static GEN F2xq_elltrace_Harley(GEN a6, GEN T2) { pari_sp ltop = avma; pari_timer ti; GEN T, sqx; GEN x, x2, t; long n = F2x_degree(T2), N = ((n + 1)>>1) + 2; long ispcyc; if (n==1) return gen_m1; if (n==2) return F2x_degree(a6) ? gen_1 : stoi(-3); if (n==3) return F2x_degree(a6) ? (F2xq_trace(a6,T2) ? stoi(-3): gen_1) : stoi(5); timer_start(&ti); sqx = mkvec2(F2xq_sqrt(polx_F2x(T2[1]),T2), T2); if (DEBUGLEVEL>1) timer_printf(&ti,"Sqrtx"); ispcyc = zx_is_pcyc(F2x_to_Flx(T2)); T = ispcyc? F2x_to_ZX(T2): F2x_canonlift(T2, N-2); if (DEBUGLEVEL>1) timer_printf(&ti,"Teich"); T = FpX_get_red(T, int2n(N)); if (DEBUGLEVEL>1) timer_printf(&ti,"Barrett"); x = solve_AGM_eqn(F2x_to_ZX(a6), N-2, T, sqx); if (DEBUGLEVEL>1) timer_printf(&ti,"Lift"); x2 = ZX_Z_add_shallow(ZX_shifti(x,2), gen_1); t = (ispcyc? Z2XQ_invnorm_pcyc: Z2XQ_invnorm)(x2, T, N); if (DEBUGLEVEL>1) timer_printf(&ti,"Norm"); if (cmpii(sqri(t), int2n(n + 2)) > 0) t = subii(t, int2n(N)); return gerepileuptoint(ltop, t); }
void fwrite_mife_sk(const_mmap_vtable mmap, mife_sk_t sk, char *filepath) { uint64_t t = ggh_walltime(0); FILE *fp = fopen(filepath, "wb"); timer_printf("Starting writing Kilian matrices...\n"); fprintf(fp, "%d\n", sk->numR); for(int i = 0; i < sk->numR; i++) { fprintf(fp, "%ld %ld\n", sk->R[i]->r, sk->R[i]->c); fmpz_mat_fprint_raw(fp, sk->R[i]); fprintf(fp, "\n"); fprintf(fp, "%ld %ld\n", sk->R_inv[i]->r, sk->R_inv[i]->c); fmpz_mat_fprint_raw(fp, sk->R_inv[i]); fprintf(fp, "\n"); timer_printf("\r Progress: [%lu / %lu] %8.2fs", i, sk->numR, ggh_seconds(ggh_walltime(t))); } timer_printf("\n"); timer_printf("Finished writing Kilian matrices %8.2fs\n", ggh_seconds(ggh_walltime(t))); mmap->sk->fwrite(sk->self, fp); fclose(fp); }
void fread_mife_sk(const_mmap_vtable mmap, mife_sk_t sk, char *filepath) { uint64_t t = ggh_walltime(0); FILE *fp = fopen(filepath, "rb"); timer_printf("Starting reading Kilian matrices...\n"); CHECK(fscanf(fp, "%d\n", &sk->numR), 1); sk->R = malloc(sk->numR * sizeof(fmpz_mat_t)); sk->R_inv = malloc(sk->numR * sizeof(fmpz_mat_t)); for(int i = 0; i < sk->numR; i++) { unsigned long r1, c1, r2, c2; CHECK(fscanf(fp, "%lu %lu\n", &r1, &c1), 2); fmpz_mat_init(sk->R[i], r1, c1); fmpz_mat_fread_raw(fp, sk->R[i]); CHECK(fscanf(fp, "\n"), 0); CHECK(fscanf(fp, "%lu %lu\n", &r2, &c2), 2); fmpz_mat_init(sk->R_inv[i], r2, c2); fmpz_mat_fread_raw(fp, sk->R_inv[i]); CHECK(fscanf(fp, "\n"), 0); timer_printf("\r Progress: [%lu / %lu] %8.2fs", i, sk->numR, ggh_seconds(ggh_walltime(t))); } timer_printf("\n"); timer_printf("Finished reading Kilian matrices %8.2fs\n", ggh_seconds(ggh_walltime(t))); sk->self = malloc(mmap->sk->size); mmap->sk->fread(sk->self, fp); fclose(fp); }
/* Assume a = 1 [4] */ static GEN Z2XQ_invnorm(GEN a, GEN T, long e) { pari_timer ti; GEN pe = int2n(e), s; if (degpol(a)==0) return Fp_inv(Fp_powu(gel(a,2), get_FpX_degree(T), pe), pe); if (DEBUGLEVEL>=3) timer_start(&ti); s = ZpXQ_log(a, T, gen_2, e); if (DEBUGLEVEL>=3) timer_printf(&ti,"Z2XQ_log"); s = Fp_neg(FpXQ_trace(s, T, pe), pe); if (DEBUGLEVEL>=3) timer_printf(&ti,"FpXQ_trace"); s = modii(gel(Qp_exp(cvtop(s, gen_2, e-2)),4),pe); if (DEBUGLEVEL>=3) timer_printf(&ti,"Qp_exp"); return s; }
////////////////////////////////////////////////////////////// // CSTEDC Divide and Conquer for tridiag ////////////////////////////////////////////////////////////// extern "C" void magma_cstedx_withZ(magma_int_t N, magma_int_t NE, float *D, float * E, magmaFloatComplex *Z, magma_int_t LDZ) { float *RWORK; float *dwork; magma_int_t *IWORK; magma_int_t LIWORK, LRWORK; magma_int_t INFO; //LWORK = N; LRWORK = 2*N*N + 4*N + 1 + 256*N; LIWORK = 256*N; magma_smalloc_cpu( &RWORK, LRWORK ); magma_imalloc_cpu( &IWORK, LIWORK ); if (MAGMA_SUCCESS != magma_smalloc( &dwork, 3*N*(N/2 + 1) )) { printf("=================================================\n"); printf("CSTEDC ERROR OCCURED IN CUDAMALLOC\n"); printf("=================================================\n"); return; } printf("using magma_cstedx\n"); magma_timer_t time=0; timer_start( time ); magma_range_t job = MagmaRangeI; if (NE == N) job = MagmaRangeAll; magma_cstedx(job, N, 0., 0., 1, NE, D, E, Z, LDZ, RWORK, LRWORK, IWORK, LIWORK, dwork, &INFO); if (INFO != 0) { printf("=================================================\n"); printf("CSTEDC ERROR OCCURED. HERE IS INFO %d \n ", (int) INFO); printf("=================================================\n"); //assert(INFO == 0); } timer_stop( time ); timer_printf( "time zstevx = %6.2f\n", time ); magma_free( dwork ); magma_free_cpu( IWORK ); magma_free_cpu( RWORK ); }
////////////////////////////////////////////////////////////// // SSTEDX Divide and Conquer for tridiag ////////////////////////////////////////////////////////////// extern "C" void magma_sstedx_withZ(magma_int_t N, magma_int_t NE, float *D, float * E, float *Z, magma_int_t LDZ) { float *WORK; float *dwork; magma_int_t *IWORK; magma_int_t LWORK, LIWORK; magma_int_t INFO; LWORK = N*N+4*N+1; LIWORK = 3 + 5*N; magma_smalloc_cpu( &WORK, LWORK ); magma_imalloc_cpu( &IWORK, LIWORK ); if (MAGMA_SUCCESS != magma_smalloc( &dwork, 3*N*(N/2 + 1) )) { printf("=================================================\n"); printf("SSTEDC ERROR OCCURED IN CUDAMALLOC\n"); printf("=================================================\n"); return; } printf("using magma_sstedx\n"); magma_timer_t time=0; timer_start( time ); //magma_range_t job = MagmaRangeI; //if (NE == N) // job = MagmaRangeAll; magma_sstedx(MagmaRangeI, N, 0., 0., 1, NE, D, E, Z, LDZ, WORK, LWORK, IWORK, LIWORK, dwork, &INFO); if (INFO != 0) { printf("=================================================\n"); printf("SSTEDC ERROR OCCURED. HERE IS INFO %d \n ", (int) INFO); printf("=================================================\n"); //assert(INFO == 0); } timer_stop( time ); timer_printf( "time sstedx = %6.2f\n", time ); magma_free( dwork ); magma_free_cpu( IWORK ); magma_free_cpu( WORK ); }
/** Purpose ------- SSYGVD computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and B are assumed to be symmetric and B is also positive definite. If eigenvectors are desired, it uses a divide and conquer algorithm. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none. Arguments --------- @param[in] ngpu INTEGER Number of GPUs to use. ngpu > 0. @param[in] itype INTEGER Specifies the problem type to be solved: = 1: A*x = (lambda)*B*x = 2: A*B*x = (lambda)*x = 3: B*A*x = (lambda)*x @param[in] range magma_range_t - = MagmaRangeAll: all eigenvalues will be found. - = MagmaRangeV: all eigenvalues in the half-open interval (VL,VU] will be found. - = MagmaRangeI: the IL-th through IU-th eigenvalues will be found. @param[in] jobz magma_vec_t - = MagmaNoVec: Compute eigenvalues only; - = MagmaVec: Compute eigenvalues and eigenvectors. @param[in] uplo magma_uplo_t - = MagmaUpper: Upper triangles of A and B are stored; - = MagmaLower: Lower triangles of A and B are stored. @param[in] n INTEGER The order of the matrices A and B. N >= 0. @param[in,out] A REAL array, dimension (LDA, N) On entry, the symmetric matrix A. If UPLO = MagmaUpper, the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A. If UPLO = MagmaLower, the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A. \n On exit, if JOBZ = MagmaVec, then if INFO = 0, A contains the matrix Z of eigenvectors. The eigenvectors are normalized as follows: if ITYPE = 1 or 2, Z**T*B*Z = I; if ITYPE = 3, Z**T*inv(B)*Z = I. If JOBZ = MagmaNoVec, then on exit the upper triangle (if UPLO=MagmaUpper) or the lower triangle (if UPLO=MagmaLower) of A, including the diagonal, is destroyed. @param[in] lda INTEGER The leading dimension of the array A. LDA >= max(1,N). @param[in,out] B REAL array, dimension (LDB, N) On entry, the symmetric matrix B. If UPLO = MagmaUpper, the leading N-by-N upper triangular part of B contains the upper triangular part of the matrix B. If UPLO = MagmaLower, the leading N-by-N lower triangular part of B contains the lower triangular part of the matrix B. \n On exit, if INFO <= N, the part of B containing the matrix is overwritten by the triangular factor U or L from the Cholesky factorization B = U**T*U or B = L*L**T. @param[in] ldb INTEGER The leading dimension of the array B. LDB >= max(1,N). @param[in] vl REAL @param[in] vu REAL If RANGE=MagmaRangeV, the lower and upper bounds of the interval to be searched for eigenvalues. VL < VU. Not referenced if RANGE = MagmaRangeAll or MagmaRangeI. @param[in] il INTEGER @param[in] iu INTEGER If RANGE=MagmaRangeI, the indices (in ascending order) of the smallest and largest eigenvalues to be returned. 