=root_object_subexpression;
    }
    else
    {
      // we extract something from the root object
      result.value=o.root_object();

      // this is relative to the root object
      const exprt offset=pointer_offset(pointer_expr);

      if(memory_model(result.value, dereference_type, tmp_guard, offset))
      {
        // ok, done
      }
      else
      {
        if(options.get_bool_option("pointer-check"))
        {
          std::string msg="memory model not applicable (got `";
          msg+=from_type(ns, "", result.value.type());
          msg+="', expected `";
          msg+=from_type(ns, "", dereference_type);
          msg+="')";

          dereference_callback.dereference_failure(
            "pointer dereference",
            msg, tmp_guard);
        }

        return valuet(); // give up, no way that this is ok
      }
    }
  }

  return result;
}
예제 #24
0
void goto_inlinet::parameter_assignments(
  const locationt &location,
  const code_typet &code_type,
  const exprt::operandst &arguments,
  goto_programt &dest)
{
  // iterates over the operands
  exprt::operandst::const_iterator it1=arguments.begin();

  goto_programt::local_variablest local_variables;
  
  const code_typet::argumentst &argument_types=
    code_type.arguments();
  
  // iterates over the types of the arguments
  for(code_typet::argumentst::const_iterator
      it2=argument_types.begin();
      it2!=argument_types.end();
      it2++)
  {
    // if you run out of actual arguments there was a mismatch
    if(it1==arguments.end())
    {
      err_location(location);
      throw "function call: not enough arguments";
    }

    const exprt &argument=static_cast<const exprt &>(*it2);

    // this is the type the n-th argument should be
    const typet &arg_type=ns.follow(argument.type());

    const irep_idt &identifier=argument.cmt_identifier();

    if(identifier=="")
    {
      err_location(location);
      throw "no identifier for function argument";
    }

    {
      const symbolt &symbol=ns.lookup(identifier);

      goto_programt::targett decl=dest.add_instruction();
      decl->make_other();
      exprt tmp = code_declt(symbol_expr(symbol));
      migrate_expr(tmp, decl->code);
      decl->location=location;
      decl->function=location.get_function(); 
      decl->local_variables=local_variables;
    }

    local_variables.insert(identifier);
    
    // nil means "don't assign"
    if(it1->is_nil())
    {    
    }
    else
    {
      // this is the actual parameter
      exprt actual(*it1);

      // it should be the same exact type
      type2tc arg_type_2, actual_type_2;
      migrate_type(arg_type, arg_type_2);
      migrate_type(actual.type(), actual_type_2);
      if (!base_type_eq(arg_type_2, actual_type_2, ns))
      {
        const typet &f_argtype = ns.follow(arg_type);
        const typet &f_acttype = ns.follow(actual.type());
        
        // we are willing to do some conversion
        if((f_argtype.id()=="pointer" &&
            f_acttype.id()=="pointer") ||
           (f_argtype.is_array() &&
            f_acttype.id()=="pointer" &&
            f_argtype.subtype()==f_acttype.subtype()))
        {
          actual.make_typecast(arg_type);
        }
        else if((f_argtype.id()=="signedbv" ||
            f_argtype.id()=="unsignedbv" ||
            f_argtype.is_bool()) &&
           (f_acttype.id()=="signedbv" ||
            f_acttype.id()=="unsignedbv" ||
            f_acttype.is_bool()))  
        {
          actual.make_typecast(arg_type);
        }
        else
        {
          err_location(location);

          str << "function call: argument `" << identifier
              << "' type mismatch: got "
              << from_type(ns, identifier, it1->type())
              << ", expected "
              << from_type(ns, identifier, arg_type);
          throw 0;
        }
      }

      // adds an assignment of the actual parameter to the formal parameter
      code_assignt assignment(symbol_exprt(identifier, arg_type), actual);
      assignment.location()=location;

      dest.add_instruction(ASSIGN);
      dest.instructions.back().location=location;
      migrate_expr(assignment, dest.instructions.back().code);
      dest.instructions.back().local_variables=local_variables;
      dest.instructions.back().function=location.get_function();      
    }

    it1++;
  }

  if(it1!=arguments.end())
  {
    // too many arguments -- we just ignore that, no harm done
  }
}
예제 #25
0
exprt path_symex_statet::instantiate_rec(
  const exprt &src,
  bool propagate)
{
  #ifdef DEBUG
  std::cout << "instantiate_rec: "
            << from_expr(var_map.ns, "", src) << '\n';
  #endif

