/* clamp a volume between a range */ Volume *clamp(Volume * vol, double floor, double ceil, double bg) { int x, y, z; int sizes[MAX_VAR_DIMS]; double value; progress_struct progress; if(verbose){ fprintf(stdout, "Clamping, range: [%g:%g] bg: %g\n", floor, ceil, bg); } get_volume_sizes(*vol, sizes); initialize_progress_report(&progress, FALSE, sizes[2], "Clamping"); for(z = sizes[0]; z--;){ for(y = sizes[1]; y--;){ for(x = sizes[2]; x--;){ value = get_volume_voxel_value(*vol, z, y, x, 0, 0); if((value < floor) || (value > ceil)){ set_volume_voxel_value(*vol, z, y, x, 0, 0, bg); } } } update_progress_report(&progress, z + 1); } terminate_progress_report(&progress); return (vol); }
/* binarise a volume between a range */ Volume *binarise(Volume * vol, double floor, double ceil, double fg, double bg) { int x, y, z; int sizes[MAX_VAR_DIMS]; double value; progress_struct progress; if(verbose){ fprintf(stdout, "Binarising, range: [%g:%g] fg/bg: [%g:%g]\n", floor, ceil, fg, bg); } get_volume_sizes(*vol, sizes); initialize_progress_report(&progress, FALSE, sizes[2], "Binarise"); for(z = sizes[0]; z--;){ for(y = sizes[1]; y--;){ for(x = sizes[2]; x--;){ value = get_volume_voxel_value(*vol, z, y, x, 0, 0); if((value >= floor) && (value <= ceil)){ set_volume_voxel_value(*vol, z, y, x, 0, 0, fg); } else { set_volume_voxel_value(*vol, z, y, x, 0, 0, bg); } } } update_progress_report(&progress, z + 1); } terminate_progress_report(&progress); return (vol); }
void scale_volume(VIO_Volume * vol, double o_min, double o_max, double min, double max) { double value, a, b; int sizes[MAX_VAR_DIMS]; int i, j, k, v; VIO_progress_struct progress; get_volume_sizes(*vol, sizes); /* rescale the volume */ a = (max - min) / (o_max - o_min); b = min - (o_min * a); initialize_progress_report(&progress, FALSE, sizes[Z_IDX], "Rescaling Volume"); for(k = sizes[Z_IDX]; k--;){ for(j = sizes[Y_IDX]; j--;){ for(i = sizes[X_IDX]; i--;){ for(v = sizes[V_IDX]; v--;){ value = (get_volume_real_value(*vol, k, j, i, v, 0) * a) + b; set_volume_real_value(*vol, k, j, i, v, 0, value); } } } update_progress_report(&progress, k + 1); } terminate_progress_report(&progress); if(verbose){ fprintf(stdout, " + rescaled data range: [%g:%g]\n", min, max); } set_volume_real_range(*vol, min, max); }
VIOAPI VIO_Status input_volume( VIO_STR filename, int n_dimensions, VIO_STR dim_names[], nc_type volume_nc_data_type, VIO_BOOL volume_signed_flag, VIO_Real volume_voxel_min, VIO_Real volume_voxel_max, VIO_BOOL create_volume_flag, VIO_Volume *volume, minc_input_options *options ) { VIO_Status status; VIO_Real amount_done; volume_input_struct input_info; VIO_progress_struct progress; static const int FACTOR = 1000; VIO_Real volume_min=0.0,volume_max=0.0; status = start_volume_input( filename, n_dimensions, dim_names, volume_nc_data_type, volume_signed_flag, volume_voxel_min, volume_voxel_max, create_volume_flag, volume, options, &input_info ); if( status == VIO_OK ) { initialize_progress_report( &progress, FALSE, FACTOR, "Reading Volume"); while( input_more_of_volume( *volume, &input_info, &amount_done ) ) { update_progress_report( &progress, VIO_ROUND( (VIO_Real) FACTOR * amount_done)); } if (amount_done < 1.0) { status = VIO_ERROR; } terminate_progress_report( &progress ); delete_volume_input( &input_info ); if( !volume_is_alloced( *volume ) ) { delete_volume( *volume ); *volume = NULL; status = VIO_ERROR; } } if (status == VIO_OK) { get_volume_voxel_range( *volume, &volume_min, &volume_max ); } return( status ); }
/* perform an erosion on a volume */ Volume *erosion_kernel(Kernel * K, Volume * vol) { int x, y, z, c; double value; int sizes[MAX_VAR_DIMS]; progress_struct progress; Volume tmp_vol; if(verbose){ fprintf(stdout, "Erosion kernel\n"); } get_volume_sizes(*vol, sizes); initialize_progress_report(&progress, FALSE, sizes[2], "Erosion"); /* copy the volume */ tmp_vol = copy_volume(*vol); for(z = -K->pre_pad[2]; z < sizes[0] - K->post_pad[2]; z++){ for(y = -K->pre_pad[1]; y < sizes[1] - K->post_pad[1]; y++){ for(x = -K->pre_pad[0]; x < sizes[2] - K->post_pad[0]; x++){ value = get_volume_real_value(tmp_vol, z, y, x, 0, 0); for(c = 0; c < K->nelems; c++){ if(get_volume_real_value(*vol, z + K->K[c][2], y + K->K[c][1], x + K->K[c][0], 0 + K->K[c][3], 0 + K->K[c][4]) > value){ set_volume_real_value(*vol, z + K->K[c][2], y + K->K[c][1], x + K->K[c][0], 0 + K->K[c][3], 0 + K->K[c][4], value * K->K[c][5]); } } value = get_volume_real_value(tmp_vol, z, y, x, 0, 0); } } update_progress_report(&progress, z + 1); } delete_volume(tmp_vol); terminate_progress_report(&progress); return (vol); }
void calc_volume_range(VIO_Volume * vol, double *min, double *max) { int x, y, z; int sizes[MAX_VAR_DIMS]; double value; VIO_progress_struct progress; *min = DBL_MAX; *max = -DBL_MIN; get_volume_sizes(*vol, sizes); initialize_progress_report(&progress, FALSE, sizes[2], "Finding Range"); for(z = sizes[0]; z--;){ for(y = sizes[1]; y--;){ for(x = sizes[2]; x--;){ value = get_volume_voxel_value(*vol, z, y, x, 0, 0); if(value < *min){ *min = value; } else if(value > *max){ *max = value; } } } update_progress_report(&progress, z + 1); } terminate_progress_report(&progress); if (*min == *max) { *max = *min + 1.0; } if(verbose){ fprintf(stdout, "Found range of [%g:%g]\n", *min, *max); } }
void normalize_data_to_match_target(VIO_Volume d1, VIO_Volume m1, VIO_Real thresh1, VIO_Volume d2, VIO_Volume m2, VIO_Real thresh2, Arg_Data *globals) { VectorR vector_step; PointR starting_position, slice, row, col, pos2, voxel; double tx,ty,tz; int i,j,k, r,c,s; VIO_Real min_range, max_range, data_vox, data_val, value1, value2; VIO_Real t1,t2, /* temporary threshold values */ s1,s2,s3; /* to store the sums for f1,f2,f3 */ float *ratios, result; /* the result */ int sizes[VIO_MAX_DIMENSIONS],ratios_size,count1,count2; VIO_Volume vol; VIO_progress_struct progress; VIO_Data_types data_type; set_feature_value_threshold(d1,d2, &thresh1, &thresh2, &t1, &t2); if (globals->flags.debug) { print ("In normalize_data_to_match_target, thresh = %10.3f %10.3f\n",t1,t2) ; } ratios_size = globals->count[ROW_IND] * globals->count[COL_IND] * globals->count[SLICE_IND]; ALLOC(ratios, ratios_size); fill_Point( starting_position, globals->start[VIO_X], globals->start[VIO_Y], globals->start[VIO_Z]); s1 = s2 = s3 = 0.0; count1 = count2 = 0; for(s=0; s<=globals->count[SLICE_IND]; s++) { SCALE_VECTOR( vector_step, globals->directions[SLICE_IND], s); ADD_POINT_VECTOR( slice, starting_position, vector_step ); for(r=0; r<=globals->count[ROW_IND]; r++) { SCALE_VECTOR( vector_step, globals->directions[ROW_IND], r); ADD_POINT_VECTOR( row, slice, vector_step ); SCALE_POINT( col, row, 1.0); /* init first col position */ for(c=0; c<=globals->count[COL_IND]; c++) { convert_3D_world_to_voxel(d1, Point_x(col), Point_y(col), Point_z(col), &tx, &ty, &tz); fill_Point( voxel, tx, ty, tz ); /* build the voxel POINT */ if (point_not_masked(m1, Point_x(col), Point_y(col), Point_z(col))) { value1 = get_value_of_point_in_volume( Point_x(col), Point_y(col), Point_z(col), d1); if ( value1 > t1 ) { count1++; DO_TRANSFORM(pos2, globals->trans_info.transformation, col); convert_3D_world_to_voxel(d2, Point_x(pos2), Point_y(pos2), Point_z(pos2), &tx, &ty, &tz); fill_Point( voxel, tx, ty, tz ); /* build the voxel POINT */ if (point_not_masked(m2, Point_x(pos2), Point_y(pos2), Point_z(pos2))) { value2 = get_value_of_point_in_volume( Point_x(pos2), Point_y(pos2), Point_z(pos2), d2); if ( (value2 > t2) && ((value2 < -1e-15) || (value2 > 1e-15)) ) { ratios[count2++] = value1 / value2 ; s1 += value1*value2; s2 += value1*value1; s3 += value2*value2; } /* if voxel in d2 */ } /* if point in mask volume two */ } /* if voxel in d1 */ } /* if point in mask volume one */ ADD_POINT_VECTOR( col, col, globals->directions[COL_IND] ); } /* for c */ } /* for r */ } /* for s */ if (count2 > 0) { if (globals->flags.debug) (void)print ("Starting qsort of ratios..."); qs_list (ratios,0,count2); if (globals->flags.debug) (void)print ("Done.