SimulatorReport nonlinearIteration(const int iteration, const SimulatorTimerInterface& timer, NonlinearSolverType& nonlinear_solver) { SimulatorReport report; failureReport_ = SimulatorReport(); Dune::Timer perfTimer; perfTimer.start(); if (iteration == 0) { // For each iteration we store in a vector the norms of the residual of // the mass balance for each active phase, the well flux and the well equations. residual_norms_history_.clear(); current_relaxation_ = 1.0; dx_old_ = 0.0; convergence_reports_.push_back({timer.reportStepNum(), timer.currentStepNum(), {}}); convergence_reports_.back().report.reserve(11); } report.total_linearizations = 1; try { report += assembleReservoir(timer, iteration); report.assemble_time += perfTimer.stop(); } catch (...) { report.assemble_time += perfTimer.stop(); failureReport_ += report; // todo (?): make the report an attribute of the class throw; // continue throwing the stick } std::vector<double> residual_norms; perfTimer.reset(); perfTimer.start(); // the step is not considered converged until at least minIter iterations is done { auto convrep = getConvergence(timer, iteration,residual_norms); report.converged = convrep.converged() && iteration > nonlinear_solver.minIter();; ConvergenceReport::Severity severity = convrep.severityOfWorstFailure(); convergence_reports_.back().report.push_back(std::move(convrep)); // Throw if any NaN or too large residual found. if (severity == ConvergenceReport::Severity::NotANumber) { OPM_THROW(Opm::NumericalIssue, "NaN residual found!"); } else if (severity == ConvergenceReport::Severity::TooLarge) { OPM_THROW(Opm::NumericalIssue, "Too large residual found!"); } } // checking whether the group targets are converged if (wellModel().wellCollection().groupControlActive()) { report.converged = report.converged && wellModel().wellCollection().groupTargetConverged(wellModel().wellState().wellRates()); } report.update_time += perfTimer.stop(); residual_norms_history_.push_back(residual_norms); if (!report.converged) { perfTimer.reset(); perfTimer.start(); report.total_newton_iterations = 1; // enable single precision for solvers when dt is smaller then 20 days //residual_.singlePrecision = (unit::convert::to(dt, unit::day) < 20.) ; // Compute the nonlinear update. const int nc = UgGridHelpers::numCells(grid_); BVector x(nc); // apply the Schur compliment of the well model to the reservoir linearized // equations wellModel().linearize(ebosSimulator().model().linearizer().jacobian(), ebosSimulator().model().linearizer().residual()); // Solve the linear system. linear_solve_setup_time_ = 0.0; try { solveJacobianSystem(x); report.linear_solve_setup_time += linear_solve_setup_time_; report.linear_solve_time += perfTimer.stop(); report.total_linear_iterations += linearIterationsLastSolve(); } catch (...) { report.linear_solve_setup_time += linear_solve_setup_time_; report.linear_solve_time += perfTimer.stop(); report.total_linear_iterations += linearIterationsLastSolve(); failureReport_ += report; throw; // re-throw up } perfTimer.reset(); perfTimer.start(); // handling well state update before oscillation treatment is a decision based // on observation to avoid some big performance degeneration under some circumstances. // there is no theorectical explanation which way is better for sure. wellModel().postSolve(x); if (param_.use_update_stabilization_) { // Stabilize the nonlinear update. bool isOscillate = false; bool isStagnate = false; nonlinear_solver.detectOscillations(residual_norms_history_, iteration, isOscillate, isStagnate); if (isOscillate) { current_relaxation_ -= nonlinear_solver.relaxIncrement(); current_relaxation_ = std::max(current_relaxation_, nonlinear_solver.relaxMax()); if (terminalOutputEnabled()) { std::string msg = " Oscillating behavior detected: Relaxation set to " + std::to_string(current_relaxation_); OpmLog::info(msg); } } nonlinear_solver.stabilizeNonlinearUpdate(x, dx_old_, current_relaxation_); } // Apply the update, with considering model-dependent limitations and // chopping of the update. updateSolution(x); report.update_time += perfTimer.stop(); } return report; }
SimulatorReport nonlinearIteration(const int iteration, const SimulatorTimerInterface& timer, NonlinearSolverType& /* nonlinear_solver */, ReservoirState& reservoir_state, WellState& well_state) { if (!iterate_to_fully_implicit_) { // Do a single pressure solve, followed by a single transport solve. if (terminalOutputEnabled()) { OpmLog::info("Using sequential model."); } // Pressure solve. if (terminalOutputEnabled()) { OpmLog::info("Solving the pressure equation."); } ReservoirState initial_state = reservoir_state; const SimulatorReport pressure_report = pressure_solver_.step(timer, reservoir_state, well_state); const int pressure_liniter = pressure_report.total_linear_iterations; if (pressure_liniter == -1) { OPM_THROW(std::runtime_error, "Pressure solver failed to converge."); } // Transport solve. if (terminalOutputEnabled()) { OpmLog::info("Solving the transport equations."); } const SimulatorReport transport_report = transport_solver_.step(timer, initial_state, well_state, reservoir_state, well_state); const int transport_liniter = transport_report.total_linear_iterations; if (transport_liniter == -1) { OPM_THROW(std::runtime_error, "Transport solver failed to converge."); } // Report and return. SimulatorReport report; report.converged = true; report.total_linear_iterations = pressure_liniter + transport_liniter; return report; } else { // Iterate to fully implicit solution. // This call is just for a single iteration (one pressure and one transport solve), // we return a 'false' converged status if more are needed if (terminalOutputEnabled()) { OpmLog::info("Using sequential model in iterative mode, outer iteration " + std::to_string(iteration)); } // Pressure solve. if (terminalOutputEnabled()) { OpmLog::info("Solving the pressure equation."); } const SimulatorReport& pressure_report = pressure_solver_.step(timer, initial_reservoir_state_, initial_well_state_, reservoir_state, well_state); const int pressure_liniter = pressure_report.total_linear_iterations; if (pressure_liniter == -1) { OPM_THROW(std::runtime_error, "Pressure solver failed to converge."); } // Transport solve. if (terminalOutputEnabled()) { OpmLog::info("Solving the transport equations."); } const SimulatorReport& transport_report = transport_solver_.step(timer, initial_reservoir_state_, initial_well_state_, reservoir_state, well_state); const int transport_liniter = transport_report.total_linear_iterations; if (transport_liniter == -1) { OPM_THROW(std::runtime_error, "Transport solver failed to converge."); } SimulatorReport report; report.converged = iteration >= 3; // TODO: replace this with a proper convergence check report.total_linear_iterations = pressure_liniter + transport_liniter; return report; } }