  // check whether this is a symbol(.member|[index])*

  if(is_symbol_member_index(src))
  {
    exprt tmp_symbol_member_index=
      read_symbol_member_index(src, propagate);

    assert(tmp_symbol_member_index.is_not_nil());
    return tmp_symbol_member_index; // yes!
  }

  if(src.id()==ID_address_of)
  {
    assert(src.operands().size()==1);
    exprt tmp=src;
    tmp.op0()=instantiate_rec_address(tmp.op0(), propagate);
    return tmp;
  }
  else if(src.id()==ID_side_effect)
  {
    // could be done separately
    const irep_idt &statement=to_side_effect_expr(src).get_statement();

    if(statement==ID_nondet)
    {
      irep_idt id="symex::nondet"+std::to_string(var_map.nondet_count);
      var_map.nondet_count++;
      return symbol_exprt(id, src.type());
    }
    else
      throw "instantiate_rec: unexpected side effect "+id2string(statement);
  }
  else if(src.id()==ID_dereference)
  {
    // dereferencet has run already, so we should only be left with
    // integer addresses. Will transform into __CPROVER_memory[]
    // eventually.
  }
  else if(src.id()==ID_member)
  {
    const typet &compound_type=
      var_map.ns.follow(to_member_expr(src).struct_op().type());

    if(compound_type.id()==ID_struct)
    {
      // do nothing
    }
    else if(compound_type.id()==ID_union)
    {
      // should already have been rewritten to byte_extract
      throw "unexpected union member";
    }
    else
    {
      throw "member expects struct or union type"+src.pretty();
    }
  }
  else if(src.id()==ID_byte_extract_little_endian ||
          src.id()==ID_byte_extract_big_endian)
  {
  }
  else if(src.id()==ID_symbol)
  {
    // must be SSA already, or code
    assert(src.type().id()==ID_code ||
           src.get_bool(ID_C_SSA_symbol));
  }

  if(!src.has_operands())
    return src;

  exprt src2=src;

  // recursive calls on structure of 'src'
  Forall_operands(it, src2)
  {
    exprt tmp_op=instantiate_rec(*it, propagate);
    *it=tmp_op;
  }
예제 #26
0
exprt path_symex_statet::instantiate_rec(
  const exprt &src,
  bool propagate)
{
  #ifdef DEBUG
  std::cout << "instantiate_rec: "
            << from_expr(var_map.ns, "", src) << std::endl;
  #endif

  const typet &src_type=var_map.ns.follow(src.type());

  if(src_type.id()==ID_struct) // src is a struct
  {
    const struct_typet &struct_type=to_struct_type(src_type);
    const struct_typet::componentst &components=struct_type.components();

    struct_exprt result(src.type());
    result.operands().resize(components.size());

    // split it up into components
    for(unsigned i=0; i<components.size(); i++)
    {
      const typet &subtype=components[i].type();
      const irep_idt &component_name=components[i].get_name();

      exprt new_src;
      if(src.id()==ID_struct) // struct constructor?
      {
        assert(src.operands().size()==components.size());
        new_src=src.operands()[i];
      }
      else
        new_src=member_exprt(src, component_name, subtype);

      // recursive call
      result.operands()[i]=instantiate_rec(new_src, propagate);
    }

    return result; // done
  }
  else if(src_type.id()==ID_array) // src is an array
  {
    const array_typet &array_type=to_array_type(src_type);
    const typet &subtype=array_type.subtype();

    if(array_type.size().is_constant())
    {
      mp_integer size;
      if(to_integer(array_type.size(), size))
        throw "failed to convert array size";

      unsigned long long size_int=integer2unsigned(size);

      array_exprt result(array_type);
      result.operands().resize(size_int);

      // split it up into elements
      for(unsigned long long i=0; i<size_int; ++i)
      {
        exprt index=from_integer(i, array_type.size().type());
        exprt new_src=index_exprt(src, index, subtype);

        // array constructor?
        if(src.id()==ID_array)
          new_src=simplify_expr(new_src, var_map.ns);