\n"); result = ratios[ (int)(count2/2) ]; /* the median value */ if (globals->flags.debug) (void)print ("Normalization: %7d %7d -> %10.8f\n",count1,count2,result); if ( fabs(result) < 1e-15) { print_error_and_line_num("Error computing normalization ratio `%f'.",__FILE__, __LINE__, result); } else { data_type = get_volume_data_type(d1); switch( data_type ) { case SIGNED_BYTE: case UNSIGNED_BYTE: case SIGNED_SHORT: case UNSIGNED_SHORT: /* build temporary working volume */ vol = copy_volume_definition_no_alloc(d1, NC_UNSPECIFIED, FALSE, 0.0, 0.0); get_volume_minimum_maximum_real_value(d1, &min_range, &max_range); min_range /= result; max_range /= result; set_volume_real_range(vol, min_range, max_range); get_volume_sizes(d1, sizes); initialize_progress_report(&progress, FALSE, sizes[0]*sizes[1]*sizes[2] + 1, "Normalizing source data" ); count1 = 0; /* reset values in the data volume */ for(i=0; i<sizes[0]; i++) for(j=0; j<sizes[1]; j++) { count1++; update_progress_report( &progress, count1); for(k=0; k<sizes[2]; k++) { GET_VOXEL_3D( data_vox, d1, i, j, k ); data_val = CONVERT_VOXEL_TO_VALUE(d1, data_vox); data_val /= result; data_vox = CONVERT_VALUE_TO_VOXEL( vol, data_val); SET_VOXEL_3D( d1 , i, j, k, data_vox ); } } terminate_progress_report( &progress ); set_volume_real_range(d1, min_range, max_range); if (globals->flags.debug) (void)print ("After normalization min,max, thresh = %f %f %f\n", min_range, max_range, t1/result); delete_volume(vol); break; default: /* then volume should be either float or double */ get_volume_sizes(d1, sizes); initialize_progress_report(&progress, FALSE, sizes[0]*sizes[1]*sizes[2] + 1, "Normalizing source data" ); count1 = 0; /* nomalize the values in the data volume */ for(i=0; i<sizes[0]; i++) for(j=0; j<sizes[1]; j++) { count1++; update_progress_report( &progress, count1); for(k=0; k<sizes[2]; k++) { /* it should be possible to directly stream through the voxels, without indexing... */ GET_VOXEL_3D( data_vox, d1, i, j, k ); data_val = CONVERT_VOXEL_TO_VALUE(d1, data_vox); data_val /= result; data_vox = CONVERT_VALUE_TO_VOXEL( d1, data_val); SET_VOXEL_3D( d1 , i, j, k, data_vox ); } } terminate_progress_report( &progress ); } } } FREE(ratios); }
void make_zscore_volume(VIO_Volume d1, VIO_Volume m1, VIO_Real *threshold) { unsigned long count; int stat_count, sizes[VIO_MAX_DIMENSIONS], s,r,c; VIO_Real wx,wy,wz, valid_min_dvoxel, valid_max_dvoxel, min,max, sum, sum2, mean, var, std, data_vox,data_val, thick[VIO_MAX_DIMENSIONS]; PointR voxel; VIO_Volume vol; VIO_progress_struct progress; /* get default information from data and mask */ /* build temporary working volume */ vol = copy_volume_definition(d1, NC_UNSPECIFIED, FALSE, 0.0, 0.0); set_volume_real_range(vol, MIN_ZRANGE, MAX_ZRANGE); get_volume_sizes(d1, sizes); get_volume_separations(d1, thick); get_volume_voxel_range(d1, &valid_min_dvoxel, &valid_max_dvoxel); /* initialize counters and sums */ count = 0; sum = 0.0; sum2 = 0.0; min = 1e38; max = -1e38; stat_count = 0; initialize_progress_report(&progress, FALSE, sizes[0]*sizes[1]*sizes[2] + 1, "Tally stats" ); /* do first pass, to get mean and std */ for(s=0; s<sizes[0]; s++) { for(r=0; r<sizes[1]; r++) { for(c=0; c<sizes[2]; c++) { stat_count++; update_progress_report( &progress, stat_count); convert_3D_voxel_to_world(d1, (VIO_Real)s, (VIO_Real)r, (VIO_Real)c, &wx, &wy, &wz); if (m1 != NULL) { convert_3D_world_to_voxel(m1, wx, wy, wz, &Point_x(voxel), &Point_y(voxel), &Point_z(voxel)); } else { wx = 0.0; wy = 0.0; wz = 0.0; } if (point_not_masked(m1, wx,wy,wz)) { GET_VOXEL_3D( data_vox, d1 , s, r, c ); if (data_vox >= valid_min_dvoxel && data_vox <= valid_max_dvoxel) { data_val = CONVERT_VOXEL_TO_VALUE(d1, data_vox); if (data_val > *threshold) { sum += data_val; sum2 += data_val*data_val; count++; if (data_val < min) min = data_val; else if (data_val > max) max = data_val; } } } } } } terminate_progress_report( &progress ); stat_count = 0; initialize_progress_report(&progress, FALSE, sizes[0]*sizes[1]*sizes[2] + 1, "Zscore convert" ); /* calc mean and std */ mean = sum / (float)count; var = ((float)count*sum2 - sum*sum) / ((float)count*((float)count-1)); std = sqrt(var); min = 1e38; max = -1e38; /* replace the voxel values */ for(s=0; s<sizes[0]; s++) { for(r=0; r<sizes[1]; r++) { for(c=0; c<sizes[2]; c++) { stat_count++; update_progress_report( &progress, stat_count); GET_VOXEL_3D( data_vox, d1, s, r, c ); if (data_vox >= valid_min_dvoxel && data_vox <= valid_max_dvoxel) { data_val = CONVERT_VOXEL_TO_VALUE(d1, data_vox); if (data_val > *threshold) { /* instead of data_val = CONVERT_VALUE_TO_VOXEL(d1, data_vox); i will use data_val = CONVERT_VALUE_TO_VOXEL(d1, vol); since the values in vol are changed with respect to the new z-score volume */ data_val = (data_val - mean) / std; if (data_val< MIN_ZRANGE) data_val = MIN_ZRANGE; if (data_val> MAX_ZRANGE) data_val = MAX_ZRANGE; data_vox = CONVERT_VALUE_TO_VOXEL( vol, data_val); if (data_val < min) { min = data_val; } else { if (data_val > max) max = data_val; } } else data_vox = -DBL_MAX; /* should be fill_value! */ SET_VOXEL_3D( d1 , s, r, c, data_vox ); } } } } terminate_progress_report( &progress ); set_volume_real_range(d1, MIN_ZRANGE, MAX_ZRANGE); /* reset the data volume's range */ *threshold = (*threshold - mean) / std; delete_volume(vol); }
/* xcorr = sum((a*b)^2) / (sqrt(sum(a^2)) * sqrt(sum(b^2)) */ VIO_Volume *lcorr_kernel(Kernel * K, VIO_Volume * vol, VIO_Volume *cmp) { int x, y, z, c; double value, v1, v2; double ssum_v1, ssum_v2, sum_prd, denom; int sizes[MAX_VAR_DIMS]; progress_struct progress; Volume tmp_vol; if(verbose){ fprintf(stdout, "Local Correlation kernel\n"); } get_volume_sizes(*vol, sizes); initialize_progress_report(&progress, FALSE, sizes[2], "Local Correlation"); /* copy the volume */ tmp_vol = copy_volume(*vol); /* zero the output volume */ for(z = sizes[0]; z--;){ for(y = sizes[1]; y--;){ for(x = sizes[2]; x--;){ set_volume_voxel_value(*vol, z, y, x, 0, 0, 0); } } } /* set output range */ set_volume_real_range(*vol, 0.0, 1.0); for(z = -K->pre_pad[2]; z < sizes[0] - K->post_pad[2]; z++){ for(y = -K->pre_pad[1]; y < sizes[1] - K->post_pad[1]; y++){ for(x = -K->pre_pad[0]; x < sizes[2] - K->post_pad[0]; x++){ /* init counters */ ssum_v1 = ssum_v2 = sum_prd = 0; for(c = 0; c < K->nelems; c++){ v1 = get_volume_real_value(tmp_vol, z + K->K[c][2], y + K->K[c][1], x + K->K[c][0], 0 + K->K[c][3], 0 + K->K[c][4]) * K->K[c][5]; v2 = get_volume_real_value(*cmp, z + K->K[c][2], y + K->K[c][1], x + K->K[c][0], 0 + K->K[c][3], 0 + K->K[c][4]) * K->K[c][5]; /* increment counters */ ssum_v1 += v1*v1; ssum_v2 += v2*v2; sum_prd += v1*v2; } denom = sqrt(ssum_v1 * ssum_v2); value = (denom == 0.0) ? 0.0 : sum_prd / denom; set_volume_real_value(*vol, z, y, x, 0, 0, value); } } update_progress_report(&progress, z + 1); } terminate_progress_report(&progress); /* tidy up */ delete_volume(tmp_vol); return (vol); }
int main(int argc, char *argv[]) { static ML mst[NPTS]; /* mst of at most NPTS points */ object_struct *obj; lines_struct *lines; Point p; FILE *fp; VIO_Status stat; VIO_progress_struct progress; long int i, count, total; if (argc!=3) { print("usage: %s in_mst output.obj\n", argv[0]); exit(EXIT_FAILURE); } stat = open_file( argv[1] , READ_FILE, ASCII_FORMAT, &fp); if (stat != OK) { print("error: cannot open %s for input.\n", argv[1]); exit(EXIT_FAILURE); } count = 0L; total = 0L; while( fscanf( fp, "%d%d%f%f%f%f", &mst[total].index, &mst[total].parent_index, &mst[total].xyz[0], &mst[total].xyz[1], &mst[total].xyz[2], &mst[total].err) != EOF ) { ++total; if ( total >= NPTS ) { printf("\ntoo much data!"); fclose( fp ); exit( 0 ); } } if ( close_file( fp ) != OK ){ print("error: cannot close %s.\n", argv[1]); exit(EXIT_FAILURE); } stat = open_file( argv[2] , WRITE_FILE, BINARY_FORMAT, &fp); if (stat != OK) { print("error: cannot open %s for output.\n", argv[2]); exit(EXIT_FAILURE); } obj = create_object(LINES); lines = get_lines_ptr(obj); initialize_lines(lines, YELLOW); initialize_progress_report(&progress, FALSE, total+1, "Building vectors"); for(i=1; i<total; i++) { start_new_line(lines); count = mst[i].index; fill_Point(p, mst[count].xyz[0],mst[count].xyz[1],mst[count].xyz[2]); add_point_to_line(lines, &p); count = mst[i].parent_index; fill_Point(p, mst[count].xyz[0],mst[count].xyz[1],mst[count].xyz[2]); add_point_to_line(lines, &p); update_progress_report( &progress, i ); } terminate_progress_report(&progress); print ("Saving data...\n"); output_object(fp, ASCII_FORMAT, obj); close_file(fp); delete_object(obj); exit(EXIT_SUCCESS); }