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. Not referenced if RANGE = MagmaRangeAll or MagmaRangeV. @param[out] m INTEGER The total number of eigenvalues found. 0 <= M <= N. If RANGE = MagmaRangeAll, M = N, and if RANGE = MagmaRangeI, M = IU-IL+1. @param[out] w REAL array, dimension (N) If INFO = 0, the eigenvalues in ascending order. @param[out] work (workspace) REAL array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK[0] returns the optimal LWORK. @param[in] lwork INTEGER The length of the array WORK. If N <= 1, LWORK >= 1. If JOBZ = MagmaNoVec and N > 1, LWORK >= 2*N + N*NB. If JOBZ = MagmaVec and N > 1, LWORK >= max( 2*N + N*NB, 1 + 6*N + 2*N**2 ). NB can be obtained through magma_get_ssytrd_nb(N). \n If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK and IWORK arrays, returns these values as the first entries of the WORK and IWORK arrays, and no error message related to LWORK or LIWORK is issued by XERBLA. @param[out] iwork (workspace) INTEGER array, dimension (MAX(1,LIWORK)) On exit, if INFO = 0, IWORK[0] returns the optimal LIWORK. @param[in] liwork INTEGER The dimension of the array IWORK. If N <= 1, LIWORK >= 1. If JOBZ = MagmaNoVec and N > 1, LIWORK >= 1. If JOBZ = MagmaVec and N > 1, LIWORK >= 3 + 5*N. \n If LIWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK and IWORK arrays, returns these values as the first entries of the WORK and IWORK arrays, and no error message related to LWORK or LIWORK is issued by XERBLA. @param[out] info INTEGER - = 0: successful exit - < 0: if INFO = -i, the i-th argument had an illegal value - > 0: SPOTRF or SSYEVD returned an error code: <= N: if INFO = i and JOBZ = MagmaNoVec, then the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero; if INFO = i and JOBZ = MagmaVec, then the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns INFO/(N+1) through mod(INFO,N+1); > N: if INFO = N + i, for 1 <= i <= N, then the leading minor of order i of B is not positive definite. The factorization of B could not be completed and no eigenvalues or eigenvectors were computed. Further Details --------------- Based on contributions by Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA Modified so that no backsubstitution is performed if SSYEVD fails to converge (NEIG in old code could be greater than N causing out of bounds reference to A - reported by Ralf Meyer). Also corrected the description of INFO and the test on ITYPE. Sven, 16 Feb 05. @ingroup magma_ssygv_driver ********************************************************************/ extern "C" magma_int_t magma_ssygvdx_m( magma_int_t ngpu, magma_int_t itype, magma_vec_t jobz, magma_range_t range, magma_uplo_t uplo, magma_int_t n, float *A, magma_int_t lda, float *B, magma_int_t ldb, float vl, float vu, magma_int_t il, magma_int_t iu, magma_int_t *m, float *w, float *work, magma_int_t lwork, #ifdef COMPLEX float *rwork, magma_int_t lrwork, #endif magma_int_t *iwork, magma_int_t liwork, magma_int_t *info) { /* Constants */ float c_one = MAGMA_S_ONE; /* Local variables */ const char* uplo_ = lapack_uplo_const( uplo ); const char* jobz_ = lapack_vec_const( jobz ); magma_int_t lower; magma_trans_t trans; magma_int_t wantz; magma_int_t lquery; magma_int_t alleig, valeig, indeig; magma_int_t lwmin; magma_int_t liwmin; wantz = (jobz == MagmaVec); lower = (uplo == MagmaLower); alleig = (range == MagmaRangeAll); valeig = (range == MagmaRangeV); indeig = (range == MagmaRangeI); lquery = (lwork == -1 || liwork == -1); *info = 0; if (itype < 1 || itype > 3) { *info = -1; } else if (! (alleig || valeig || indeig)) { *info = -2; } else if (! (wantz || (jobz == MagmaNoVec))) { *info = -3; } else if (! (lower || (uplo == MagmaUpper))) { *info = -4; } else if (n < 0) { *info = -5; } else if (lda < max(1,n)) { *info = -7; } else if (ldb < max(1,n)) { *info = -9; } else { if (valeig) { if (n > 0 && vu <= vl) { *info = -11; } } else if (indeig) { if (il < 1 || il > max(1,n)) { *info = -12; } else if (iu < min(n,il) || iu > n) { *info = -13; } } } magma_int_t nb = magma_get_ssytrd_nb( n ); if ( n <= 1 ) { lwmin = 1; liwmin = 1; } else if ( wantz ) { lwmin = max( 2*n + n*nb, 1 + 6*n + 2*n*n ); liwmin = 3 + 5*n; } else { lwmin = 2*n + n*nb; liwmin = 1; } work[0] = magma_smake_lwork( lwmin ); iwork[0] = liwmin; if (lwork < lwmin && ! lquery) { *info = -17; } else if (liwork < liwmin && ! lquery) { *info = -19; } if (*info != 0) { magma_xerbla( __func__, -(*info)); return *info; } else if (lquery) { return *info; } /* Quick return if possible */ if (n == 0) { return *info; } /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */ if (n <= 128) { #ifdef ENABLE_DEBUG printf("--------------------------------------------------------------\n"); printf(" warning matrix too small N=%d NB=%d, calling lapack on CPU \n", (int) n, (int) nb); printf("--------------------------------------------------------------\n"); #endif lapackf77_ssygvd(&itype, jobz_, uplo_, &n, A, &lda, B, &ldb, w, work, &lwork, iwork, &liwork, info); *m = n; return *info; } magma_timer_t time=0; timer_start( time ); magma_spotrf_m(ngpu, uplo, n, B, ldb, info); if (*info != 0) { *info = n + *info; return *info; } timer_stop( time ); timer_printf( "time spotrf = %6.2f\n", time ); timer_start( time ); /* Transform problem to standard eigenvalue problem and solve. */ magma_ssygst_m(ngpu, itype, uplo, n, A, lda, B, ldb, info); timer_stop( time ); timer_printf( "time ssygst = %6.2f\n", time ); timer_start( time ); magma_ssyevdx_m(ngpu, jobz, range, uplo, n, A, lda, vl, vu, il, iu, m, w, work, lwork, iwork, liwork, info); timer_stop( time ); timer_printf( "time ssyevd = %6.2f\n", time ); if (wantz && *info == 0) { timer_start( time ); /* Backtransform eigenvectors to the original problem. */ if (itype == 1 || itype == 2) { /* For A*x=(lambda)*B*x and A*B*x=(lambda)*x; backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */ if (lower) { trans = MagmaTrans; } else { trans = MagmaNoTrans; } magma_strsm_m( ngpu, MagmaLeft, uplo, trans, MagmaNonUnit, n, *m, c_one, B, ldb, A, lda ); } else if (itype == 3) { /* For B*A*x=(lambda)*x; backtransform eigenvectors: x = L*y or U'*y */ if (lower) { trans = MagmaNoTrans; } else { trans = MagmaTrans; } #ifdef ENABLE_DEBUG printf("--- the multi GPU version is falling back to 1 GPU to perform the last TRMM since there is no TRMM_mgpu --- \n"); #endif float *dA=NULL, *dB=NULL; magma_int_t ldda = magma_roundup( n, 32 ); magma_int_t lddb = ldda; if (MAGMA_SUCCESS != magma_smalloc( &dA, ldda*(*m) ) || MAGMA_SUCCESS != magma_smalloc( &dB, lddb*n ) ) { magma_free( dA ); magma_free( dB ); *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } magma_queue_t queue; magma_device_t cdev; magma_getdevice( &cdev ); magma_queue_create( cdev, &queue ); magma_ssetmatrix( n, n, B, ldb, dB, lddb, queue ); magma_ssetmatrix( n, (*m), A, lda, dA, ldda, queue ); magma_strmm( MagmaLeft, uplo, trans, MagmaNonUnit, n, (*m), c_one, dB, lddb, dA, ldda, queue ); magma_sgetmatrix( n, (*m), dA, ldda, A, lda, queue ); magma_queue_destroy( queue ); magma_free( dA ); magma_free( dB ); } timer_stop( time ); timer_printf( "time setmatrices trsm/mm + getmatrices = %6.2f\n", time ); } work[0] = magma_smake_lwork( lwmin ); iwork[0] = liwmin; return *info; } /* magma_ssygvd_m */