        // recursive call
        result.operands()[i]=instantiate_rec(new_src, propagate);
      }

      return result; // done
    }
    else
    {
      // TODO
    }
  }
  else if(src_type.id()==ID_vector) // src is a vector
  {
    const vector_typet &vector_type=to_vector_type(src_type);
    const typet &subtype=vector_type.subtype();

    if(!vector_type.size().is_constant())
      throw "vector with non-constant size";

    mp_integer size;
    if(to_integer(vector_type.size(), size))
      throw "failed to convert vector size";

    unsigned long long int size_int=integer2unsigned(size);

    vector_exprt result(vector_type);
    exprt::operandst &operands=result.operands();
    operands.resize(size_int);

    // split it up into elements
    for(unsigned long long i=0; i<size_int; ++i)
    {
      exprt index=from_integer(i, vector_type.size().type());
      exprt new_src=index_exprt(src, index, subtype);

      // vector constructor?
      if(src.id()==ID_vector)
        new_src=simplify_expr(new_src, var_map.ns);

      // recursive call
      operands[i]=instantiate_rec(new_src, propagate);
    }

    return result; // done
  }

  // check whether this is a symbol(.member|[index])*

  {
    exprt tmp_symbol_member_index=
      read_symbol_member_index(src, propagate);

    if(tmp_symbol_member_index.is_not_nil())
      return tmp_symbol_member_index; // yes!
  }

  if(src.id()==ID_address_of)
  {
    assert(src.operands().size()==1);
    exprt tmp=src;
    tmp.op0()=instantiate_rec_address(tmp.op0(), propagate);
    return tmp;
  }
  else if(src.id()==ID_sideeffect)
  {
    // could be done separately
    const irep_idt &statement=to_side_effect_expr(src).get_statement();

    if(statement==ID_nondet)
    {
      irep_idt id="symex::nondet"+i2string(var_map.nondet_count);
      var_map.nondet_count++;
      return symbol_exprt(id, src.type());
    }
    else
      throw "instantiate_rec: unexpected side effect "+id2string(statement);
  }
  else if(src.id()==ID_dereference)
  {
    // dereferencet has run already, so we should only be left with
    // integer addresses. Will transform into __CPROVER_memory[]
    // eventually.
  }
  else if(src.id()==ID_index)
  {
    // avoids indefinite recursion above
    return src;
  }
  else if(src.id()==ID_member)
  {
    const typet &compound_type=
      var_map.ns.follow(to_member_expr(src).struct_op().type());

    if(compound_type.id()==ID_struct)
    {
      // avoids indefinite recursion above
      return src;
    }
    else if(compound_type.id()==ID_union)
    {
      member_exprt tmp=to_member_expr(src);
      tmp.struct_op()=instantiate_rec(tmp.struct_op(), propagate);
      return tmp;
    }
    else
    {
      throw "member expects struct or union type"+src.pretty();
    }
  }

  if(!src.has_operands())
    return src;

  exprt src2=src;

  // recursive calls on structure of 'src'
  Forall_operands(it, src2)
  {
    exprt tmp_op=instantiate_rec(*it, propagate);
    *it=tmp_op;
  }
void remove_virtual_functionst::remove_virtual_function(
  goto_programt &goto_program,
  goto_programt::targett target)
{
  const code_function_callt &code=
    to_code_function_call(target->code);

  const auto &vcall_source_loc=target->source_location;

  const exprt &function=code.function();
  assert(function.id()==ID_virtual_function);
  assert(!code.arguments().empty());

  functionst functions;
  get_functions(function, functions);

  if(functions.empty())
  {
    target->make_skip();
    return; // give up
  }

  // only one option?
  if(functions.size()==1)
  {
    assert(target->is_function_call());
    if(functions.begin()->symbol_expr==symbol_exprt())
      target->make_skip();
    else
      to_code_function_call(target->code).function()=
        functions.begin()->symbol_expr;
    return;
  }

  // the final target is a skip
  goto_programt final_skip;

  goto_programt::targett t_final=final_skip.add_instruction();
  t_final->source_location=vcall_source_loc;

  t_final->make_skip();