VIO_Status gradient3D_volume(FILE *ifd, VIO_Volume data, int xyzv[VIO_MAX_DIMENSIONS], char *infile, char *outfile, int ndim, char *history, int curvature_flg) { float *fdata, /* floating point storage for blurred volume */ *f_ptr, /* pointer to fdata */ tmp, max_val, min_val, *dat_vector, /* temp storage of original row, col or slice vect. */ *dat_vecto2, /* storage of result of dat_vector*kern */ *kern; /* convolution kernel */ int total_voxels, vector_size_data, /* original size of row, col or slice vector */ array_size_pow2, /* actual size of vector/kernel data used in FFT */ /* routines - needs to be a power of two */ array_size; int data_offset; /* offset required to place original data (size n) */ /* into array (size m=2^n) so that data is centered*/ register int slice_limit, row,col,slice, /* counters to access original data */ vindex; /* counter to access vector and vecto2 */ int slice_size, /* size of each data step - in bytes */ row_size, col_size; char full_outfilename[256]; /* name of output file */ progress_struct progress; /* used to monitor progress of calculations */ VIO_Status status; int sizes[3], /* number of rows, cols and slices */ pos[3]; /* Input order of rows, cols, slices */ VIO_Real steps[3]; /* size of voxel step from center to center in x,y,z */ /*---------------------------------------------------------------------------------*/ /* start by setting up the raw data. */ /*---------------------------------------------------------------------------------*/ get_volume_sizes(data, sizes); /* rows,cols,slices */ get_volume_separations(data, steps); slice_size = sizes[xyzv[VIO_Y]] * sizes[xyzv[VIO_X]]; /* sizeof one slice */ col_size = sizes[xyzv[VIO_Y]]; /* sizeof one column */ row_size = sizes[xyzv[VIO_X]]; /* sizeof one row */ total_voxels = sizes[xyzv[VIO_Y]]*sizes[xyzv[VIO_X]]*sizes[xyzv[VIO_Z]]; ALLOC(fdata, total_voxels); f_ptr = fdata; /* read in data of input file. */ set_file_position(ifd,(long)0); status = io_binary_data(ifd,READ_FILE, fdata, sizeof(float), total_voxels); if (status != OK) print_error_and_line_num("problems reading binary data...\n",__FILE__, __LINE__); /*--------------------------------------------------------------------------------------*/ /* get ready to start up the transformation. */ /*--------------------------------------------------------------------------------------*/ initialize_progress_report( &progress, FALSE, sizes[xyzv[VIO_Z]] + sizes[xyzv[VIO_Y]] + sizes[xyzv[VIO_X]] + 1, "Gradient volume" ); /* note data is stored by rows (along x), then by cols (along y) then slices (along z) */ /*--------------------------------------------------------------------------------------*/ /* start with rows - i.e. the d/dx volume */ /*--------------------------------------------------------------------------------------*/ /*-----------------------------------------------------------------------------*/ /* determine size of data structures needed */ vector_size_data = sizes[xyzv[VIO_X]]; /* array_size_pow2 will hold the size of the arrays for FFT convolution, remember that ffts require arrays 2^n in length */ array_size_pow2 = next_power_of_two(vector_size_data); array_size = 2*array_size_pow2+1; /* allocate 2*, since each point is a */ /* complex number for FFT, and the plus 1*/ /* is for the zero offset FFT routine */ ALLOC(dat_vector, array_size); ALLOC(dat_vecto2, array_size); ALLOC(kern , array_size); /* 1st calculate kern array for FT of 1st derivitive */ make_kernel_FT(kern,array_size_pow2, ABS(steps[xyzv[VIO_X]])); if (curvature_flg) /* 2nd derivative kernel */ muli_vects(kern,kern,kern,array_size_pow2); /* calculate offset for original data to be placed in vector */ data_offset = (array_size_pow2-sizes[xyzv[VIO_X]])/2; max_val = -FLT_MAX; min_val = FLT_MAX; /* 2nd now convolve this kernel with the rows of the dataset */ slice_limit = 0; switch (ndim) { case 1: slice_limit = 0; break; case 2: slice_limit = sizes[xyzv[VIO_Z]]; break; case 3: slice_limit = sizes[xyzv[VIO_Z]]; break; } for (slice = 0; slice < slice_limit; slice++) { /* for each slice */ for (row = 0; row < sizes[xyzv[VIO_Y]]; row++) { /* for each row */ f_ptr = fdata + slice*slice_size + row*sizes[xyzv[VIO_X]]; memset(dat_vector,0,(2*array_size_pow2+1)*sizeof(float)); for (col=0; col< sizes[xyzv[VIO_X]]; col++) { /* extract the row */ dat_vector[1 +2*(col+data_offset) ] = *f_ptr++; } fft1(dat_vector,array_size_pow2,1); muli_vects(dat_vecto2,dat_vector,kern,array_size_pow2); fft1(dat_vecto2,array_size_pow2,-1); f_ptr = fdata + slice*slice_size + row*sizes[xyzv[VIO_X]]; for (col=0; col< sizes[xyzv[VIO_X]]; col++) { /* put the row back */ vindex = 1 + 2*(col+data_offset); *f_ptr = dat_vecto2[vindex]/array_size_pow2; if (max_val<*f_ptr) max_val = *f_ptr; if (min_val>*f_ptr) min_val = *f_ptr; f_ptr++; } } update_progress_report( &progress, slice+1 ); } FREE(dat_vector); FREE(dat_vecto2); FREE(kern ); f_ptr = fdata; set_volume_real_range(data, min_val, max_val); printf("Making byte volume dx..." ); for(slice=0; slice<sizes[xyzv[VIO_Z]]; slice++) { pos[xyzv[VIO_Z]] = slice; for(row=0; row<sizes[xyzv[VIO_Y]]; row++) { pos[xyzv[VIO_Y]] = row; for(col=0; col<sizes[xyzv[VIO_X]]; col++) { pos[xyzv[VIO_X]] = col; tmp = CONVERT_VALUE_TO_VOXEL(data, *f_ptr); SET_VOXEL_3D( data, pos[0], pos[1], pos[2], tmp); f_ptr++; } } } if (!curvature_flg) sprintf(full_outfilename,"%s_dx.mnc",outfile); else sprintf(full_outfilename,"%s_dxx.mnc",outfile); if (debug) print ("dx: min = %f, max = %f\n",min_val, max_val); status = output_modified_volume(full_outfilename, NC_UNSPECIFIED, FALSE, min_val, max_val, data, infile, history, NULL); if (status != OK) print_error_and_line_num("problems writing dx gradient data...\n",__FILE__, __LINE__); /*--------------------------------------------------------------------------------------*/ /* now do cols - i.e. the d/dy volume */ /*--------------------------------------------------------------------------------------*/ /*-----------------------------------------------------------------------------*/ /* determine size of data structures needed */ set_file_position(ifd,0); status = io_binary_data(ifd,READ_FILE, fdata, sizeof(float), total_voxels); if (status != OK) print_error_and_line_num("problems reading binary data...\n",__FILE__, __LINE__); f_ptr = fdata; vector_size_data = sizes[xyzv[VIO_Y]]; /* array_size_pow2 will hold the size of the arrays for FFT convolution, remember that ffts require arrays 2^n in length */ array_size_pow2 = next_power_of_two(vector_size_data); array_size = 2*array_size_pow2+1; /* allocate 2*, since each point is a */ /* complex number for FFT, and the plus 1*/ /* is for the zero offset FFT routine */ ALLOC(dat_vector, array_size); ALLOC(dat_vecto2, array_size); ALLOC(kern , array_size); /* 1st calculate kern array for FT of 1st derivitive */ make_kernel_FT(kern,array_size_pow2, ABS(steps[xyzv[VIO_Y]])); if (curvature_flg) /* 2nd derivative kernel */ muli_vects(kern,kern,kern,array_size_pow2); /* calculate offset for original data to be placed in vector */ data_offset = (array_size_pow2-sizes[xyzv[VIO_Y]])/2; /* 2nd now convolve this kernel with the rows of the dataset */ max_val = -FLT_MAX; min_val = FLT_MAX; switch (ndim) { case 1: slice_limit = 0; break; case 2: slice_limit = sizes[xyzv[VIO_Z]]; break; case 3: slice_limit = sizes[xyzv[VIO_Z]]; break; } for (slice = 0; slice < slice_limit; slice++) { /* for each slice */ for (col = 0; col < sizes[xyzv[VIO_X]]; col++) { /* for each col */ /* f_ptr = fdata + slice*slice_size + row*sizeof(float); */ f_ptr = fdata + slice*slice_size + col; memset(dat_vector,0,(2*array_size_pow2+1)*sizeof(float)); for (row=0; row< sizes[xyzv[VIO_Y]]; row++) { /* extract the col */ dat_vector[1 +2*(row+data_offset) ] = *f_ptr; f_ptr += row_size; } fft1(dat_vector,array_size_pow2,1); muli_vects(dat_vecto2,dat_vector,kern,array_size_pow2); fft1(dat_vecto2,array_size_pow2,-1); f_ptr = fdata + slice*slice_size + col; for (row=0; row< sizes[xyzv[VIO_Y]]; row++) { /* put the col back */ vindex = 1 + 2*(row+data_offset); *f_ptr = dat_vecto2[vindex]/array_size_pow2; if (max_val<*f_ptr) max_val = *f_ptr; if (min_val>*f_ptr) min_val = *f_ptr; f_ptr += row_size; } } update_progress_report( &progress, slice+sizes[xyzv[VIO_Z]]+1 ); } FREE(dat_vector); FREE(dat_vecto2); FREE(kern ); f_ptr = fdata; set_volume_real_range(data, min_val, max_val); printf("Making byte volume dy..." ); for(slice=0; slice<sizes[xyzv[VIO_Z]]; slice++) { pos[xyzv[VIO_Z]] = slice; for(row=0; row<sizes[xyzv[VIO_Y]]; row++) { pos[xyzv[VIO_Y]] = row; for(col=0; col<sizes[xyzv[VIO_X]]; col++) { pos[xyzv[VIO_X]] = col; tmp = CONVERT_VALUE_TO_VOXEL(data, *f_ptr); SET_VOXEL_3D( data, pos[0], pos[1], pos[2], tmp); f_ptr++; } } } if (!curvature_flg) sprintf(full_outfilename,"%s_dy.mnc",outfile); else sprintf(full_outfilename,"%s_dyy.mnc",outfile); if (debug) print ("dy: min = %f, max = %f\n",min_val, max_val); status = output_modified_volume(full_outfilename, NC_UNSPECIFIED, FALSE, min_val, max_val, data, infile, history, NULL); if (status != OK) print_error_and_line_num("problems writing dy gradient data...",__FILE__, __LINE__); /*--------------------------------------------------------------------------------------*/ /* now do slices - i.e. the d/dz volume */ /*--------------------------------------------------------------------------------------*/ /*-----------------------------------------------------------------------------*/ /* determine size of data structures needed */ set_file_position(ifd,0); status = io_binary_data(ifd,READ_FILE, fdata, sizeof(float), total_voxels); if (status != OK) print_error_and_line_num("problems reading binary data...