/** Purpose ------- DSYGVDX_2STAGE computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and B are assumed to be Hermitian and B is also positive definite. It uses a two-stage algorithm for the tridiagonalization. If eigenvectors are desired, it uses a divide and conquer algorithm. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none. Arguments --------- @param[in] nrgpu INTEGER Number of GPUs to use. @param[in] itype INTEGER Specifies the problem type to be solved: = 1: A*x = (lambda)*B*x = 2: A*B*x = (lambda)*x = 3: B*A*x = (lambda)*x @param[in] range magma_range_t - = MagmaRangeAll: all eigenvalues will be found. - = MagmaRangeV: all eigenvalues in the half-open interval (VL,VU] will be found. - = MagmaRangeI: the IL-th through IU-th eigenvalues will be found. @param[in] jobz magma_vec_t - = MagmaNoVec: Compute eigenvalues only; - = MagmaVec: Compute eigenvalues and eigenvectors. @param[in] uplo magma_uplo_t - = MagmaUpper: Upper triangles of A and B are stored; - = MagmaLower: Lower triangles of A and B are stored. @param[in] n INTEGER The order of the matrices A and B. N >= 0. @param[in,out] A DOUBLE PRECISION array, dimension (LDA, N) On entry, the Hermitian matrix A. If UPLO = MagmaUpper, the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A. If UPLO = MagmaLower, the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A. \n On exit, if JOBZ = MagmaVec, then if INFO = 0, A contains the matrix Z of eigenvectors. The eigenvectors are normalized as follows: if ITYPE = 1 or 2, Z**H*B*Z = I; if ITYPE = 3, Z**H*inv(B)*Z = I. If JOBZ = MagmaNoVec, then on exit the upper triangle (if UPLO=MagmaUpper) or the lower triangle (if UPLO=MagmaLower) of A, including the diagonal, is destroyed. @param[in] lda INTEGER The leading dimension of the array A. LDA >= max(1,N). @param[in,out] B DOUBLE PRECISION array, dimension (LDB, N) On entry, the Hermitian matrix B. If UPLO = MagmaUpper, the leading N-by-N upper triangular part of B contains the upper triangular part of the matrix B. If UPLO = MagmaLower, the leading N-by-N lower triangular part of B contains the lower triangular part of the matrix B. \n On exit, if INFO <= N, the part of B containing the matrix is overwritten by the triangular factor U or L from the Cholesky factorization B = U**H*U or B = L*L**H. @param[in] ldb INTEGER The leading dimension of the array B. LDB >= max(1,N). @param[in] vl DOUBLE PRECISION @param[in] vu DOUBLE PRECISION If RANGE=MagmaRangeV, the lower and upper bounds of the interval to be searched for eigenvalues. VL < VU. Not referenced if RANGE = MagmaRangeAll or MagmaRangeI. @param[in] il INTEGER @param[in] iu INTEGER If RANGE=MagmaRangeI, the indices (in ascending order) of the smallest and largest eigenvalues to be returned. 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. Not referenced if RANGE = MagmaRangeAll or MagmaRangeV. @param[out] m INTEGER The total number of eigenvalues found. 0 <= M <= N. If RANGE = MagmaRangeAll, M = N, and if RANGE = MagmaRangeI, M = IU-IL+1. @param[out] w DOUBLE PRECISION array, dimension (N) If INFO = 0, the eigenvalues in ascending order. @param[out] work (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK[0] returns the optimal LWORK. @param[in] lwork INTEGER The length of the array WORK. If N <= 1, LWORK >= 1. If JOBZ = MagmaNoVec and N > 1, LWORK >= LQ2 + 2*N + N*NB. If JOBZ = MagmaVec and N > 1, LWORK >= LQ2 + 1 + 6*N + 2*N**2. where LQ2 is the size needed to store the Q2 matrix and is returned by magma_bulge_get_lq2. \n If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA. @param[out] iwork (workspace) INTEGER array, dimension (MAX(1,LIWORK)) On exit, if INFO = 0, IWORK[0] returns the optimal LIWORK. @param[in] liwork INTEGER The dimension of the array IWORK. If N <= 1, LIWORK >= 1. If JOBZ = MagmaNoVec and N > 1, LIWORK >= 1. If JOBZ = MagmaVec and N > 1, LIWORK >= 3 + 5*N. \n If LIWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA. @param[out] info INTEGER - = 0: successful exit - < 0: if INFO = -i, the i-th argument had an illegal value - > 0: ZPOTRF or ZHEEVD returned an error code: <= N: if INFO = i and JOBZ = MagmaNoVec, then the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero; if INFO = i and JOBZ = MagmaVec, then the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns INFO/(N+1) through mod(INFO,N+1); > N: if INFO = N + i, for 1 <= i <= N, then the leading minor of order i of B is not positive definite. The factorization of B could not be completed and no eigenvalues or eigenvectors were computed. Further Details --------------- Based on contributions by Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA Modified so that no backsubstitution is performed if ZHEEVD fails to converge (NEIG in old code could be greater than N causing out of bounds reference to A - reported by Ralf Meyer). Also corrected the description of INFO and the test on ITYPE. Sven, 16 Feb 05. @ingroup magma_dsygv_driver ********************************************************************/ extern "C" magma_int_t magma_dsygvdx_2stage_m(magma_int_t nrgpu, magma_int_t itype, magma_vec_t jobz, magma_range_t range, magma_uplo_t uplo, magma_int_t n, double *A, magma_int_t lda, double *B, magma_int_t ldb, double vl, double vu, magma_int_t il, magma_int_t iu, magma_int_t *m, double *w, double *work, magma_int_t lwork, magma_int_t *iwork, magma_int_t liwork, magma_int_t *info) { const char* uplo_ = lapack_uplo_const( uplo ); const char* jobz_ = lapack_vec_const( jobz ); double d_one = MAGMA_D_ONE; magma_int_t lower; magma_trans_t trans; magma_int_t wantz; magma_int_t lquery; magma_int_t alleig, valeig, indeig; magma_int_t lwmin; magma_int_t liwmin; /* determine the number of threads */ magma_int_t parallel_threads = magma_get_parallel_numthreads(); wantz = (jobz == MagmaVec); lower = (uplo == MagmaLower); alleig = (range == MagmaRangeAll); valeig = (range == MagmaRangeV); indeig = (range == MagmaRangeI); lquery = (lwork == -1 || liwork == -1); *info = 0; if (itype < 1 || itype > 3) { *info = -1; } else if (! (alleig || valeig || indeig)) { *info = -2; } else if (! (wantz || (jobz == MagmaNoVec))) { *info = -3; } else if (! (lower || (uplo == MagmaUpper))) { *info = -4; } else if (n < 0) { *info = -5; } else if (lda < max(1,n)) { *info = -7; } else if (ldb < max(1,n)) { *info = -9; } else { if (valeig) { if (n > 0 && vu <= vl) { *info = -11; } } else if (indeig) { if (il < 1 || il > max(1,n)) { *info = -12; } else if (iu < min(n,il) || iu > n) { *info = -13; } } } magma_int_t nb = magma_get_dbulge_nb(n, parallel_threads); magma_int_t lq2 = magma_dbulge_get_lq2(n, parallel_threads); if (wantz) { lwmin = lq2 + 1 + 6*n + 2*n*n; liwmin = 