  // build the calls and gotos

  goto_programt new_code_calls;
  goto_programt new_code_gotos;

  exprt this_expr=code.arguments()[0];
  // If necessary, cast to the last candidate function to
  // get the object's clsid. By the structure of get_functions,
  // this is the parent of all other classes under consideration.
  const auto &base_classid=functions.back().class_id;
  const auto &base_function_symbol=functions.back().symbol_expr;
  symbol_typet suggested_type(base_classid);
  exprt c_id2=get_class_identifier_field(this_expr, suggested_type, ns);

  std::map<irep_idt, goto_programt::targett> calls;
  // Note backwards iteration, to get the least-derived candidate first.
  for(auto it=functions.crbegin(), itend=functions.crend(); it!=itend; ++it)
  {
    const auto &fun=*it;
    auto insertit=calls.insert(
      {fun.symbol_expr.get_identifier(), goto_programt::targett()});

    // Only create one call sequence per possible target:
    if(insertit.second)
    {
      goto_programt::targett t1=new_code_calls.add_instruction();
      t1->source_location=vcall_source_loc;
      if(!fun.symbol_expr.get_identifier().empty())
      {
      // call function
        t1->make_function_call(code);
        auto &newcall=to_code_function_call(t1->code);
        newcall.function()=fun.symbol_expr;
        pointer_typet need_type(symbol_typet(fun.symbol_expr.get(ID_C_class)));
        if(!type_eq(newcall.arguments()[0].type(), need_type, ns))
          newcall.arguments()[0].make_typecast(need_type);
      }
      else
      {
        // No definition for this type; shouldn't be possible...
        t1->make_assertion(false_exprt());
      }
      insertit.first->second=t1;
      // goto final
      goto_programt::targett t3=new_code_calls.add_instruction();
      t3->source_location=vcall_source_loc;
      t3->make_goto(t_final, true_exprt());
    }

    // If this calls the base function we just fall through.
    // Otherwise branch to the right call:
    if(fun.symbol_expr!=base_function_symbol)
    {
      exprt c_id1=constant_exprt(fun.class_id, string_typet());
      goto_programt::targett t4=new_code_gotos.add_instruction();
      t4->source_location=vcall_source_loc;
      t4->make_goto(insertit.first->second, equal_exprt(c_id1, c_id2));
    }
  }

  goto_programt new_code;

  // patch them all together
  new_code.destructive_append(new_code_gotos);
  new_code.destructive_append(new_code_calls);
  new_code.destructive_append(final_skip);

  // set locations
  Forall_goto_program_instructions(it, new_code)
  {
    const irep_idt property_class=it->source_location.get_property_class();
    const irep_idt comment=it->source_location.get_comment();
    it->source_location=target->source_location;
    it->function=target->function;
    if(!property_class.empty())
      it->source_location.set_property_class(property_class);
    if(!comment.empty())
      it->source_location.set_comment(comment);
  }

  goto_programt::targett next_target=target;
  next_target++;

  goto_program.destructive_insert(next_target, new_code);

  // finally, kill original invocation
  target->make_skip();
}
예제 #28
0
exprt dereference_rec(
 const exprt &src,
 const ssa_value_domaint &ssa_value_domain, 
 const std::string &nondet_prefix,
 const namespacet &ns)
{
  if(src.id()==ID_dereference)
  {
    const exprt &pointer=to_dereference_expr(src).pointer();
    exprt pointer_deref=dereference(pointer, ssa_value_domain, nondet_prefix, ns);

    // We use the identifier produced by
    // local_SSAt::replace_side_effects_rec
    exprt result=symbol_exprt(nondet_prefix, src.type());

    // query the value sets
    const ssa_value_domaint::valuest values=
      ssa_value_domain(pointer, ns);

    for(ssa_value_domaint::valuest::value_sett::const_iterator
        it=values.value_set.begin();
        it!=values.value_set.end();
        it++)
    {
      exprt guard=ssa_alias_guard(src, it->get_expr(), ns);
      exprt value=ssa_alias_value(src, it->get_expr(), ns);
      result=if_exprt(guard, value, result);
    }

    return result;
  }
  else if(src.id()==ID_member)
  {
    member_exprt tmp=to_member_expr(src);
    tmp.struct_op()=dereference_rec(tmp.struct_op(), ssa_value_domain, nondet_prefix, ns);
    