\n",__FILE__, __LINE__); f_ptr = fdata; vector_size_data = sizes[xyzv[VIO_Z]]; /* array_size_pow2 will hold the size of the arrays for FFT convolution, remember that ffts require arrays 2^n in length */ array_size_pow2 = next_power_of_two(vector_size_data); array_size = 2*array_size_pow2+1; /* allocate 2*, since each point is a */ /* complex number for FFT, and the plus 1*/ /* is for the zero offset FFT routine */ ALLOC(dat_vector, array_size); ALLOC(dat_vecto2, array_size); ALLOC(kern , array_size); if (ndim==1 || ndim==3) { /* 1st calculate kern array for FT of 1st derivitive */ make_kernel_FT(kern,array_size_pow2, ABS(steps[xyzv[VIO_Z]])); if (curvature_flg) /* 2nd derivative kernel */ muli_vects(kern,kern,kern,array_size_pow2); /* calculate offset for original data to be placed in vector */ data_offset = (array_size_pow2-sizes[xyzv[VIO_Z]])/2; /* 2nd now convolve this kernel with the slices of the dataset */ max_val = -FLT_MAX; min_val = FLT_MAX; for (col = 0; col < sizes[xyzv[VIO_X]]; col++) { /* for each column */ for (row = 0; row < sizes[xyzv[VIO_Y]]; row++) { /* for each row */ f_ptr = fdata + col*col_size + row; memset(dat_vector,0,(2*array_size_pow2+1)*sizeof(float)); for (slice=0; slice< sizes[xyzv[VIO_Z]]; slice++) { /* extract the slice vector */ dat_vector[1 +2*(slice+data_offset) ] = *f_ptr; f_ptr += slice_size; } fft1(dat_vector,array_size_pow2,1); muli_vects(dat_vecto2,dat_vector,kern,array_size_pow2); fft1(dat_vecto2,array_size_pow2,-1); f_ptr = fdata + col*col_size + row; for (slice=0; slice< sizes[xyzv[VIO_Z]]; slice++) { /* put the vector back */ vindex = 1 + 2*(slice+data_offset); *f_ptr = dat_vecto2[vindex]/array_size_pow2; if (max_val<*f_ptr) max_val = *f_ptr; if (min_val>*f_ptr) min_val = *f_ptr; f_ptr += slice_size; } } update_progress_report( &progress, col + 2*sizes[xyzv[VIO_Z]] + 1 ); } } /* if ndim */ else { max_val = 0.00001; min_val = 0.00000; for (col = 0; col < sizes[xyzv[VIO_X]]; col++) { /* for each column */ for (row = 0; row < sizes[xyzv[VIO_Y]]; row++) { /* for each row */ *f_ptr = 0.0; f_ptr++; } } } FREE(dat_vector); FREE(dat_vecto2); FREE(kern ); /* set up the correct info to copy the data back out in mnc */ f_ptr = fdata; set_volume_real_range(data, min_val, max_val); printf("Making byte volume dz..." ); for(slice=0; slice<sizes[xyzv[VIO_Z]]; slice++) { pos[xyzv[VIO_Z]] = slice; for(row=0; row<sizes[xyzv[VIO_Y]]; row++) { pos[xyzv[VIO_Y]] = row; for(col=0; col<sizes[xyzv[VIO_X]]; col++) { pos[xyzv[VIO_X]] = col; tmp = CONVERT_VALUE_TO_VOXEL(data, *f_ptr); SET_VOXEL_3D( data, pos[0], pos[1], pos[2], tmp); f_ptr++; } } } if (!curvature_flg) sprintf(full_outfilename,"%s_dz.mnc",outfile); else sprintf(full_outfilename,"%s_dzz.mnc",outfile); if (debug) print ("dz: min = %f, max = %f\n",min_val, max_val); status = output_modified_volume(full_outfilename, NC_UNSPECIFIED, FALSE, min_val, max_val, data, infile, history, NULL); if (status != OK) print_error_and_line_num("problems writing dz gradient data...",__FILE__, __LINE__); terminate_progress_report( &progress ); FREE(fdata); return(status); }
/* perform a median kernel operation on a volume */ Volume *median_dilation_kernel(Kernel * K, Volume * vol) { int x, y, z, c, i; int sizes[MAX_VAR_DIMS]; progress_struct progress; Volume tmp_vol; double value; unsigned int kvalue; unsigned int neighbours[K->nelems]; if(verbose){ fprintf(stdout, "Median Dilation kernel\n"); } get_volume_sizes(*vol, sizes); initialize_progress_report(&progress, FALSE, sizes[2], "Median Dilation"); /* copy the volume */ tmp_vol = copy_volume(*vol); for(z = -K->pre_pad[2]; z < sizes[0] - K->post_pad[2]; z++){ for(y = -K->pre_pad[1]; y < sizes[1] - K->post_pad[1]; y++){ for(x = -K->pre_pad[0]; x < sizes[2] - K->post_pad[0]; x++){ /* only modify background voxels */ value = get_volume_voxel_value(tmp_vol, z, y, x, 0, 0); if(value == 0.0){ i = 0; for(c = 0; c < K->nelems; c++){ kvalue = (unsigned int)get_volume_voxel_value(tmp_vol, z + K->K[c][2], y + K->K[c][1], x + K->K[c][0], 0 + K->K[c][3], 0 + K->K[c][4]); if(kvalue != 0){ neighbours[i] = kvalue; i++; } } /* only run this for adjacent voxels */ if(i > 0){ /* find the median of our little array */ qsort(&neighbours[0], (size_t) i, sizeof(unsigned int), &compare_ints); /* store the median value */ set_volume_voxel_value(*vol, z, y, x, 0, 0, (double)neighbours[(int)floor((i - 1) / 2)]); } } /* else just copy the original value over */ else { set_volume_voxel_value(*vol, z, y, x, 0, 0, value); } } } update_progress_report(&progress, z + 1); } delete_volume(tmp_vol); terminate_progress_report(&progress); return (vol); }
int main(int argc, char *argv[]) { VIO_General_transform transform, *grid_transform_ptr, forward_transform; VIO_Volume target_vol, volume; volume_input_struct input_info; VIO_Real voxel[VIO_MAX_DIMENSIONS], steps[VIO_MAX_DIMENSIONS], start[VIO_N_DIMENSIONS], target_steps[VIO_MAX_DIMENSIONS], wx,wy,wz, inv_x, inv_y, inv_z, def_values[VIO_MAX_DIMENSIONS]; static int clobber_flag = FALSE, verbose = TRUE, debug = FALSE; static char *target_file; int parse_flag, prog_count, sizes[VIO_MAX_DIMENSIONS], target_sizes[VIO_MAX_DIMENSIONS], xyzv[VIO_MAX_DIMENSIONS], target_xyzv[VIO_MAX_DIMENSIONS], index[VIO_MAX_DIMENSIONS], i, trans_count; VIO_progress_struct progress; static ArgvInfo argTable[] = { {"-like", ARGV_STRING, (char *) 0, (char *) &target_file, "Specify target volume sampling information."}, {"-no_clobber", ARGV_CONSTANT, (char *) FALSE, (char *) &clobber_flag, "Do not overwrite output file (default)."}, {"-clobber", ARGV_CONSTANT, (char *) TRUE, (char *) &clobber_flag, "Overwrite output file."}, {"-verbose", ARGV_CONSTANT, (char *) TRUE, (char *) &verbose, "Write messages indicating progress (default)"}, {"-quiet", ARGV_CONSTANT, (char *) FALSE, (char *) &verbose, "Do not write log messages"}, {"-debug", ARGV_CONSTANT, (char *) TRUE, (char *) &debug, "Print out debug info."}, {NULL, ARGV_END, NULL, NULL, NULL} }; prog_name = argv[0]; target_file = malloc(1024); strcpy(target_file,""); /* Call ParseArgv to interpret all command line args (returns TRUE if error) */ parse_flag = ParseArgv(&argc, argv, argTable, 0); /* Check remaining arguments */ if (parse_flag || argc != 3) print_usage_and_exit(prog_name); /* Read in file that has a def field to invert */ if (input_transform_file(argv[1], &transform) != OK) { (void) fprintf(stderr, "%s: Error reading transform file %s\n", argv[0], argv[1]); exit(EXIT_FAILURE); } for(trans_count=0; trans_count<get_n_concated_transforms(&transform); trans_count++ ) { grid_transform_ptr = get_nth_general_transform(&transform, trans_count ); if (grid_transform_ptr->type == GRID_TRANSFORM) { copy_general_transform(grid_transform_ptr, &forward_transform); /* this is the call that should be made with the latest version of internal_libvolume_io invert_general_transform(&forward_transform); */ forward_transform.inverse_flag = !(forward_transform.inverse_flag); volume = grid_transform_ptr->displacement_volume; if (strlen(target_file)!