3 + 5*n; } else { lwmin = 2*n + n*nb; liwmin = 1; } // multiply by 1+eps (in Double!) to ensure length gets rounded up, // if it cannot be exactly represented in floating point. real_Double_t one_eps = 1. + lapackf77_dlamch("Epsilon"); work[0] = lwmin * one_eps; iwork[0] = liwmin; if (lwork < lwmin && ! lquery) { *info = -17; } else if (liwork < liwmin && ! lquery) { *info = -19; } if (*info != 0) { magma_xerbla( __func__, -(*info)); return *info; } else if (lquery) { return *info; } /* Quick return if possible */ if (n == 0) { return *info; } /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */ if (n <= 128) { #ifdef ENABLE_DEBUG printf("--------------------------------------------------------------\n"); printf(" warning matrix too small N=%d NB=%d, calling lapack on CPU \n", (int) n, (int) nb); printf("--------------------------------------------------------------\n"); #endif lapackf77_dsygvd(&itype, jobz_, uplo_, &n, A, &lda, B, &ldb, w, work, &lwork, iwork, &liwork, info); *m = n; return *info; } /* Form A Cholesky factorization of B. */ magma_timer_t time=0; timer_start( time ); magma_dpotrf_m(nrgpu, uplo, n, B, ldb, info); if (*info != 0) { *info = n + *info; return *info; } timer_stop( time ); timer_printf( "time dpotrf_m = %6.2f\n", time ); timer_start( time ); /* Transform problem to standard eigenvalue problem and solve. */ magma_dsygst_m(nrgpu, itype, uplo, n, A, lda, B, ldb, info); timer_stop( time ); timer_printf( "time dsygst_m = %6.2f\n", time ); timer_start( time ); magma_dsyevdx_2stage_m(nrgpu, jobz, range, uplo, n, A, lda, vl, vu, il, iu, m, w, work, lwork, iwork, liwork, info); timer_stop( time ); timer_printf( "time dsyevdx_2stage_m = %6.2f\n", time ); if (wantz && *info == 0) { timer_start( time ); /* Backtransform eigenvectors to the original problem. */ if (itype == 1 || itype == 2) { /* For A*x=(lambda)*B*x and A*B*x=(lambda)*x; backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */ if (lower) { trans = MagmaTrans; } else { trans = MagmaNoTrans; } magma_dtrsm_m(nrgpu, MagmaLeft, uplo, trans, MagmaNonUnit, n, *m, d_one, B, ldb, A, lda); } else if (itype == 3) { /* For B*A*x=(lambda)*x; backtransform eigenvectors: x = L*y or U'*y */ if (lower) { trans = MagmaNoTrans; } else { trans = MagmaTrans; } //magma_dtrmm_m(nrgpu, MagmaLeft, uplo, trans, MagmaNonUnit, n, *m, d_one, B, ldb, A, lda); printf("--- the multi GPU version is falling back to 1 GPU to perform the last TRMM since there is no TRMM_mgpu --- \n"); double *dA=NULL, *dB=NULL; magma_int_t ldda = n; magma_int_t lddb = n; if (MAGMA_SUCCESS != magma_dmalloc( &dB, n*lddb ) ) { *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } if (MAGMA_SUCCESS != magma_dmalloc( &dA, n*ldda ) ) { *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } magma_dsetmatrix( n, n, B, ldb, dB, lddb ); magma_dsetmatrix( n, n, A, lda, dA, ldda ); magma_dtrmm(MagmaLeft, uplo, trans, MagmaNonUnit, n, n, d_one, dB, lddb, dA, ldda); magma_dgetmatrix( n, n, dA, ldda, A, lda ); } timer_stop( time ); timer_printf( "time dtrsm/mm + getmatrix = %6.2f\n", time ); } work[0] = lwmin * one_eps; iwork[0] = liwmin; return *info; } /* magma_dsygvdx_2stage_m */
/** Purpose ------- SSYGVDX computes selected eigenvalues and, optionally, eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and B are assumed to be symmetric and B is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues. If eigenvectors are desired, it uses a divide and conquer algorithm. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none. Arguments --------- @param[in] itype INTEGER Specifies the problem type to be solved: = 1: A*x = (lambda)*B*x = 2: A*B*x = (lambda)*x = 3: B*A*x = (lambda)*x @param[in] range magma_range_t - = MagmaRangeAll: all eigenvalues will be found. - = MagmaRangeV: all eigenvalues in the half-open interval (VL,VU] will be found. - = MagmaRangeI: the IL-th through IU-th eigenvalues will be found. @param[in] jobz magma_vec_t - = MagmaNoVec: Compute eigenvalues only; - = MagmaVec: Compute eigenvalues and eigenvectors. @param[in] uplo magma_uplo_t - = MagmaUpper: Upper triangles of A and B are stored; - = MagmaLower: Lower triangles of A and B are stored. @param[in] n INTEGER The order of the matrices A and B. N >= 0. @param[in,out] A REAL array, dimension (LDA, N) On entry, the symmetric matrix A. If UPLO = MagmaUpper, the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A. If UPLO = MagmaLower, the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A. \n On exit, if JOBZ = MagmaVec, then if INFO = 0, A contains the matrix Z of eigenvectors. The eigenvectors are normalized as follows: if ITYPE = 1 or 2, Z**T * B * Z = I; if ITYPE = 3, Z**T * inv(B) * Z = I. If JOBZ = MagmaNoVec, then on exit the upper triangle (if UPLO=MagmaUpper) or the lower triangle (if UPLO=MagmaLower) of A, including the diagonal, is destroyed. @param[in] lda INTEGER The leading dimension of the array A. LDA >= max(1,N). @param[in,out] B REAL array, dimension (LDB, N) On entry, the symmetric matrix B. If UPLO = MagmaUpper, the leading N-by-N upper triangular part of B contains the upper triangular part of the matrix B. If UPLO = MagmaLower, the leading N-by-N lower triangular part of B contains the lower triangular part of the matrix B. \n On exit, if INFO <= N, the part of B containing the matrix is overwritten by the triangular factor U or L from the Cholesky factorization B = U**T * U or B = L * L**T. @param[in] ldb INTEGER The leading dimension of the array B. LDB >= max(1,N). @param[in] vl REAL @param[in] vu REAL If RANGE=MagmaRangeV, the lower and upper bounds of the interval to be searched for eigenvalues. VL < VU. Not referenced if RANGE = MagmaRangeAll or MagmaRangeI. @param[in] il INTEGER @param[in] iu INTEGER If RANGE=MagmaRangeI, the indices (in ascending order) of the smallest and largest eigenvalues to be returned. 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. Not referenced if RANGE = MagmaRangeAll or MagmaRangeV. @param[out] mout INTEGER The total number of eigenvalues found. 0 <= MOUT <= N. If RANGE = MagmaRangeAll, MOUT = N, and if RANGE = MagmaRangeI, MOUT = IU-IL+1. @param[out] w REAL array, dimension (N) If INFO = 0, the eigenvalues in ascending order. @param[out] work (workspace) REAL array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK[0] returns the optimal LWORK. @param[out] work (workspace) REAL array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK[0] returns the optimal LWORK. @param[in] lwork INTEGER The length of the array WORK. If N <= 1, LWORK >= 1. If JOBZ = MagmaNoVec and N > 1, LWORK >= 2*N + N*NB. If JOBZ = MagmaVec and N > 1, LWORK >= max( 2*N + N*NB, 1 + 6*N + 2*N**2 ). NB can be obtained through magma_get_ssytrd_nb(N). \n If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK and IWORK arrays, returns these values as the first entries of the WORK and IWORK arrays, and no error message related to LWORK or LIWORK is issued by XERBLA. @param[out] iwork (workspace) INTEGER array, dimension (MAX(1,LIWORK)) On exit, if INFO = 0, IWORK[0] returns the optimal LIWORK. @param[in] liwork INTEGER The dimension of the array IWORK. If N <= 1, LIWORK >= 1. If JOBZ = MagmaNoVec and N > 1, LIWORK >= 1. If JOBZ = MagmaVec and N > 1, LIWORK >= 3 + 5*N. \n If LIWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK and IWORK arrays, returns these values as the first entries of the WORK and IWORK arrays, and no error message related to LWORK or LIWORK is issued by XERBLA. @param[out] info INTEGER - = 0: successful