    #ifdef DEBUG
    std::cout << "dereference_rec tmp: " << from_expr(ns, "", tmp) << '\n';
    #endif

    if(tmp.struct_op().is_nil())
      return nil_exprt();
      
    return lift_if(tmp);
  }
  else if(src.id()==ID_address_of)
  {
    address_of_exprt tmp=to_address_of_expr(src);
    tmp.object()=dereference_rec(tmp.object(), ssa_value_domain, nondet_prefix, ns);

    if(tmp.object().is_nil())
      return nil_exprt();
    
    return lift_if(tmp);
  }
  else
  {
    exprt tmp=src;
    Forall_operands(it, tmp)
      *it=dereference_rec(*it, ssa_value_domain, nondet_prefix, ns);
    return tmp;
  }
}
예제 #29
0
void build_goto_trace(
  const symex_target_equationt &target,
  symex_target_equationt::SSA_stepst::const_iterator end_step,
  const prop_convt &prop_conv,
  const namespacet &ns,
  goto_tracet &goto_trace)
{
  // We need to re-sort the steps according to their clock.
  // Furthermore, read-events need to occur before write
  // events with the same clock.

  typedef std::map<mp_integer, goto_tracet::stepst> time_mapt;
  time_mapt time_map;

  mp_integer current_time=0;

  for(symex_target_equationt::SSA_stepst::const_iterator
      it=target.SSA_steps.begin();
      it!=end_step;
      it++)
  {
    const symex_target_equationt::SSA_stept &SSA_step=*it;

    if(prop_conv.l_get(SSA_step.guard_literal)!=tvt(true))
      continue;

    if(it->is_constraint() ||
       it->is_spawn())
      continue;
    else if(it->is_atomic_begin())
    {
      // for atomic sections the timing can only be determined once we see
      // a shared read or write (if there is none, the time will be
      // reverted to the time before entering the atomic section); we thus
      // use a temporary negative time slot to gather all events
      current_time*=-1;
      continue;
    }
    else if(it->is_shared_read() || it->is_shared_write() ||
            it->is_atomic_end())
    {
      mp_integer time_before=current_time;

      if(it->is_shared_read() || it->is_shared_write())
      {
        // these are just used to get the time stamp
        exprt clock_value=prop_conv.get(
          symbol_exprt(partial_order_concurrencyt::rw_clock_id(it)));

        to_integer(clock_value, current_time);
      }
      else if(it->is_atomic_end() && current_time<0)
        current_time*=-1;

      assert(current_time>=0);
      // move any steps gathered in an atomic section

      if(time_before<0)
      {
        time_mapt::iterator entry=
          time_map.insert(std::make_pair(
              current_time,
              goto_tracet::stepst())).first;
        entry->second.splice(entry->second.end(), time_map[time_before]);
        time_map.erase(time_before);
      }

      continue;
    }

    // drop PHI and GUARD assignments altogether
    if(it->is_assignment() &&
       (SSA_step.assignment_type==symex_target_equationt::PHI ||
        SSA_step.assignment_type==symex_target_equationt::GUARD))
      continue;

    goto_tracet::stepst &steps=time_map[current_time];
    steps.push_back(goto_trace_stept());
    goto_trace_stept &goto_trace_step=steps.back();

    goto_trace_step.thread_nr=SSA_step.source.thread_nr;
    goto_trace_step.pc=SSA_step.source.pc;
    goto_trace_step.comment=SSA_step.comment;
    if(SSA_step.ssa_lhs.is_not_nil())
      goto_trace_step.lhs_object=ssa_exprt(SSA_step.ssa_lhs.get_original_expr());
    else
      goto_trace_step.lhs_object.make_nil();
    goto_trace_step.type=SSA_step.type;
    goto_trace_step.hidden=SSA_step.hidden;
    goto_trace_step.format_string=SSA_step.format_string;
    goto_trace_step.io_id=SSA_step.io_id;
    goto_trace_step.formatted=SSA_step.formatted;
    goto_trace_step.identifier=SSA_step.identifier;