=0) { if (debug) print ("Def field will be resampled like %s\n",target_file); if (!file_exists( target_file ) ) { (void) fprintf(stderr, "%s: Target file '%s' does not exist\n", prog_name,target_file); exit(EXIT_FAILURE); } start_volume_input(target_file, 3, (char **)NULL, NC_UNSPECIFIED, FALSE, 0.0, 0.0, TRUE, &target_vol, (minc_input_options *)NULL, &input_info); get_volume_XYZV_indices(volume, xyzv); get_volume_separations (volume, steps); get_volume_sizes (volume, sizes); get_volume_XYZV_indices(target_vol, target_xyzv); get_volume_separations (target_vol, target_steps); get_volume_sizes (target_vol, target_sizes); for(i=0; i<VIO_MAX_DIMENSIONS; i++) { index[i] = 0; voxel[i] = 0.0; } convert_voxel_to_world(target_vol, voxel, &start[VIO_X], &start[VIO_Y], &start[VIO_Z]); if( volume != (void *) NULL ){ free_volume_data( volume ); } for(i=VIO_X; i<=VIO_Z; i++) { steps[ xyzv[i] ] = target_steps[ target_xyzv[i] ] ; sizes[ xyzv[i] ] = target_sizes[ target_xyzv[i] ] ; } set_volume_separations(volume, steps); set_volume_sizes( volume, sizes); set_volume_starts(volume, start); alloc_volume_data( volume ); } get_volume_sizes(volume, sizes); get_volume_XYZV_indices(volume,xyzv); for(i=0; i<VIO_MAX_DIMENSIONS; i++){ index[i] = 0; } if (verbose){ initialize_progress_report(&progress, FALSE, sizes[xyzv[VIO_X]]*sizes[xyzv[VIO_Y]]*sizes[xyzv[VIO_Z]]+1, "Inverting def field"); } prog_count = 0; for(index[xyzv[VIO_X]]=0; index[xyzv[VIO_X]]<sizes[xyzv[VIO_X]]; index[xyzv[VIO_X]]++) for(index[xyzv[VIO_Y]]=0; index[xyzv[VIO_Y]]<sizes[xyzv[VIO_Y]]; index[xyzv[VIO_Y]]++) for(index[xyzv[VIO_Z]]=0; index[xyzv[VIO_Z]]<sizes[xyzv[VIO_Z]]; index[xyzv[VIO_Z]]++) { index[ xyzv[VIO_Z+1] ] = 0; for(i=0; i<VIO_MAX_DIMENSIONS; i++) voxel[i] = (VIO_Real)index[i]; convert_voxel_to_world(volume, voxel, &wx, &wy, &wz); if (sizes[ xyzv[VIO_Z] ] ==1) general_inverse_transform_point_in_trans_plane(&forward_transform, wx, wy, wz, &inv_x, &inv_y, &inv_z); else grid_inverse_transform_point(&forward_transform, wx, wy, wz, &inv_x, &inv_y, &inv_z); def_values[VIO_X] = inv_x - wx; def_values[VIO_Y] = inv_y - wy; def_values[VIO_Z] = inv_z - wz; for(index[xyzv[VIO_Z+1]]=0; index[xyzv[VIO_Z+1]]<3; index[xyzv[VIO_Z+1]]++) set_volume_real_value(volume, index[0],index[1],index[2],index[3],index[4], def_values[ index[ xyzv[VIO_Z+1] ]]); prog_count++; if (verbose) update_progress_report(&progress, prog_count); } if (verbose) terminate_progress_report(&progress); delete_general_transform(&forward_transform); grid_transform_ptr->inverse_flag = !(grid_transform_ptr->inverse_flag); } } /* Write out the transform */ if (output_transform_file(argv[2], NULL, &transform) != OK) { (void) fprintf(stderr, "%s: Error writing transform file %s\n", argv[0], argv[2]); exit(EXIT_FAILURE); } exit(EXIT_SUCCESS); }
int main(int argc, char *argv[]) { char **infiles; int n_infiles; char *out_fn; char *history; VIO_progress_struct progress; VIO_Volume totals, weights; int i, j, k, v; double min, max; double w_min, w_max; long num_missed; double weight, value; double initial_weight; VIO_Real dummy[3]; int sizes[MAX_VAR_DIMS]; double starts[MAX_VAR_DIMS]; double steps[MAX_VAR_DIMS]; long t = 0; /* start the time counter */ current_realtime_seconds(); /* get the history string */ history = time_stamp(argc, argv); /* get args */ if(ParseArgv(&argc, argv, argTable, 0) || (argc < 3)){ fprintf(stderr, "\nUsage: %s [options] <in1.mnc> [<in2.mnc> [...]] <out.mnc>\n", argv[0]); fprintf(stderr, " %s [options] -arb_path pth.conf <infile.raw> <out.mnc>\n", argv[0]); fprintf(stderr, " %s -help\n\n", argv[0]); exit(EXIT_FAILURE); } /* get file names */ n_infiles = argc - 2; infiles = (char **)malloc(sizeof(char *) * n_infiles); for(i = 0; i < n_infiles; i++){ infiles[i] = argv[i + 1]; } out_fn = argv[argc - 1]; /* check for infiles and outfile */ for(i = 0; i < n_infiles; i++){ if(!file_exists(infiles[i])){ fprintf(stderr, "%s: Couldn't find input file %s.\n\n", argv[0], infiles[i]); exit(EXIT_FAILURE); } } if(!clobber && file_exists(out_fn)){ fprintf(stderr, "%s: %s exists, -clobber to overwrite.\n\n", argv[0], out_fn); exit(EXIT_FAILURE); } /* check for weights_fn if required */ if(weights_fn != NULL){ if(!clobber && file_exists(weights_fn)){ fprintf(stderr, "%s: %s exists, -clobber to overwrite.\n\n", argv[0], weights_fn); exit(EXIT_FAILURE); } } /* set up parameters for reconstruction */ if(out_dtype == NC_UNSPECIFIED){ out_dtype = in_dtype; } if(out_is_signed == DEF_BOOL){ out_is_signed = in_is_signed; } /* check vector dimension size */ if(vect_size < 1){ fprintf(stderr, "%s: -vector (%d) must be 1 or greater.\n\n", argv[0], vect_size); exit(EXIT_FAILURE); } /* check sigma */ if(regrid_sigma[0] <= 0 || regrid_sigma[1] <= 0 || regrid_sigma[2] <= 0 ){ fprintf(stderr, "%s: -sigma must be greater than 0\n\n", argv[0]); exit(EXIT_FAILURE); } /* read in the output file config from a file is specified */ if(out_config_fn != NULL){ int ext_args_c; char *ext_args[32]; /* max possible is 32 arguments */ ext_args_c = read_config_file(out_config_fn, ext_args); if(ParseArgv(&ext_args_c, ext_args, argTable, ARGV_DONT_SKIP_FIRST_ARG | ARGV_NO_LEFTOVERS | ARGV_NO_DEFAULTS)){ fprintf(stderr, "\nError in parameters in %s\n", out_config_fn); exit(EXIT_FAILURE); } } if(verbose){ fprintf_vol_def(stdout, &out_inf); } /* transpose the geometry arrays */ /* out_inf.*[] are in world xyz order, perm[] is the permutation array to map world xyz to the right voxel order in the volume */ for(i = 0; i < WORLD_NDIMS; i++){ sizes[i] = out_inf.nelem[perm[i]]; /* sizes, starts, steps are in voxel volume order. */ starts[i] = out_inf.start[perm[i]]; steps[i] = out_inf.step[perm[i]]; } sizes[WORLD_NDIMS] = vect_size; /* create the totals volume */ totals = create_volume((vect_size > 1) ? 4 : 3, (vect_size > 1) ? std_dimorder_v : std_dimorder, out_dtype, out_is_signed, 0.0, 0.0); set_volume_sizes(totals, sizes); set_volume_starts(totals, starts); set_volume_separations(totals, steps); for(i = 0; i < WORLD_NDIMS; i++){ /* out_inf.dircos is in world x,y,z order, we have to use the perm array to map each direction to the right voxel axis. */ set_volume_direction_cosine(totals, i, out_inf.dircos[perm[i]]); } alloc_volume_data(totals); /* create the "weights" volume */ weights = create_volume(3, std_dimorder, out_dtype, out_is_signed, 0.0, 0.0); set_volume_sizes(weights, sizes); set_volume_starts(weights, starts); set_volume_separations(weights, steps); for(i = 0; i < WORLD_NDIMS; i++){ set_volume_direction_cosine(weights, i, out_inf.dircos[perm[i]]); } alloc_volume_data(weights); /* down below in regrid_loop, Andrew makes a nasty direct reference to the voxel_to_world transformation in the volume. This transformation is not necessarily up to date, particularly when non-default direction cosines are used. In volume_io, the direction cosines are set and a FLAG is also set to indicate that the voxel-to-world xform is not up to date. If the stanrd volume_io general transform code is used, it checks internally to see if the matrix is up to date, and if not it is recomputed. So here, we'll (LC + MK) force an update by calling a general transform. */ // convert_world_to_voxel(weights, (Real) 0, (Real) 0, (Real) 0, dummy); // convert_world_to_voxel(totals, (Real) 0, (Real) 0, (Real) 0, dummy); fprintf(stderr, "2Sizes: [%d:%d:%d] \n", sizes[perm[0]], sizes[perm[1]], sizes[perm[2]]); /* initialize weights to be arbitray large value if using NEAREST */ /* volume interpolation else initialize all to zero */ if(regrid_type == NEAREST_FUNC && ap_coord_fn == NULL){ initial_weight = LARGE_INITIAL_WEIGHT; } else{ initial_weight = 0.0; } /* initialize weights and totals */ for(k = sizes[Z_IDX]; k--;){ for(j = sizes[Y_IDX]; j--;){ for(i = sizes[X_IDX]; i--;){ set_volume_real_value(weights, k, j, i, 0, 0, initial_weight); for(v = vect_size; v--;){ set_volume_real_value(totals, k, j, i, v, 0, 0.0); } } } } /* if regridding via an arbitrary path */ if(ap_coord_fn != NULL){ if(n_infiles > 1){ fprintf(stderr, "%s: arb_path only works for one input file (so far).