exit - < 0: if INFO = -i, the i-th argument had an illegal value - > 0: SPOTRF or SSYEVD returned an error code: <= N: if INFO = i and JOBZ = MagmaNoVec, then the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero; if INFO = i and JOBZ = MagmaVec, then the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns INFO/(N+1) through mod(INFO,N+1); > N: if INFO = N + i, for 1 <= i <= N, then the leading minor of order i of B is not positive definite. The factorization of B could not be completed and no eigenvalues or eigenvectors were computed. Further Details --------------- Based on contributions by Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA Modified so that no backsubstitution is performed if SSYEVD fails to converge (NEIG in old code could be greater than N causing out of bounds reference to A - reported by Ralf Meyer). Also corrected the description of INFO and the test on ITYPE. Sven, 16 Feb 05. @ingroup magma_ssygv_driver ********************************************************************/ extern "C" magma_int_t magma_ssygvdx( magma_int_t itype, magma_vec_t jobz, magma_range_t range, magma_uplo_t uplo, magma_int_t n, float *A, magma_int_t lda, float *B, magma_int_t ldb, float vl, float vu, magma_int_t il, magma_int_t iu, magma_int_t *mout, float *w, float *work, magma_int_t lwork, #ifdef COMPLEX float *rwork, magma_int_t lrwork, #endif magma_int_t *iwork, magma_int_t liwork, magma_int_t *info) { const char* uplo_ = lapack_uplo_const( uplo ); const char* jobz_ = lapack_vec_const( jobz ); float d_one = MAGMA_S_ONE; float *dA=NULL, *dB=NULL; magma_int_t ldda = roundup( n, 32 ); magma_int_t lddb = ldda; magma_int_t lower; magma_trans_t trans; magma_int_t wantz, lquery; magma_int_t alleig, valeig, indeig; magma_int_t lwmin, liwmin; magma_queue_t stream; magma_queue_create( &stream ); wantz = (jobz == MagmaVec); lower = (uplo == MagmaLower); alleig = (range == MagmaRangeAll); valeig = (range == MagmaRangeV); indeig = (range == MagmaRangeI); lquery = (lwork == -1 || liwork == -1); *info = 0; if (itype < 1 || itype > 3) { *info = -1; } else if (! (alleig || valeig || indeig)) { *info = -2; } else if (! (wantz || (jobz == MagmaNoVec))) { *info = -3; } else if (! (lower || (uplo == MagmaUpper))) { *info = -4; } else if (n < 0) { *info = -5; } else if (lda < max(1,n)) { *info = -7; } else if (ldb < max(1,n)) { *info = -9; } else { if (valeig) { if (n > 0 && vu <= vl) { *info = -11; } } else if (indeig) { if (il < 1 || il > max(1,n)) { *info = -12; } else if (iu < min(n,il) || iu > n) { *info = -13; } } } magma_int_t nb = magma_get_ssytrd_nb( n ); if ( n <= 1 ) { lwmin = 1; liwmin = 1; } else if ( wantz ) { lwmin = max( 2*n + n*nb, 1 + 6*n + 2*n*n ); liwmin = 3 + 5*n; } else { lwmin = 2*n + n*nb; liwmin = 1; } // multiply by 1+eps (in Double!) to ensure length gets rounded up, // if it cannot be exactly represented in floating point. real_Double_t one_eps = 1. + lapackf77_slamch("Epsilon"); work[0] = lwmin * one_eps; iwork[0] = liwmin; if (lwork < lwmin && ! lquery) { *info = -17; } else if (liwork < liwmin && ! lquery) { *info = -19; } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } else if (lquery) { return *info; } /* Quick return if possible */ if (n == 0) { return *info; } /* If matrix is very small, then just call LAPACK on CPU, no need for GPU */ if (n <= 128) { lapackf77_ssygvd( &itype, jobz_, uplo_, &n, A, &lda, B, &ldb, w, work, &lwork, iwork, &liwork, info ); *mout = n; return *info; } if (MAGMA_SUCCESS != magma_smalloc( &dA, n*ldda ) || MAGMA_SUCCESS != magma_smalloc( &dB, n*lddb )) { magma_free( dA ); magma_free( dB ); *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } /* Form a Cholesky factorization of B. */ magma_ssetmatrix( n, n, B, ldb, dB, lddb ); magma_ssetmatrix_async( n, n, A, lda, dA, ldda, stream ); magma_timer_t time=0; timer_start( time ); magma_spotrf_gpu( uplo, n, dB, lddb, info ); if (*info != 0) { *info = n + *info; return *info; } timer_stop( time ); timer_printf( "time spotrf_gpu = %6.2f\n", time ); magma_queue_sync( stream ); magma_sgetmatrix_async( n, n, dB, lddb, B, ldb, stream ); timer_start( time ); /* Transform problem to standard eigenvalue problem and solve. */ magma_ssygst_gpu( itype, uplo, n, dA, ldda, dB, lddb, info ); timer_stop( time ); timer_printf( "time ssygst_gpu = %6.2f\n", time ); /* simple fix to be able to run bigger size. * set dB=NULL so we know to re-allocate below * TODO: have dwork here that will be used as dB and then passed to ssyevd. */ if (n > 5000) { magma_queue_sync( stream ); magma_free( dB ); dB=NULL; } timer_start( time ); magma_ssyevdx_gpu( jobz, range, uplo, n, dA, ldda, vl, vu, il, iu, mout, w, A, lda, work, lwork, iwork, liwork, info ); timer_stop( time ); timer_printf( "time ssyevdx_gpu = %6.2f\n", time ); if (wantz && *info == 0) { timer_start( time ); /* allocate and copy dB back */ if (dB == NULL) { if (MAGMA_SUCCESS != magma_smalloc( &dB, n*lddb ) ) { magma_free( dA ); dA=NULL; *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } magma_ssetmatrix( n, n, B, ldb, dB, lddb ); } /* Backtransform eigenvectors to the original problem. */ if (itype == 1 || itype == 2) { /* For A*x=(lambda)*B*x and A*B*x=(lambda)*x; backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */ if (lower) { trans = MagmaTrans; } else { trans = MagmaNoTrans; } magma_strsm( MagmaLeft, uplo, trans, MagmaNonUnit, n, *mout, d_one, dB, lddb, dA, ldda ); } else if (itype == 3) { /* For B*A*x=(lambda)*x; backtransform eigenvectors: x = L*y or U'*y */ if (lower) { trans = MagmaNoTrans; } else { trans = MagmaTrans; } magma_strmm( MagmaLeft, uplo, trans, MagmaNonUnit, n, *mout, d_one, dB, lddb, dA, ldda ); } magma_sgetmatrix( n, *mout, dA, ldda, A, lda ); timer_stop( time ); timer_printf( "time strsm/mm + getmatrix = %6.2f\n", time ); } magma_queue_sync( stream ); magma_queue_destroy( stream ); work[0] = lwmin * one_eps; // round up iwork[0] = liwmin; magma_free( dA ); dA=NULL; magma_free( dB ); dB=NULL; return *info; } /* magma_ssygvd */
/** Purpose ------- ZHEEVDX_GPU computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues. If eigenvectors are desired, it uses a divide and conquer algorithm. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none. Arguments --------- @param[in] jobz magma_vec_t - = MagmaNoVec: Compute eigenvalues only; - = MagmaVec: Compute eigenvalues and eigenvectors. @param[in] range magma_range_t - = MagmaRangeAll: all eigenvalues will be found. - = MagmaRangeV: all eigenvalues in the half-open interval (VL,VU] will be found. - = MagmaRangeI: the IL-th through IU-th eigenvalues will be found. @param[in] uplo magma_uplo_t - = MagmaUpper: Upper triangle of A is stored; - = MagmaLower: Lower triangle of A is stored. @param[in] n INTEGER The order of the matrix A. N >= 0. @param[in,out] dA COMPLEX_16 array on the GPU, dimension (LDDA, N). On entry, the Hermitian matrix A. If UPLO = MagmaUpper, the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A. If UPLO = MagmaLower, the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A. On exit, if JOBZ = MagmaVec, then if INFO = 0, the first mout columns of A contains the required orthonormal eigenvectors of the matrix A. If JOBZ = MagmaNoVec, then on exit the lower triangle (if UPLO=MagmaLower) or the upper triangle (if UPLO=MagmaUpper) of A, including the diagonal, is destroyed. @param[in] ldda INTEGER The leading dimension of the array DA. LDDA >= max(1,N). @param[in] vl DOUBLE PRECISION @param[in] vu DOUBLE PRECISION If RANGE=MagmaRangeV, the lower and upper bounds of the interval to be searched for eigenvalues. VL < VU. Not referenced if RANGE = MagmaRangeAll or MagmaRangeI. @param[in] il INTEGER @param[in] iu INTEGER If RANGE=MagmaRangeI, the indices (in ascending order) of the smallest and largest eigenvalues to be returned. 