    goto_trace_step.assignment_type=
      (it->is_assignment()&&
       (SSA_step.assignment_type==symex_targett::VISIBLE_ACTUAL_PARAMETER ||
        SSA_step.assignment_type==symex_targett::HIDDEN_ACTUAL_PARAMETER))?
      goto_trace_stept::ACTUAL_PARAMETER:
      goto_trace_stept::STATE;

    if(SSA_step.original_full_lhs.is_not_nil())
      goto_trace_step.full_lhs=
        build_full_lhs_rec(
          prop_conv, ns, SSA_step.original_full_lhs, SSA_step.ssa_full_lhs);

    if(SSA_step.ssa_lhs.is_not_nil())
      goto_trace_step.lhs_object_value=prop_conv.get(SSA_step.ssa_lhs);

    if(SSA_step.ssa_full_lhs.is_not_nil())
    {
      goto_trace_step.full_lhs_value=prop_conv.get(SSA_step.ssa_full_lhs);
      simplify(goto_trace_step.full_lhs_value, ns);
    }

    for(const auto & j : SSA_step.converted_io_args)
    {
      if(j.is_constant() ||
         j.id()==ID_string_constant)
        goto_trace_step.io_args.push_back(j);
      else
      {
        exprt tmp=prop_conv.get(j);
        goto_trace_step.io_args.push_back(tmp);
      }
    }

    if(SSA_step.is_assert() ||
       SSA_step.is_assume() ||
       SSA_step.is_goto())
    {
      goto_trace_step.cond_expr=SSA_step.cond_expr;

      goto_trace_step.cond_value=
        prop_conv.l_get(SSA_step.cond_literal).is_true();
    }
  }

  // Now assemble into a single goto_trace.
  // This expoits sorted-ness of the map.
  for(auto & t_it : time_map)
    goto_trace.steps.splice(goto_trace.steps.end(), t_it.second);

  // produce the step numbers
  unsigned step_nr=0;

  for(auto & s_it : goto_trace.steps)
    s_it.step_nr=++step_nr;
}
예제 #30
0
void build_goto_trace(
  const symex_target_equationt &target,
  const prop_convt &prop_conv,
  const namespacet &ns,
  goto_tracet &goto_trace)
{
  // We need to re-sort the steps according to their clock.
  // Furthermore, read-events need to occur before write
  // events with the same clock.
  
  typedef std::map<mp_integer, goto_tracet::stepst> time_mapt;
  time_mapt time_map;
  
  mp_integer current_time=0;
  for(symex_target_equationt::SSA_stepst::const_iterator
      it=target.SSA_steps.begin();
      it!=target.SSA_steps.end();
      it++)
  {
    const symex_target_equationt::SSA_stept &SSA_step=*it;
    
    if(prop_conv.l_get(SSA_step.guard_literal)!=tvt(true))
      continue;

    if(it->is_constraint() ||
       it->is_spawn())
      continue;
    else if(it->is_atomic_begin())
    {
      // for atomic sections the timing can only be determined once we see
      // a shared read or write (if there is none, the time will be
      // reverted to the time before entering the atomic section); we thus
      // use a temporary negative time slot to gather all events
      current_time*=-1;
      continue;
    }
    else if(it->is_shared_read() || it->is_shared_write() ||
            it->is_atomic_end())
    {
      mp_integer time_before=current_time;

      if(it->is_shared_read() || it->is_shared_write())
      {
        // these are just used to get the time stamp
        exprt clock_value=prop_conv.get(
          symbol_exprt(partial_order_concurrencyt::rw_clock_id(it)));

        to_integer(clock_value, current_time);
      }
      else if(it->is_atomic_end() && current_time<0)
        current_time*=-1;

      assert(current_time>=0);
      // move any steps gathered in an atomic section

      if(time_before<0)
      {
        time_mapt::iterator entry=
          time_map.insert(std::make_pair(
              current_time,
              goto_tracet::stepst())).first;
        entry->second.splice(entry->second.end(), time_map[time_before]);
        time_map.erase(time_before);
      }

      continue;
    }

    // drop PHI and GUARD assignments altogether
    if(it->is_assignment() &&
       (SSA_step.assignment_type==symex_target_equationt::PHI ||
        SSA_step.assignment_type==symex_target_equationt::GUARD))
      continue;