\n\n", argv[0]); exit(EXIT_FAILURE); } /* print some pretty output */ if(verbose){ fprintf(stdout, " | Input data: %s\n", infiles[0]); fprintf(stdout, " | Arb path: %s\n", ap_coord_fn); fprintf(stdout, " | Output range: [%g:%g]\n", out_range[0], out_range[1]); fprintf(stdout, " | Output file: %s\n", out_fn); } regrid_arb_path(ap_coord_fn, infiles[0], max_buffer_size_in_kb, &totals, &weights, vect_size, regrid_range[0], regrid_range[1]); } /* else if regridding via a series of input minc file(s) */ else { for(i = 0; i < n_infiles; i++){ if(verbose){ fprintf(stdout, " | Input file: %s\n", infiles[i]); } regrid_minc(infiles[i], max_buffer_size_in_kb, &totals, &weights, vect_size, regrid_range[0], regrid_range[1]); } } /* initialise min and max counters and divide totals/weights */ num_missed = 0; min = get_volume_real_value(totals, 0, 0, 0, 0, 0); max = get_volume_real_value(totals, 0, 0, 0, 0, 0); w_min = get_volume_real_value(weights, 0, 0, 0, 0, 0); w_max = get_volume_real_value(weights, 0, 0, 0, 0, 0); initialize_progress_report(&progress, FALSE, out_inf.nelem[Z_IDX], "Dividing through"); for(i = sizes[perm[0]]; i--;){ for(j = sizes[perm[1]]; j--;){ for(k = sizes[perm[2]]; k--;){ weight = get_volume_real_value(weights, k, j, i, 0, 0); if(weight < w_min){ w_min = weight; } else if(weight > w_max){ w_max = weight; } if(weight != 0){ for(v = vect_size; v--;){ value = get_volume_real_value(totals, k, j, i, v, 0) / weight; if(value < min){ min = value; } else if(value > max){ max = value; } set_volume_real_value(totals, k, j, i, v, 0, value); } } else { num_missed++; } } } update_progress_report(&progress, k + 1); } terminate_progress_report(&progress); /* set the volumes range */ if(verbose){ fprintf(stdout, " + data range: [%g:%g]\n", min, max); fprintf(stdout, " + weight range: [%g:%g]\n", w_min, w_max); } set_volume_real_range(totals, min, max); set_volume_real_range(weights, w_min, w_max); if(num_missed > 0 && verbose){ int nvox; nvox = out_inf.nelem[X_IDX] * out_inf.nelem[Y_IDX] * out_inf.nelem[Z_IDX]; fprintf(stdout, "\n-regrid_radius possibly too small, no data in %ld/%d[%2.2f%%] voxels\n\n", num_missed, nvox, ((float)num_missed / nvox * 100)); } /* rescale data if required */ if(out_range[0] != -DBL_MAX && out_range[1] != DBL_MAX){ double o_min, o_max; /* get the existing range */ get_volume_real_range(totals, &o_min, &o_max); /* rescale it */ scale_volume(&totals, o_min, o_max, out_range[0], out_range[1]); } /* output the result */ if(verbose){ fprintf(stdout, " | Outputting %s...\n", out_fn); } if(output_volume(out_fn, out_dtype, out_is_signed, 0.0, 0.0, totals, history, NULL) != VIO_OK){ fprintf(stderr, "Problems outputing: %s\n\n", out_fn); } /* output weights volume if required */ if(weights_fn != NULL){ if(verbose){ fprintf(stdout, " | Outputting %s...\n", weights_fn); } if(output_volume(weights_fn, out_dtype, out_is_signed, 0.0, 0.0, weights, history, NULL) != VIO_OK){ fprintf(stderr, "Problems outputting: %s\n\n", weights_fn); } } delete_volume(totals); delete_volume(weights); t = current_realtime_seconds(); printf("Total reconstruction time: %ld hours %ld minutes %ld seconds\n", t/3600, (t/60)%60, t%60); return (EXIT_SUCCESS); }
int main(int argc, char *argv[]) { VIO_Volume volume; VIO_Real variability, rand_val, voxel[VIO_MAX_DIMENSIONS]; int progress_count, sizes[VIO_MAX_DIMENSIONS], index[VIO_MAX_DIMENSIONS], i,j,k; VIO_progress_struct progress; union { long l; char c[4]; } seedval; time_t t; char tmp; prog_name = argv[0]; /* Check arguments */ if (argc != 4) { (void) fprintf(stderr, "Usage: %s input.mnc output.mnc std_dev\n", argv[0]); exit(EXIT_FAILURE); } if( input_volume( argv[1], 3, NULL, NC_UNSPECIFIED, FALSE, 0.0, 0.0, TRUE, &volume, (minc_input_options *)NULL ) != OK ) { (void)fprintf(stderr, "Error opening input volume file %s.\n", argv[1]); exit(EXIT_FAILURE); } variability = atof( argv[3] ); /* initialize drand function */ t = 2*time(NULL); seedval.l = t; tmp = seedval.c[0]; seedval.c[0] = seedval.c[3]; seedval.c[3] = tmp; tmp = seedval.c[1]; seedval.c[1] = seedval.c[2]; seedval.c[2] = tmp; srand48(seedval.l); set_volume_real_range(volume, -5.0*variability, 5.0*variability); get_volume_sizes(volume,sizes); initialize_progress_report(&progress, FALSE, sizes[VIO_X]*sizes[VIO_Y]*sizes[VIO_Z]+1, "Randomizing volume"); progress_count = 0; for(i=0; i<MAX_DIMENSIONS; i++) index[i] = 0; /* loop over all voxels */ for(index[X]=0; index[X]<sizes[X]; index[X]++) for(index[Y]=0; index[Y]<sizes[Y]; index[Y]++) for(index[Z]=0; index[Z]<sizes[Z]; index[Z]++) { /* get a random value from a gaussian distribution */ rand_val = variability * gaussian_random_0_1(); if (rand_val > 5.0*variability) rand_val = 5.0*variability; if (rand_val < -5.0*variability) rand_val = -5.0*variability; set_volume_real_value(volume, index[0],index[1],index[2],index[3],index[4], rand_val); progress_count++; update_progress_report(&progress, progress_count); } terminate_progress_report(&progress); /* Write out the random volume */ if (output_volume(argv[2], NC_UNSPECIFIED, FALSE, 0.0, 0.0, volume, (char *)NULL, (minc_output_options *)NULL) != OK) { (void) fprintf(stderr, "%s: Error writing volume file %s\n", argv[0], argv[2]); exit(EXIT_FAILURE); } exit(EXIT_SUCCESS); }
/* from the original 2 pass Borgefors alg */ Volume *distance_kernel(Kernel * K, Volume * vol, double bg) { int x, y, z, c; double value, min; int sizes[MAX_VAR_DIMS]; progress_struct progress; Kernel *k1, *k2; /* split the Kernel */ k1 = new_kernel(K->nelems); k2 = new_kernel(K->nelems); split_kernel(K, k1, k2); setup_pad_values(k1); setup_pad_values(k2); if(verbose){ fprintf(stdout, "Distance kernel - background %g\n", bg); fprintf(stdout, "forward direction kernel:\n"); print_kernel(k1); fprintf(stdout, "\nreverse direction kernel:\n"); print_kernel(k2); } get_volume_sizes(*vol, sizes); initialize_progress_report(&progress, FALSE, sizes[2] * 2, "Distance"); /* forward raster direction */ for(z = -K->pre_pad[2]; z < sizes[0] - K->post_pad[2]; z++){ for(y = -K->pre_pad[1]; y < sizes[1] - K->post_pad[1]; y++){ for(x = -K->pre_pad[0]; x < sizes[2] - K->post_pad[0]; x++){ if(get_volume_real_value(*vol, z, y, x, 0, 0) != bg){ /* find the minimum */ min = DBL_MAX; for(c = 0; c < k1->nelems; c++){ value = get_volume_real_value(*vol, z + k1->K[c][2], y + k1->K[c][1], x + k1->K[c][0], 0 + k1->K[c][3], 0 + k1->K[c][4]) + 1; if(value < min){ min = value; } } set_volume_real_value(*vol, z, y, x, 0, 0, min); } } } update_progress_report(&progress, z + 1); } /* reverse raster direction */ for(z = sizes[0] - k2->post_pad[2] - 1; z >= -k2->pre_pad[2]; z--){ for(y = sizes[1] - k2->post_pad[1] - 1; y >= -k2->pre_pad[1]; y--){ for(x = sizes[2] - k2->post_pad[0] - 1; x >= -k2->pre_pad[0]; x--){ min = get_volume_real_value(*vol, z, y, x, 0, 0); if(min != bg){ /* find the minimum distance to bg in the neighbouring vectors */ for(c = 0; c < k2->nelems; c++){ value = get_volume_real_value(*vol, z + k2->K[c][2], y + k2->K[c][1], x + k2->K[c][0], 0 + k2->K[c][3], 0 + k2->K[c][4]) + 1; if(value < min){ min = value; } } set_volume_real_value(*vol, z, y, x, 0, 0, min); } } } update_progress_report(&progress, sizes[2] + z + 1); } free(k1); free(k2); terminate_progress_report(&progress); return (vol); }
int main(int argc, char *argv[]) { int v1, v2, v3, v4; int sizes[VIO_MAX_DIMENSIONS], grid_sizes[4]; int n_concat_transforms, i; VIO_STR arg_string; char *input_volume_name; char *input_xfm; VIO_STR outfile; VIO_Real w1, w2, w3; VIO_Real nw1, nw2, nw3; VIO_Real original[3], transformed[3]; VIO_Real value; VIO_Real cosine[3]; VIO_Real original_separation[3], grid_separation[4]; VIO_Real original_starts[3], grid_starts[4]; VIO_Volume eval_volume, new_grid; VIO_General_transform xfm, *voxel_to_world; VIO_STR *dimnames, dimnames_grid[4]; VIO_progress_struct progress; arg_string = time_stamp(argc, argv); /* Check arguments */ if(ParseArgv(&argc, argv, argTable, 0) || (argc != 4)){ fprintf(stderr, "\nUsage: %s [options] input.mnc input.xfm output_grid.mnc\n", argv[0]); fprintf(stderr, " %s -help\n\n", argv[0]); exit(EXIT_FAILURE); } input_volume_name = argv[1]; input_xfm = argv[2]; outfile = argv[3]; /* check for the infile and outfile */ if(access(input_volume_name, F_OK) != 0){ fprintf(stderr, "%s: Couldn't find %s\n\n", argv[0], input_volume_name); exit(EXIT_FAILURE); } if(access(input_xfm, F_OK) != 0) { fprintf(stderr, "%s: Couldn't find %s\n\n", argv[0], input_xfm); exit(EXIT_FAILURE); } if(access(outfile, F_OK) == 0 && !clobber){ fprintf(stderr, "%s: %s exists! (use -clobber to overwrite)\n\n", argv[0], outfile); exit(EXIT_FAILURE); } /*--- input the volume */ /* if( input_volume( input_volume_name, 3, NULL, MI_ORIGINAL_TYPE, FALSE, 0.0, 0.0, TRUE, &eval_volume,(minc_input_options *) NULL ) != OK ) return( 1 ); */ if (input_volume_header_only( input_volume_name, 3, NULL, &eval_volume,(minc_input_options *) NULL ) != VIO_OK ) { return( 1 ); } /* get information about the volume */ get_volume_sizes( eval_volume, sizes ); voxel_to_world = get_voxel_to_world_transform(eval_volume); dimnames = get_volume_dimension_names(eval_volume); get_volume_separations(eval_volume, original_separation); get_volume_starts(eval_volume, original_starts); /* create new 4D volume, last three dims same as other volume, first dimension being the vector dimension. */ for(i=1; i < 4; i++) { dimnames_grid[i] = dimnames[i-1]; grid_separation[i] = original_separation[i-1]; grid_sizes[i] = sizes[i-1]; grid_starts[i] = original_starts[i-1]; } dimnames_grid[0] = "vector_dimension"; grid_sizes[0] = 3; grid_separation[0] = 1; grid_starts[0] = 0; new_grid = create_volume(4, dimnames_grid, NC_SHORT, FALSE, 0.0, 0.0); //set_voxel_to_world_transform(new_grid, voxel_to_world); // initialize the new grid volume, otherwise the output will be // garbage... set_volume_real_range(new_grid, -100, 100); set_volume_sizes(new_grid, grid_sizes); set_volume_separations(new_grid, grid_separation); set_volume_starts(new_grid, grid_starts); /* for (i=0; i < 3; i++) { get_volume_direction_cosine(eval_volume, i, cosine); set_volume_direction_cosine(new_grid, i+1, cosine); } */ alloc_volume_data(new_grid); /* get the transforms */ if( input_transform_file( input_xfm, &xfm ) != VIO_OK ) return( 1 ); /* see how many transforms will be applied */ n_concat_transforms = get_n_concated_transforms( &xfm ); printf("Number of transforms to be applied: %d\n", n_concat_transforms); initialize_progress_report(&progress, FALSE, sizes[0], "Processing"); /* evaluate the transform at every voxel, keep the displacement in the three cardinal directions */ for( v1 = 0; v1 < sizes[0]; ++v1 ) { update_progress_report(&progress, v1 + 1); for( v2 = 0; v2 < sizes[1]; ++v2 ) { for( v3 = 0; v3 < sizes[2]; ++v3 ) { convert_3D_voxel_to_world(eval_volume, v1, v2, v3, &original[0], &original[1], &original[2]); general_transform_point(&xfm, original[0], original[1], original[2], &transformed[0], &transformed[1], &transformed[2]); for(i=0; i < 3; i++) { value = transformed[i] - original[i]; set_volume_real_value(new_grid, i, v1, v2, v3, 0, value); } } } } terminate_progress_report(&progress); printf("Outputting volume.\n"); output_volume(outfile, MI_ORIGINAL_TYPE, TRUE, 0.0, 0.0, new_grid, arg_string, NULL); return(0); }
/* resulting groups are sorted WRT size */ Volume *group_kernel(Kernel * K, Volume * vol, double bg) { int x, y, z; int sizes[MAX_VAR_DIMS]; progress_struct progress; Volume tmp_vol; Kernel *k1, *k2; unsigned int *equiv; unsigned int *counts; unsigned int *trans; unsigned int neighbours[K->nelems]; /* counters */ unsigned int c; unsigned int value; unsigned int group_idx; /* label for the next group */ unsigned int num_groups; unsigned int min_label; unsigned int curr_label; unsigned int prev_label; unsigned int num_matches; /* structure for group data */ Group_info *group_data; /* split the Kernel into forward and backwards kernels */ k1 = new_kernel(K->nelems); k2 = new_kernel(K->nelems); split_kernel(K, k1, k2); setup_pad_values(k1); setup_pad_values(k2); if(verbose){ fprintf(stdout, "Group kernel - background %g\n", bg); fprintf(stdout, "forward direction kernel:\n"); print_kernel(k1); fprintf(stdout, "\nreverse direction kernel:\n"); print_kernel(k2); } get_volume_sizes(*vol, sizes); initialize_progress_report(&progress, FALSE, sizes[2], "Groups"); /* copy and then zero out the original volume */ tmp_vol = copy_volume(*vol); for(z = sizes[0]; z--;){ for(y = sizes[1]; y--;){ for(x = sizes[2]; x--;){ set_volume_voxel_value(*vol, z, y, x, 0, 0, 0); } } } /* pass 1 - forward direction (we assume a symmetric kernel) */ /* our first group is given the label 1 */ group_idx = 1; /* initialise the equiv and counts arrays */ SET_ARRAY_SIZE(equiv, 0, group_idx, 500); equiv[0] = 0; SET_ARRAY_SIZE(counts, 0, group_idx, 500); counts[0] = 0; for(z = -k1->pre_pad[2]; z < sizes[0] - k1->post_pad[2]; z++){ for(y = -k1->pre_pad[1]; y < sizes[1] - k1->post_pad[1]; y++){ for(x = -k1->pre_pad[0]; x < sizes[2] - k1->post_pad[0]; x++){ if(get_volume_voxel_value(tmp_vol, z, y, x, 0, 0) != bg){ /* search this voxels neighbours */ num_matches = 0; min_label = INT_MAX; for(c = 0; c < k1->nelems; c++){ value = (unsigned int)get_volume_voxel_value(*vol, z + k1->K[c][2], y + k1->K[c][1], x + k1->K[c][0], 0 + k1->K[c][3], 0 + k1->K[c][4]); if(value != 0){ if(value < min_label){ min_label = value; } neighbours[num_matches] = value; num_matches++; } } switch (num_matches){ case 0: /* no neighbours, make a new label and increment */ set_volume_voxel_value(*vol, z, y, x, 0, 0, (Real) group_idx); SET_ARRAY_SIZE(equiv, group_idx, group_idx + 1, 500); equiv[group_idx] = group_idx; SET_ARRAY_SIZE(counts, group_idx, group_idx + 1, 500); counts[group_idx] = 1; group_idx++; break; case 1: /* only one neighbour, no equivalences needed */ set_volume_voxel_value(*vol, z, y, x, 0, 0, (Real) min_label); counts[min_label]++; break; default: /* more than one neighbour */ /* first sort the neighbours array */ qsort(&neighbours[0], (size_t) num_matches, sizeof(unsigned int), &compare_ints); /* find the minimum possible label for this voxel, */ /* this is done by descending through each neighbours */ /* equivalences until an equivalence equal to itself */ /* is found */ prev_label = -1; for(c = 0; c < num_matches; c++){ curr_label = neighbours[c]; /* recurse this label if we haven't yet */ if(curr_label != prev_label){ while(equiv[curr_label] != equiv[equiv[curr_label]]){ curr_label = equiv[curr_label]; } /* check against the current minimum value */ if(equiv[curr_label] < min_label){ min_label = equiv[curr_label]; } } prev_label = neighbours[c]; } /* repeat, setting equivalences to the min_label */ prev_label = -1; for(c = 0; c < num_matches; c++){ curr_label = neighbours[c]; if(curr_label != prev_label){ while(equiv[curr_label] != equiv[equiv[curr_label]]){ curr_label = equiv[curr_label]; equiv[curr_label] = min_label; } /* set the label itself */ if(equiv[neighbours[c]] != min_label){ equiv[neighbours[c]] = min_label; } } prev_label = neighbours[c]; } /* finally set the voxel in question to the minimum value */ set_volume_voxel_value(*vol, z, y, x, 0, 0, (Real) min_label); counts[min_label]++; break; } /* end case */ } } } update_progress_report(&progress, z + 1); } terminate_progress_report(&progress); /* reduce the equiv and counts array */ num_groups = 0; for(c = 0; c < group_idx; c++){ /* if this equivalence is not resolved yet */ if(c != equiv[c]){ /* find the min label value */ min_label = equiv[c]; while(min_label != equiv[min_label]){ min_label = equiv[min_label]; } /* update the label and its counters */ equiv[c] = min_label; counts[min_label] += counts[c]; counts[c] = 0; } else { num_groups++; } } /* Allocate space for the array of groups */ group_data = (Group_info *) malloc(num_groups * sizeof(Group_info)); num_groups = 0; for(c = 0; c < group_idx; c++){ if(counts[c] > 0){ /* allocate space for this element */ group_data[num_groups] = malloc(sizeof(group_info_struct)); group_data[num_groups]->orig_label = equiv[c]; group_data[num_groups]->count = counts[c]; num_groups++; } } /* sort the groups by the count size */ if(verbose){ fprintf(stdout, "Found %d unique groups from %d, sorting...\n", num_groups, group_idx); } qsort(group_data, num_groups, sizeof(Group_info), &compare_groups); /* set up the transpose array */ trans = (unsigned int *)malloc(sizeof(unsigned int) * group_idx); for(c = 0; c < num_groups; c++){ trans[group_data[c]->orig_label] = c + 1; /* +1 to bump past 0 */ } /* pass 2 - resolve equivalences in the output data */ if(verbose){ fprintf(stdout, "Resolving equivalences...\n"); } for(z = sizes[0]; z--;){ for(y = sizes[1]; y--;){ for(x = sizes[2]; x--;){ value = (unsigned int)get_volume_voxel_value(*vol, z, y, x, 0, 0); if(value != 0){ value = trans[equiv[value]]; set_volume_voxel_value(*vol, z, y, x, 0, 0, (Real) value); } } } } /* tidy up */ delete_volume(tmp_vol); for(c = 0; c < num_groups; c++){ free(group_data[c]); } free(group_data); free(trans); free(k1); free(k2); return (vol); }