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. Not referenced if RANGE = MagmaRangeAll or MagmaRangeV. @param[out] mout INTEGER The total number of eigenvalues found. 0 <= MOUT <= N. If RANGE = MagmaRangeAll, MOUT = N, and if RANGE = MagmaRangeI, MOUT = IU-IL+1. @param[out] w DOUBLE PRECISION array, dimension (N) If INFO = 0, the required mout eigenvalues in ascending order. @param wA (workspace) COMPLEX_16 array, dimension (LDWA, N) @param[in] ldwa INTEGER The leading dimension of the array wA. LDWA >= max(1,N). @param[out] work (workspace) COMPLEX_16 array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK[0] returns the optimal LWORK. @param[in] lwork INTEGER The length of the array WORK. If N <= 1, LWORK >= 1. If JOBZ = MagmaNoVec and N > 1, LWORK >= N + N*NB. If JOBZ = MagmaVec and N > 1, LWORK >= max( N + N*NB, 2*N + N**2 ). NB can be obtained through magma_get_zhetrd_nb(N). \n If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA. @param[out] rwork (workspace) DOUBLE PRECISION array, dimension (LRWORK) On exit, if INFO = 0, RWORK[0] returns the optimal LRWORK. @param[in] lrwork INTEGER The dimension of the array RWORK. If N <= 1, LRWORK >= 1. If JOBZ = MagmaNoVec and N > 1, LRWORK >= N. If JOBZ = MagmaVec and N > 1, LRWORK >= 1 + 5*N + 2*N**2. \n If LRWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA. @param[out] iwork (workspace) INTEGER array, dimension (MAX(1,LIWORK)) On exit, if INFO = 0, IWORK[0] returns the optimal LIWORK. @param[in] liwork INTEGER The dimension of the array IWORK. If N <= 1, LIWORK >= 1. If JOBZ = MagmaNoVec and N > 1, LIWORK >= 1. If JOBZ = MagmaVec and N > 1, LIWORK >= 3 + 5*N. \n If LIWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA. @param[out] info INTEGER - = 0: successful exit - < 0: if INFO = -i, the i-th argument had an illegal value - > 0: if INFO = i and JOBZ = MagmaNoVec, then the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero; if INFO = i and JOBZ = MagmaVec, then the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns INFO/(N+1) through mod(INFO,N+1). Further Details --------------- Based on contributions by Jeff Rutter, Computer Science Division, University of California at Berkeley, USA Modified description of INFO. Sven, 16 Feb 05. @ingroup magma_zheev_driver ********************************************************************/ extern "C" magma_int_t magma_zheevdx_gpu( magma_vec_t jobz, magma_range_t range, magma_uplo_t uplo, magma_int_t n, magmaDoubleComplex_ptr dA, magma_int_t ldda, double vl, double vu, magma_int_t il, magma_int_t iu, magma_int_t *mout, double *w, magmaDoubleComplex *wA, magma_int_t ldwa, magmaDoubleComplex *work, magma_int_t lwork, #ifdef COMPLEX double *rwork, magma_int_t lrwork, #endif magma_int_t *iwork, magma_int_t liwork, magma_int_t *info) { const char* uplo_ = lapack_uplo_const( uplo ); const char* jobz_ = lapack_vec_const( jobz ); magma_int_t ione = 1; double d__1; double eps; magma_int_t inde; double anrm; magma_int_t imax; double rmin, rmax; double sigma; magma_int_t iinfo, lwmin; magma_int_t lower; magma_int_t llrwk; magma_int_t wantz; //magma_int_t indwk2; magma_int_t iscale; double safmin; double bignum; magma_int_t indtau; magma_int_t indrwk, indwrk, liwmin; magma_int_t lrwmin, llwork; double smlnum; magma_int_t lquery; magma_int_t alleig, valeig, indeig; magmaDouble_ptr dwork; magmaDoubleComplex_ptr dC; magma_int_t lddc = ldda; wantz = (jobz == MagmaVec); lower = (uplo == MagmaLower); alleig = (range == MagmaRangeAll); valeig = (range == MagmaRangeV); indeig = (range == MagmaRangeI); lquery = (lwork == -1 || lrwork == -1 || liwork == -1); *info = 0; if (! (wantz || (jobz == MagmaNoVec))) { *info = -1; } else if (! (alleig || valeig || indeig)) { *info = -2; } else if (! (lower || (uplo == MagmaUpper))) { *info = -3; } else if (n < 0) { *info = -4; } else if (ldda < max(1,n)) { *info = -6; } else if (ldwa < max(1,n)) { *info = -14; } else { if (valeig) { if (n > 0 && vu <= vl) { *info = -8; } } else if (indeig) { if (il < 1 || il > max(1,n)) { *info = -9; } else if (iu < min(n,il) || iu > n) { *info = -10; } } } magma_int_t nb = magma_get_zhetrd_nb( n ); if ( n <= 1 ) { lwmin = 1; lrwmin = 1; liwmin = 1; } else if ( wantz ) { lwmin = max( n + n*nb, 2*n + n*n ); lrwmin = 1 + 5*n + 2*n*n; liwmin = 3 + 5*n; } else { lwmin = n + n*nb; lrwmin = n; liwmin = 1; } // multiply by 1+eps (in Double!) to ensure length gets rounded up, // if it cannot be exactly represented in floating point. real_Double_t one_eps = 1. + lapackf77_dlamch("Epsilon"); work[0] = MAGMA_Z_MAKE( lwmin * one_eps, 0 ); rwork[0] = lrwmin * one_eps; iwork[0] = liwmin; if ((lwork < lwmin) && !lquery) { *info = -16; } else if ((lrwork < lrwmin) && ! lquery) { *info = -18; } else if ((liwork < liwmin) && ! lquery) { *info = -20; } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } else if (lquery) { return *info; } /* If matrix is very small, then just call LAPACK on CPU, no need for GPU */ if (n <= 128) { magma_int_t lda = n; magmaDoubleComplex *A; magma_zmalloc_cpu( &A, lda*n ); magma_zgetmatrix( n, n, dA, ldda, A, lda ); lapackf77_zheevd( jobz_, uplo_, &n, A, &lda, w, work, &lwork, rwork, &lrwork, iwork, &liwork, info ); magma_zsetmatrix( n, n, A, lda, dA, ldda ); magma_free_cpu( A ); *mout = n; return *info; } magma_queue_t stream; magma_queue_create( &stream ); // dC and dwork are never used together, so use one buffer for both; // unfortunately they're different types (complex and double). // (this is easier in dsyevd_gpu where everything is double.) // zhetrd2_gpu requires ldda*ceildiv(n,64) + 2*ldda*nb, in double-complex. // zunmtr_gpu requires lddc*n, in double-complex. // zlanhe requires n, in double. magma_int_t ldwork = max( ldda*ceildiv(n,64) + 2*ldda*nb, lddc*n ); magma_int_t ldwork_real = max( ldwork*2, n ); if ( wantz ) { // zstedx requrise 3n^2/2, in double ldwork_real = max( ldwork_real, 3*n*(n/2 + 1) ); } if (MAGMA_SUCCESS != magma_dmalloc( &dwork, ldwork_real )) { *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } dC = (magmaDoubleComplex*) dwork; /* Get machine constants. */ safmin = lapackf77_dlamch("Safe minimum"); eps = lapackf77_dlamch("Precision"); smlnum = safmin / eps; bignum = 1. / smlnum; rmin = magma_dsqrt( smlnum ); rmax = magma_dsqrt( bignum ); /* Scale matrix to allowable range, if necessary. */ anrm = magmablas_zlanhe( MagmaMaxNorm, uplo, n, dA, ldda, dwork ); iscale = 0; sigma = 1; if (anrm > 0. && anrm < rmin) { iscale = 1; sigma = rmin / anrm; } else if (anrm > rmax) { iscale = 1; sigma = rmax / anrm; } if (iscale == 1) { magmablas_zlascl( uplo, 0, 0, 1., sigma, n, n, dA, ldda, info ); } /* Call ZHETRD to reduce Hermitian matrix to tridiagonal form. */ // zhetrd rwork: e (n) // zstedx rwork: e (n) + llrwk (1 + 4*N + 2*N**2) ==> 1 + 5n + 2n^2 inde = 0; indrwk = inde + n; llrwk = lrwork - indrwk; // zhetrd work: tau (n) + llwork (n*nb) ==> n + n*nb // zstedx work: tau (n) + z (n^2) // zunmtr work: tau (n) + z (n^2) + llwrk2 (n or n*nb) ==> 2n + n^2, or n + n*nb + n^2 indtau = 0; indwrk = indtau + n; //indwk2 = indwrk + n*n; llwork = lwork - indwrk; //llwrk2 = lwork - indwk2; magma_timer_t time=0; timer_start( time ); #ifdef FAST_HEMV