void Foam::combustionModels::PaSR<Type>::correct() { if (this->active()) { laminar<Type>::correct(); if (turbulentReaction_) { tmp<volScalarField> tepsilon(this->turbulence().epsilon()); const volScalarField& epsilon = tepsilon(); tmp<volScalarField> tmuEff(this->turbulence().muEff()); const volScalarField& muEff = tmuEff(); tmp<volScalarField> ttc(this->tc()); const volScalarField& tc = ttc(); tmp<volScalarField> trho(this->rho()); const volScalarField& rho = trho(); forAll(epsilon, i) { scalar tk = Cmix_*sqrt(max(muEff[i]/rho[i]/(epsilon[i] + SMALL), 0)); if (tk > SMALL) { kappa_[i] = tc[i]/(tc[i] + tk); } else { kappa_[i] = 1.0; } } }
void Foam::combustionModels::EDC<ReactionThermo>::correct() { tmp<volScalarField> tepsilon(this->turbulence().epsilon()); const volScalarField& epsilon = tepsilon(); tmp<volScalarField> tmu(this->turbulence().mu()); const volScalarField& mu = tmu(); tmp<volScalarField> tk(this->turbulence().k()); const volScalarField& k = tk(); tmp<volScalarField> trho(this->rho()); const volScalarField& rho = trho(); scalarField tauStar(epsilon.size(), 0); if (version_ == EDCversions::v2016) { tmp<volScalarField> ttc(this->chemistryPtr_->tc()); const volScalarField& tc = ttc(); forAll(tauStar, i) { const scalar nu = mu[i]/(rho[i] + small); const scalar Da = max(min(sqrt(nu/(epsilon[i] + small))/tc[i], 10), 1e-10); const scalar ReT = sqr(k[i])/(nu*epsilon[i] + small); const scalar CtauI = min(C1_/(Da*sqrt(ReT + 1)), 2.1377); const scalar CgammaI = max(min(C2_*sqrt(Da*(ReT + 1)), 5), 0.4082); const scalar gammaL = CgammaI*pow025(nu*epsilon[i]/(sqr(k[i]) + small)); tauStar[i] = CtauI*sqrt(nu/(epsilon[i] + small)); if (gammaL >= 1) { kappa_[i] = 1; } else { kappa_[i] = max ( min ( pow(gammaL, exp1_)/(1 - pow(gammaL, exp2_)), 1 ), 0 ); } } }
void Foam::combustionModels::PaSR<Type>::correct() { if (this->active()) { const scalar t = this->mesh().time().value(); const scalar dt = this->mesh().time().deltaTValue(); if (!useReactionRate_) { this->chemistryPtr_->solve(t - dt, dt); } else { this->chemistryPtr_->calculate(); } if (turbulentReaction_) { tmp<volScalarField> trho(this->rho()); const volScalarField& rho = trho(); tmp<volScalarField> tepsilon(this->turbulence().epsilon()); const volScalarField& epsilon = tepsilon(); tmp<volScalarField> tmuEff(this->turbulence().muEff()); const volScalarField& muEff = tmuEff(); tmp<volScalarField> ttc(tc()); const volScalarField& tc = ttc(); forAll(epsilon, i) { if (epsilon[i] > 0) { scalar tk = Cmix_*Foam::sqrt(muEff[i]/rho[i]/(epsilon[i] + SMALL)); // Chalmers PaSR model if (!useReactionRate_) { kappa_[i] = (dt + tc[i])/(dt + tc[i] + tk); } else { kappa_[i] = tc[i]/(tc[i] + tk); } } else { // Return to laminar combustion kappa_[i] = 1.0; } } } else { kappa_ = 1.0; } }
void Foam::DispersionRASModel<CloudType>::cacheFields(const bool store) { if (store) { tmp<volScalarField> tk = this->kModel(); if (tk.isTmp()) { kPtr_ = tk.ptr(); ownK_ = true; } else { kPtr_ = &tk(); ownK_ = false; } tmp<volScalarField> tepsilon = this->epsilonModel(); if (tepsilon.isTmp()) { epsilonPtr_ = tepsilon.ptr(); ownEpsilon_ = true; } else { epsilonPtr_ = &tepsilon(); ownEpsilon_ = false; } } else { if (ownK_ && kPtr_) { deleteDemandDrivenData(kPtr_); ownK_ = false; } if (ownEpsilon_ && epsilonPtr_) { deleteDemandDrivenData(epsilonPtr_); ownEpsilon_ = false; } } }