/* ----------------------------- MNI Header ----------------------------------- @NAME : compute_chamfer @INPUT/OUTPUT: chamfer The original input volume will be destroyed and replaced with the resulting chamfer distance volume. The chamfer will contains 0's where the mask was and values > 0.0 for all other voxels, where the value is an estimate of the distance to the the nearest voxel of the mask. @RETURNS : ERROR if error, OK otherwise @DESCRIPTION: Uses an idea from georges, who got it from claire, who got it from Borgefors @GLOBALS : @CALLS : @CREATED : Nov 2, 1998 Louis @MODIFIED : ---------------------------------------------------------------------------- */ VIO_Status compute_chamfer(VIO_Volume chamfer, VIO_Real max_val) { VIO_Real mask_f[3][3][3], mask_b[3][3][3], zero, min, vox_min, vox_max, val, val2; int sizes[VIO_MAX_DIMENSIONS], i,j,k, ind0,ind1,ind2; VIO_progress_struct progress; get_volume_sizes(chamfer, sizes); get_volume_voxel_range(chamfer, &vox_min, &vox_max); zero = CONVERT_VALUE_TO_VOXEL(chamfer,0.0); /* init chamfer to be binary valued with 0.0 on the object, and infinity (or vox_max) elsewhere */ if (debug) print ("initing chamfer vol (%d %d %d)\n",sizes[0],sizes[1],sizes[2]); for(ind0=0; ind0<sizes[0]; ind0++) { for(ind1=0; ind1<sizes[1]; ind1++) { for(ind2=0; ind2<sizes[2]; ind2++) { GET_VOXEL_3D(val, chamfer, ind0, ind1, ind2); if (val == zero) { SET_VOXEL_3D(chamfer, ind0, ind1, ind2, vox_max ); } else { SET_VOXEL_3D(chamfer, ind0, ind1, ind2, vox_min); } } } } if (debug) print ("building mask\n"); build_mask(chamfer, mask_f, mask_b); set_volume_real_range(chamfer, 0.0, max_val); zero = CONVERT_VALUE_TO_VOXEL(chamfer,0.0); if (verbose) initialize_progress_report( &progress, TRUE, sizes[0], "forward pass"); for(ind0=1; ind0<sizes[0]-1; ind0++) { for(ind1=1; ind1<sizes[1]-1; ind1++) { for(ind2=1; ind2<sizes[2]-1; ind2++) { GET_VALUE_3D(val, chamfer, ind0, ind1, ind2); if (val != zero) { /* then apply forward mask */ min = val; for(i=-1; i<=+1; i++) { for(j=-1; j<=+1; j++) { for(k=-1; k<=+1; k++) { GET_VALUE_3D(val, chamfer, i+ind0, j+ind1, k+ind2); val2 = val + mask_f[i+1][j+1][k+1]; min = MIN (min, val2); } } } min = convert_value_to_voxel(chamfer, min); SET_VOXEL_3D(chamfer, ind0, ind1, ind2, min ); } /* if val != 0.0 */ } /* ind2 */ } /* ind1 */ if (verbose) update_progress_report( &progress, ind0+1 ); } /* ind0 */ if (verbose) terminate_progress_report( &progress ); if (verbose) initialize_progress_report( &progress, TRUE, sizes[0], "reverse pass"); for(ind0=sizes[0]-2; ind0>=1; ind0--) { for(ind1=sizes[1]-2; ind1>=1; ind1--) { for(ind2=sizes[2]-2; ind2>=1; ind2--) { GET_VALUE_3D(val, chamfer, ind0, ind1, ind2); if (val != zero) { /* then apply backwardmask */ min = val; for(i=-1; i<=1; i++) { for(j=-1; j<=+1; j++) { for(k=-1; k<=+1; k++) { GET_VALUE_3D(val, chamfer, i+ind0, j+ind1, k+ind2); val2 = val + mask_b[i+1][j+1][k+1]; min = MIN (min, val2); } } } min = convert_value_to_voxel(chamfer, min); SET_VOXEL_3D(chamfer, ind0, ind1, ind2, min ); } /* if val != 0.0 */ } /* ind2 */ } /* ind1 */ if (verbose) update_progress_report( &progress, ind0+1 ); } /* ind0 */ if (verbose) terminate_progress_report( &progress ); return (OK); }
static void resample_the_deformation_field(Arg_Data *globals) { VIO_Volume existing_field, new_field; VIO_Real vector_val[3], XYZstart[ VIO_MAX_DIMENSIONS ], wstart[ VIO_MAX_DIMENSIONS ], start[ VIO_MAX_DIMENSIONS ], XYZstep[ VIO_MAX_DIMENSIONS ], step[ VIO_MAX_DIMENSIONS ], step2[ VIO_MAX_DIMENSIONS ], s1[ VIO_MAX_DIMENSIONS ], voxel[ VIO_MAX_DIMENSIONS ], dir[3][3]; int i, siz[ VIO_MAX_DIMENSIONS ], index[ VIO_MAX_DIMENSIONS ], xyzv[ VIO_MAX_DIMENSIONS ], XYZcount[ VIO_MAX_DIMENSIONS ], count[ VIO_MAX_DIMENSIONS ]; VIO_General_transform *non_lin_part; VectorR XYZdirections[ VIO_MAX_DIMENSIONS ]; VIO_Real del_x, del_y, del_z, wx, wy,wz; VIO_progress_struct progress; char **data_dim_names; /* get the nonlinear part of the transformation */ existing_field = (VIO_Volume)NULL; non_lin_part = get_nth_general_transform(globals->trans_info.transformation, get_n_concated_transforms( globals->trans_info.transformation) -1); if (get_transform_type( non_lin_part ) == GRID_TRANSFORM){ existing_field = (VIO_Volume)(non_lin_part->displacement_volume); } else { for(i=0; i<get_n_concated_transforms(globals->trans_info.transformation); i++) print ("Transform %d is of type %d\n",i, get_transform_type( get_nth_general_transform(globals->trans_info.transformation, i) )); print_error_and_line_num("Cannot find the deformation field transform to resample", __FILE__, __LINE__); } /* build a vector volume to store the Grid VIO_Transform */ new_field = create_volume(4, dim_name_vector_vol, NC_DOUBLE, TRUE, 0.0, 0.0); get_volume_XYZV_indices(new_field, xyzv); for(i=0; i<VIO_N_DIMENSIONS; i++) step2[i] = globals->step[i]; /* get new start, count, step and directions, all returned in X, Y, Z order. */ set_up_lattice(existing_field, step2, XYZstart, wstart, XYZcount, XYZstep, XYZdirections); /* reset count and step to be in volume order */ for(i=0; i<VIO_N_DIMENSIONS; i++) { start[ i ] = wstart[ i ]; count[ xyzv[i] ] = XYZcount[ i ]; step[ xyzv[i] ] = XYZstep[ i ]; } /* add info for the vector dimension */ count[xyzv[VIO_Z+1]] = 3; step[xyzv[VIO_Z+1]] = 0.0; /* use the sign of the step returned to set the true step size */ for(i=0; i<VIO_N_DIMENSIONS; i++) { if (step[xyzv[i]]<0) step[xyzv[i]] = -1.0 * fabs(globals->step[i]); else step[xyzv[i]] = fabs(globals->step[i]); } for(i=0; i<VIO_MAX_DIMENSIONS; i++) /* set the voxel origin, used in the vol def */ voxel[i] = 0.0; set_volume_sizes( new_field, count); set_volume_separations( new_field, step); /* set_volume_voxel_range( new_field, -MY_MAX_VOX, MY_MAX_VOX); set_volume_real_range( new_field, -1.0*globals->trans_info.max_def_magnitude, globals->trans_info.max_def_magnitude); - no longer needed, because now using doubles*/ set_volume_translation( new_field, voxel, start); for(i=0; i<VIO_N_DIMENSIONS; i++) { dir[VIO_X][i]=XYZdirections[VIO_X].coords[i]; dir[VIO_Y][i]=XYZdirections[VIO_Y].coords[i]; dir[VIO_Z][i]=XYZdirections[VIO_Z].coords[i]; } set_volume_direction_cosine(new_field,xyzv[VIO_X],dir[VIO_X]); set_volume_direction_cosine(new_field,xyzv[VIO_Y],dir[VIO_Y]); set_volume_direction_cosine(new_field,xyzv[VIO_Z],dir[VIO_Z]); /* make sure that the vector dimension is named! */ data_dim_names = get_volume_dimension_names(new_field); if( strcmp( data_dim_names[ xyzv[VIO_Z+1] ] , MIvector_dimension ) != 0 ) { ALLOC((new_field)->dimension_names[xyzv[VIO_Z+1]], \ strlen(MIvector_dimension ) + 1 ); (void) strcpy( (new_field)->dimension_names[xyzv[VIO_Z+1]], MIvector_dimension ); } delete_dimension_names(new_field, data_dim_names); if (globals->flags.debug) { print ("in resample_deformation_field:\n"); print ("xyzv[axes] = %d, %d, %d, %d\n",xyzv[VIO_X],xyzv[VIO_Y],xyzv[VIO_Z],xyzv[VIO_Z+1]); get_volume_sizes(new_field, siz); get_volume_separations(new_field, s1); print ("seps: %7.3f %7.3f %7.3f %7.3f %7.3f \n",s1[0],s1[1],s1[2],s1[3],s1[4]); print ("size: %7d %7d %7d %7d %7d \n",siz[0],siz[1],siz[2],siz[3],siz[4]); } alloc_volume_data(new_field); if (globals->flags.verbose>0) initialize_progress_report( &progress, FALSE, count[xyzv[VIO_X]], "Interpolating new field" ); /* now resample the values from the input deformation */ for(i=0; i<VIO_MAX_DIMENSIONS; i++) { voxel[i] = 0.0; index[i] = 0; } for(index[xyzv[VIO_X]]=0; index[xyzv[VIO_X]]<count[xyzv[VIO_X]]; index[xyzv[VIO_X]]++) { voxel[xyzv[VIO_X]] = (VIO_Real)index[xyzv[VIO_X]]; for(index[xyzv[VIO_Y]]=0; index[xyzv[VIO_Y]]<count[xyzv[VIO_Y]]; index[xyzv[VIO_Y]]++) { voxel[xyzv[VIO_Y]] = (VIO_Real)index[xyzv[VIO_Y]]; for(index[xyzv[VIO_Z]]=0; index[xyzv[VIO_Z]]<count[xyzv[VIO_Z]]; index[xyzv[VIO_Z]]++) { voxel[xyzv[VIO_Z]] = (VIO_Real)index[xyzv[VIO_Z]]; convert_voxel_to_world(new_field, voxel, &wx,&wy,&wz); grid_transform_point(non_lin_part, wx, wy, wz, &del_x, &del_y, &del_z); /* get just the deformation part */ del_x = del_x - wx; del_y = del_y - wy; del_z = del_z - wz; /* del_x = del_y = del_z = 0.0; */ vector_val[0] = CONVERT_VALUE_TO_VOXEL(new_field, del_x); vector_val[1] = CONVERT_VALUE_TO_VOXEL(new_field, del_y); vector_val[2] = CONVERT_VALUE_TO_VOXEL(new_field, del_z); for(index[xyzv[VIO_Z+1]]=0; index[xyzv[VIO_Z+1]]<3; index[xyzv[VIO_Z+1]]++) { SET_VOXEL(new_field, \ index[0], index[1], index[2], index[3], index[4], \ vector_val[ index[ xyzv[ VIO_Z+1] ] ]); } } } if (globals->flags.verbose>0) update_progress_report( &progress,index[xyzv[VIO_X]]+1); } if (globals->flags.verbose>0) terminate_progress_report( &progress ); /* delete and free up old data */ delete_volume(non_lin_part->displacement_volume); /* set new volumes into transform */ non_lin_part->displacement_volume = new_field; }