    goto_tracet::stepst &steps=time_map[current_time];
    steps.push_back(goto_trace_stept());    
    goto_trace_stept &goto_trace_step=steps.back();
    
    goto_trace_step.thread_nr=SSA_step.source.thread_nr;
    goto_trace_step.pc=SSA_step.source.pc;
    goto_trace_step.comment=SSA_step.comment;
    goto_trace_step.lhs_object=SSA_step.original_lhs_object;
    goto_trace_step.type=SSA_step.type;
    goto_trace_step.hidden=SSA_step.hidden;
    goto_trace_step.format_string=SSA_step.format_string;
    goto_trace_step.io_id=SSA_step.io_id;
    goto_trace_step.formatted=SSA_step.formatted;
    goto_trace_step.identifier=SSA_step.identifier;

    goto_trace_step.assignment_type=
      (SSA_step.assignment_type==symex_targett::VISIBLE_ACTUAL_PARAMETER ||
       SSA_step.assignment_type==symex_targett::HIDDEN_ACTUAL_PARAMETER)?
      goto_trace_stept::ACTUAL_PARAMETER:
      goto_trace_stept::STATE;
    
    if(SSA_step.original_full_lhs.is_not_nil())
      goto_trace_step.full_lhs=
        build_full_lhs_rec(
          prop_conv, ns, SSA_step.original_full_lhs, SSA_step.ssa_full_lhs);
    
    if(SSA_step.ssa_lhs.is_not_nil())
      goto_trace_step.lhs_object_value=prop_conv.get(SSA_step.ssa_lhs);
    
    if(SSA_step.ssa_full_lhs.is_not_nil())
    {
      goto_trace_step.full_lhs_value=prop_conv.get(SSA_step.ssa_full_lhs);
      simplify(goto_trace_step.full_lhs_value, ns);
    }
    
    for(std::list<exprt>::const_iterator
        j=SSA_step.converted_io_args.begin();
        j!=SSA_step.converted_io_args.end();
        j++)
    {
      const exprt &arg=*j;
      if(arg.is_constant() ||
         arg.id()==ID_string_constant)
        goto_trace_step.io_args.push_back(arg);
      else
      {
        exprt tmp=prop_conv.get(arg);
        goto_trace_step.io_args.push_back(tmp);
      }
    }

    if(SSA_step.is_assert() ||
       SSA_step.is_assume())
    {
      goto_trace_step.cond_expr=SSA_step.cond_expr;

      goto_trace_step.cond_value=
        prop_conv.l_get(SSA_step.cond_literal).is_true();
    }
    else if(SSA_step.is_location() &&
            SSA_step.source.pc->is_goto())
    {
      goto_trace_step.cond_expr=SSA_step.source.pc->guard;

      const bool backwards=SSA_step.source.pc->is_backwards_goto();

      symex_target_equationt::SSA_stepst::const_iterator next=it;
      ++next;
      assert(next!=target.SSA_steps.end());

      // goto was taken if backwards and next is enabled or forward
      // and next is not active;
      // there is an ambiguity here if a forward goto is to the next
      // instruction, which we simply ignore for now
      goto_trace_step.goto_taken=
        backwards==
        (prop_conv.l_get(next->guard_literal)==tvt(true));
    }
  }
  
  // Now assemble into a single goto_trace.
  // This expoits sorted-ness of the map.
  for(time_mapt::iterator t_it=time_map.begin();
      t_it!=time_map.end(); t_it++)
  {
    goto_trace.steps.splice(goto_trace.steps.end(), t_it->second);
  }

  // produce the step numbers
  unsigned step_nr=0;
  
  for(goto_tracet::stepst::iterator
      s_it=goto_trace.steps.begin();
      s_it!=goto_trace.steps.end();
      s_it++)
    s_it->step_nr=++step_nr;
  
  // Now delete anything after failed assertion
  for(goto_tracet::stepst::iterator
      s_it1=goto_trace.steps.begin();
      s_it1!=goto_trace.steps.end();
      s_it1++)
    if(s_it1->is_assert() && !s_it1->cond_value)
    {
      s_it1++;

      for(goto_tracet::stepst::iterator
          s_it2=s_it1;
          s_it2!=goto_trace.steps.end();
          s_it2=goto_trace.steps.erase(s_it2));
        
      break;
    }
}