int main(int argc, char *argv[]) { argList::addNote ( "apply a simplified boundary-layer model to the velocity and\n" "turbulence fields based on the 1/7th power-law." ); argList::addOption ( "ybl", "scalar", "specify the boundary-layer thickness" ); argList::addOption ( "Cbl", "scalar", "boundary-layer thickness as Cbl * mean distance to wall" ); argList::addBoolOption ( "writenut", "write nut field" ); #include "setRootCase.H" if (!args.optionFound("ybl") && !args.optionFound("Cbl")) { FatalErrorIn(args.executable()) << "Neither option 'ybl' or 'Cbl' have been provided to calculate " << "the boundary-layer thickness.\n" << "Please choose either 'ybl' OR 'Cbl'." << exit(FatalError); } else if (args.optionFound("ybl") && args.optionFound("Cbl")) { FatalErrorIn(args.executable()) << "Both 'ybl' and 'Cbl' have been provided to calculate " << "the boundary-layer thickness.\n" << "Please choose either 'ybl' OR 'Cbl'." << exit(FatalError); } #include "createTime.H" #include "createMesh.H" #include "createFields.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // // Modify velocity by applying a 1/7th power law boundary-layer // u/U0 = (y/ybl)^(1/7) // assumes U0 is the same as the current cell velocity Info<< "Setting boundary layer velocity" << nl << endl; scalar yblv = ybl.value(); forAll(U, cellI) { if (y[cellI] <= yblv) { mask[cellI] = 1; U[cellI] *= ::pow(y[cellI]/yblv, (1.0/7.0)); } } mask.correctBoundaryConditions(); Info<< "Writing U\n" << endl; U.write(); // Update/re-write phi #include "createPhi.H" phi.write(); singlePhaseTransportModel laminarTransport(U, phi); autoPtr<incompressible::turbulenceModel> turbulence ( incompressible::turbulenceModel::New(U, phi, laminarTransport) ); if (isA<incompressible::RASModel>(turbulence())) { // Calculate nut - reference nut is calculated by the turbulence model // on its construction tmp<volScalarField> tnut = turbulence->nut(); volScalarField& nut = tnut(); volScalarField S(mag(dev(symm(fvc::grad(U))))); nut = (1 - mask)*nut + mask*sqr(kappa*min(y, ybl))*::sqrt(2)*S; // do not correct BC - wall functions will 'undo' manipulation above // by using nut from turbulence model if (args.optionFound("writenut")) { Info<< "Writing nut" << endl; nut.write(); } //--- Read and modify turbulence fields // Turbulence k tmp<volScalarField> tk = turbulence->k(); volScalarField& k = tk(); scalar ck0 = pow025(Cmu)*kappa; k = (1 - mask)*k + mask*sqr(nut/(ck0*min(y, ybl))); // do not correct BC - operation may use inconsistent fields wrt these // local manipulations // k.correctBoundaryConditions(); Info<< "Writing k\n" << endl; k.write(); // Turbulence epsilon tmp<volScalarField> tepsilon = turbulence->epsilon(); volScalarField& epsilon = tepsilon(); scalar ce0 = ::pow(Cmu, 0.75)/kappa; epsilon = (1 - mask)*epsilon + mask*ce0*k*sqrt(k)/min(y, ybl); // do not correct BC - wall functions will use non-updated k from // turbulence model // epsilon.correctBoundaryConditions(); Info<< "Writing epsilon\n" << endl; epsilon.write(); // Turbulence omega IOobject omegaHeader ( "omega", runTime.timeName(), mesh, IOobject::MUST_READ, IOobject::NO_WRITE, false ); if (omegaHeader.headerOk()) { volScalarField omega(omegaHeader, mesh); dimensionedScalar k0("VSMALL", k.dimensions(), VSMALL); omega = (1 - mask)*omega + mask*epsilon/(Cmu*k + k0); // do not correct BC - wall functions will use non-updated k from // turbulence model // omega.correctBoundaryConditions(); Info<< "Writing omega\n" << endl; omega.write(); } // Turbulence nuTilda IOobject nuTildaHeader ( "nuTilda", runTime.timeName(), mesh, IOobject::MUST_READ, IOobject::NO_WRITE, false ); if (nuTildaHeader.headerOk()) { volScalarField nuTilda(nuTildaHeader, mesh); nuTilda = nut; // do not correct BC // nuTilda.correctBoundaryConditions(); Info<< "Writing nuTilda\n" << endl; nuTilda.write(); } } Info<< nl << "ExecutionTime = " << runTime.elapsedCpuTime() << " s" << " ClockTime = " << runTime.elapsedClockTime() << " s" << nl << endl; Info<< "End\n" << endl; return 0; }