magma_zhetrd2_gpu( uplo, n, dA, ldda, w, &rwork[inde], &work[indtau], wA, ldwa, &work[indwrk], llwork, dC, ldwork, &iinfo ); #else magma_zhetrd_gpu ( uplo, n, dA, ldda, w, &rwork[inde], &work[indtau], wA, ldwa, &work[indwrk], llwork, &iinfo ); #endif timer_stop( time ); timer_printf( "time zhetrd_gpu = %6.2f\n", time ); /* For eigenvalues only, call DSTERF. For eigenvectors, first call ZSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the tridiagonal matrix, then call ZUNMTR to multiply it to the Householder transformations represented as Householder vectors in A. */ if (! wantz) { lapackf77_dsterf( &n, w, &rwork[inde], info ); magma_dmove_eig( range, n, w, &il, &iu, vl, vu, mout ); } else { timer_start( time ); magma_zstedx( range, n, vl, vu, il, iu, w, &rwork[inde], &work[indwrk], n, &rwork[indrwk], llrwk, iwork, liwork, dwork, info ); timer_stop( time ); timer_printf( "time zstedx = %6.2f\n", time ); timer_start( time ); magma_dmove_eig( range, n, w, &il, &iu, vl, vu, mout ); magma_zsetmatrix( n, *mout, &work[indwrk + n * (il-1) ], n, dC, lddc ); magma_zunmtr_gpu( MagmaLeft, uplo, MagmaNoTrans, n, *mout, dA, ldda, &work[indtau], dC, lddc, wA, ldwa, &iinfo ); magma_zcopymatrix( n, *mout, dC, lddc, dA, ldda ); timer_stop( time ); timer_printf( "time zunmtr_gpu + copy = %6.2f\n", time ); } /* If matrix was scaled, then rescale eigenvalues appropriately. */ if (iscale == 1) { if (*info == 0) { imax = n; } else { imax = *info - 1; } d__1 = 1. / sigma; blasf77_dscal( &imax, &d__1, w, &ione ); } work[0] = MAGMA_Z_MAKE( lwmin * one_eps, 0 ); // round up rwork[0] = lrwmin * one_eps; iwork[0] = liwmin; magma_queue_destroy( stream ); magma_free( dwork ); return *info; } /* magma_zheevdx_gpu */
magma_int_t magma_ztrevc3_mt( magma_side_t side, magma_vec_t howmany, magma_int_t *select, // logical in Fortran magma_int_t n, magmaDoubleComplex *T, magma_int_t ldt, magmaDoubleComplex *VL, magma_int_t ldvl, magmaDoubleComplex *VR, magma_int_t ldvr, magma_int_t mm, magma_int_t *mout, magmaDoubleComplex *work, magma_int_t lwork, #ifdef COMPLEX double *rwork, #endif magma_int_t *info ) { #define T(i,j) ( T + (i) + (j)*ldt ) #define VL(i,j) (VL + (i) + (j)*ldvl) #define VR(i,j) (VR + (i) + (j)*ldvr) #define work(i,j) (work + (i) + (j)*n) // .. Parameters .. const magmaDoubleComplex c_zero = MAGMA_Z_ZERO; const magmaDoubleComplex c_one = MAGMA_Z_ONE; const magma_int_t nbmin = 16, nbmax = 128; const magma_int_t ione = 1; // .. Local Scalars .. magma_int_t allv, bothv, leftv, over, rightv, somev; magma_int_t i, ii, is, j, k, ki, iv, n2, nb, nb2, version; double ovfl, remax, unfl; //smlnum, smin, ulp // Decode and test the input parameters bothv = (side == MagmaBothSides); rightv = (side == MagmaRight) || bothv; leftv = (side == MagmaLeft ) || bothv; allv = (howmany == MagmaAllVec); over = (howmany == MagmaBacktransVec); somev = (howmany == MagmaSomeVec); // Set mout to the number of columns required to store the selected // eigenvectors. if ( somev ) { *mout = 0; for( j=0; j < n; ++j ) { if ( select[j] ) { *mout += 1; } } } else { *mout = n; } *info = 0; if ( ! rightv && ! leftv ) *info = -1; else if ( ! allv && ! over && ! somev ) *info = -2; else if ( n < 0 ) *info = -4; else if ( ldt < max( 1, n ) ) *info = -6; else if ( ldvl < 1 || ( leftv && ldvl < n ) ) *info = -8; else if ( ldvr < 1 || ( rightv && ldvr < n ) ) *info = -10; else if ( mm < *mout ) *info = -11; else if ( lwork < max( 1, 2*n ) ) *info = -14; if ( *info != 0 ) { magma_xerbla( __func__, -(*info) ); return *info; } // Quick return if possible. if ( n == 0 ) { return *info; } // Use blocked version (2) if sufficient workspace. // Requires 1 vector to save diagonal elements, and 2*nb vectors for x and Q*x. // (Compared to dtrevc3, rwork stores 1-norms.) // Zero-out the workspace to avoid potential NaN propagation. nb = 2; if ( lwork >= n + 2*n*nbmin ) { version = 2; nb = (lwork - n) / (2*n); nb = min( nb, nbmax ); nb2 = 1 + 2*nb; lapackf77_zlaset( "F", &n, &nb2, &c_zero, &c_zero, work, &n ); } else { version = 1; } // Set the constants to control overflow. unfl = lapackf77_dlamch( "Safe minimum" ); ovfl = 1. / unfl; lapackf77_dlabad( &unfl, &ovfl ); //ulp = lapackf77_dlamch( "Precision" ); //smlnum = unfl*( n / ulp ); // Store the diagonal elements of T in working array work. for( i=0; i < n; ++i ) { *work(i,0) = *T(i,i); } // Compute 1-norm of each column of strictly upper triangular // part of T to control overflow in triangular solver. rwork[0] = 0.; for( j=1; j < n; ++j ) { rwork[j] = magma_cblas_dzasum( j, T(0,j), ione ); } // launch threads -- each single-threaded MKL magma_int_t nthread = magma_get_parallel_numthreads(); magma_int_t lapack_nthread = magma_get_lapack_numthreads(); magma_set_lapack_numthreads( 1 ); magma_thread_queue queue; queue.launch( nthread ); //printf( "nthread %d, %d\n", nthread, lapack_nthread ); // gemm_nb = N/thread, rounded up to multiple of 16, // but avoid multiples of page size, e.g., 512*8 bytes = 4096. magma_int_t gemm_nb = magma_int_t( ceil( ceil( ((double)n) / nthread ) / 16. ) * 16. ); if ( gemm_nb % 512 == 0 ) { gemm_nb += 32; } magma_timer_t time_total=0, time_trsv=0, time_gemm=0, time_gemv=0, time_trsv_sum=0, time_gemm_sum=0, time_gemv_sum=0; timer_start( time_total ); if ( rightv ) { // ============================================================ // Compute right eigenvectors. // iv is index of column in current block. // Non-blocked version always uses iv=1; // blocked version starts with iv=nb, goes down to 1. // (Note the "0-th" column is used to store the original diagonal.) iv = 1; if ( version == 2 ) { iv = nb; } timer_start( time_trsv ); is = *mout - 1; for( ki=n-1; ki >= 0; --ki ) { if ( somev ) { if ( ! select[ki] ) { continue; } } //smin = max( ulp*MAGMA_Z_ABS1( *T(ki,ki) ), smlnum ); // -------------------------------------------------------- // Complex right eigenvector *work(ki,iv) = c_one; // Form right-hand side. for( k=0; k < ki; ++k ) { *work(k,iv) = -(*T(k,ki)); } // Solve upper triangular system: // [ T(1:ki-1,1:ki-1) - T(ki,ki) ]*X = scale*work. if ( ki > 0 ) { queue.push_task( new magma_zlatrsd_task( MagmaUpper, MagmaNoTrans, MagmaNonUnit, MagmaTrue, ki, T, ldt, *T(ki,ki), work(0,iv), work(ki,iv), rwork )); } // Copy the vector x or Q*x to VR and normalize. if ( ! over ) { // ------------------------------ // no back-transform: copy x to VR and normalize queue.sync(); n2 = ki+1; blasf77_zcopy( &n2, work(0,iv), &ione, VR(0,is), &ione ); ii = blasf77_izamax( &n2, VR(0,is), &ione ) - 1; remax = 1. / MAGMA_Z_ABS1( *VR(ii,is) ); blasf77_zdscal( &n2, &remax, VR(0,is), &ione ); for( k=ki+1; k < n; ++k ) { *VR(k,is) = c_zero; } } else if ( version == 1 ) { // ------------------------------ // version 1: back-transform each vector with GEMV, Q*x. queue.sync(); time_trsv_sum += timer_stop( time_trsv ); timer_start( time_gemv ); if ( ki > 0 ) { blasf77_zgemv( "n", &n, &ki, &c_one, VR, &ldvr, work(0, iv), &ione, work(ki,iv), VR(0,ki), &ione ); } time_gemv_sum += timer_stop( time_gemv ); ii = blasf77_izamax( &n, VR(0,ki), &ione ) - 1; remax = 1. / MAGMA_Z_ABS1( *VR(ii,ki) ); blasf77_zdscal( &n, &remax, VR(0,ki), &ione ); timer_start( time_trsv ); } else if ( version == 2 ) { // ------------------------------ // version 2: back-transform block of vectors with GEMM // zero out below vector for( k=ki+1; k < n; ++k ) { *work(k,iv) = c_zero; } // Columns iv:nb of work are valid vectors. // When the number of vectors stored reaches nb, // or if this was last vector, do the GEMM if ( (iv == 1) || (ki == 0) ) { queue.sync(); time_trsv_sum += timer_stop( time_trsv ); timer_start( time_gemm ); nb2 = nb-iv+1; n2 = ki+nb-iv+1; // split gemm into multiple tasks, each doing one block row for( i=0; i < n; i += gemm_nb ) { magma_int_t ib = min( gemm_nb, n-i ); queue.push_task( new zgemm_task( MagmaNoTrans, MagmaNoTrans, ib, nb2, n2, c_one, VR(i,0), ldvr, work(0,iv ), n, c_zero, work(i,nb+iv), n )); } queue.sync(); time_gemm_sum += timer_stop( time_gemm ); // normalize vectors // TODO if somev, should copy vectors individually to correct location. for( k = iv; k <= nb; ++k ) { ii = blasf77_izamax( &n, work(0,nb+k), &ione ) - 1; remax = 1. / MAGMA_Z_ABS1( *work(ii,nb+k) ); blasf77_zdscal( &n, &remax, work(0,nb+k), &ione ); } lapackf77_zlacpy( "F", &n, &nb2, work(0,nb+iv), &n, VR(0,ki), &ldvr ); iv = nb; timer_start( time_trsv ); } else { iv -= 1; } } // blocked back-transform is -= 1; } } timer_stop( time_trsv ); timer_stop( time_total ); timer_printf( "trevc trsv %.4f, gemm %.4f, gemv %.4f, total %.4f\n", time_trsv_sum, time_gemm_sum, time_gemv_sum, time_total ); if ( leftv ) { // ============================================================ // Compute left eigenvectors. // iv is index of column in current block. // Non-blocked version always uses iv=1; // blocked version starts with iv=1, goes up to nb. // (Note the "0-th" column is used to store the original diagonal.) iv = 1; is = 0; for( ki=0; ki < n; ++ki ) { if ( somev ) { if ( ! select[ki] ) { continue; } } //smin = max( ulp*MAGMA_Z_ABS1( *T(ki,ki) ), smlnum ); // -------------------------------------------------------- // Complex left eigenvector *work(ki,iv) = c_one; // Form right-hand side. for( k = ki + 1; k < n; ++k ) { *work(k,iv) = -MAGMA_Z_CONJ( *T(ki,k) ); } // Solve conjugate-transposed triangular system: // [ T(ki+1:n,ki+1:n) - T(ki,ki) ]**H * X = scale*work. // TODO what happens with T(k,k) - lambda is small? Used to have < smin test. if ( ki < n-1 ) { n2 = n-ki-1; queue.push_task( new magma_zlatrsd_task( MagmaUpper, MagmaConjTrans, MagmaNonUnit, MagmaTrue, n2, T(ki+1,ki+1), ldt, *T(ki,ki), work(ki+1,iv), work(ki,iv), rwork )); } // Copy the vector x or Q*x to VL and normalize. if ( ! over ) { // ------------------------------ // no back-transform: copy x to VL and normalize queue.sync(); n2 = n-ki; blasf77_zcopy( &n2, work(ki,iv), &ione, VL(ki,is), &ione ); ii = blasf77_izamax( &n2, VL(ki,is), &ione ) + ki - 1; remax = 1. / MAGMA_Z_ABS1( *VL(ii,is) ); blasf77_zdscal( &n2, &remax, VL(ki,is), &ione ); for( k=0; k < ki; ++k ) { *VL(k,is) = c_zero; } } else if ( version == 1 ) { // ------------------------------ // version 1: back-transform each vector with GEMV, Q*x. queue.sync(); if ( ki < n-1 ) { n2 = n-ki-1; blasf77_zgemv( "n", &n, &n2, &c_one, VL(0,ki+1), &ldvl, work(ki+1,iv), &ione, work(ki, iv), VL(0,ki), &ione ); } ii = blasf77_izamax( &n, VL(0,ki), &ione ) - 1; remax = 1. / MAGMA_Z_ABS1( *VL(ii,ki) ); blasf77_zdscal( &n, &remax, VL(0,ki), &ione ); } else if ( version == 2 ) { // ------------------------------ // version 2: back-transform block of vectors with GEMM // zero out above vector // could go from (ki+1)-NV+1 to ki for( k=0; k < ki; ++k ) { *work(k,iv) = c_zero; } // Columns 1:iv of work are valid vectors. // When the number of vectors stored reaches nb, // or if this was last vector, do the GEMM if ( (iv == nb) || (ki == n-1) ) { queue.sync(); n2 = n-(ki+1)+iv; // split gemm into multiple tasks, each doing one block row for( i=0; i < n; i += gemm_nb ) { magma_int_t ib = min( gemm_nb, n-i ); queue.push_task( new zgemm_task( MagmaNoTrans, MagmaNoTrans, ib, iv, n2, c_one, VL(i,ki-iv+1), ldvl, work(ki-iv+1,1), n, c_zero, work(i,nb+1), n )); } queue.sync(); // normalize vectors for( k=1; k <= iv; ++k ) { ii = blasf77_izamax( &n, work(0,nb+k), &ione ) - 1; remax = 1. / MAGMA_Z_ABS1( *work(ii,nb+k) ); blasf77_zdscal( &n, &remax, work(0,nb+k), &ione ); } lapackf77_zlacpy( "F", &n, &iv, work(0,nb+1), &n, VL(0,ki-iv+1), &ldvl ); iv = 1; } else { iv += 1; } } // blocked back-transform is += 1; } } // close down threads queue.quit(); magma_set_lapack_numthreads( lapack_nthread ); return *info; } // End of ZTREVC
/** Purpose ------- ZGETRF_m computes an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges. This version does not require work space on the GPU passed as input. GPU memory is allocated in the routine. The matrix may exceed the GPU memory. The factorization has the form A = P * L * U where P is a permutation matrix, L is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and U is upper triangular (upper trapezoidal if m < n). This is the right-looking Level 3 BLAS version of the algorithm. Note: The factorization of big panel is done calling multiple-gpu-interface. Pivots are applied on GPU within the big panel. Arguments --------- @param[in] ngpu INTEGER Number of GPUs to use. ngpu > 0. @param[in] m INTEGER The number of rows of the matrix A. M >= 0. @param[in] n INTEGER The number of columns of the matrix A. N >= 0. @param[in,out] A COMPLEX_16 array, dimension (LDA,N) On entry, the M-by-N matrix to be factored. On exit, the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored. \n Higher performance is achieved if A is in pinned memory, e.g. allocated using magma_malloc_pinned. @param[in] lda INTEGER The leading dimension of the array A. LDA >= max(1,M). @param[out] ipiv INTEGER array, dimension (min(M,N)) The pivot indices; for 1 <= i <= min(M,N), row i of the matrix was interchanged with row IPIV(i). @param[out] info INTEGER - = 0: successful exit - < 0: if INFO = -i, the i-th argument had an illegal value or another error occured, such as memory allocation failed. - > 0: if INFO = i, U(i,i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations. @ingroup magma_zgesv_comp ********************************************************************/ extern "C" magma_int_t magma_zgetrf_m( magma_int_t ngpu, magma_int_t m, magma_int_t n, magmaDoubleComplex *A, magma_int_t lda, magma_int_t *ipiv, magma_int_t *info) { #define A(i,j) (A + (j)*lda + (i)) #define dAT(d,i,j) (dAT[d] + (i)*nb*ldn_local + (j)*nb) #define dPT(d,i,j) (dPT[d] + (i)*nb*nb + (j)*nb*maxm) magma_timer_t time=0, time_total=0, time_alloc=0, time_set=0, time_get=0, time_comp=0; timer_start( time_total ); real_Double_t flops; magmaDoubleComplex c_one = MAGMA_Z_ONE; magmaDoubleComplex c_neg_one = MAGMA_Z_NEG_ONE; magmaDoubleComplex *dAT[MagmaMaxGPUs], *dA[MagmaMaxGPUs], *dPT[MagmaMaxGPUs]; magma_int_t iinfo = 0, nb, nbi, maxm, n_local[MagmaMaxGPUs], ldn_local; magma_int_t N, M, NB, NBk, I, d, ngpu0 = ngpu; magma_int_t ii, jj, h, offset, ib, rows; magma_queue_t stream[MagmaMaxGPUs][2]; magma_event_t event[MagmaMaxGPUs][2]; *info = 0; if (m < 0) *info = -1; else if (n < 0) *info = -2; else if (lda < max(1,m)) *info = -4; if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } /* Quick return if possible */ if (m == 0 || n == 0) return *info; magma_device_t orig_dev; magma_getdevice( &orig_dev ); magma_queue_t orig_stream; magmablasGetKernelStream( &orig_stream ); /* initialize nb */ nb = magma_get_zgetrf_nb(m); maxm = ((m + 31)/32)*32; /* figure out NB */ size_t freeMem, totalMem; cudaMemGetInfo( &freeMem, &totalMem ); freeMem /= sizeof(magmaDoubleComplex); /* number of columns in the big panel */ h = 1+(2+ngpu0); NB = (magma_int_t)(0.8*freeMem/maxm-h*nb); const char* ngr_nb_char = getenv("MAGMA_NGR_NB"); if ( ngr_nb_char != NULL ) NB = max( nb, min( NB, atoi(ngr_nb_char) ) ); //NB = 5*max(nb,32); if ( ngpu0 > ceil((double)NB/nb) ) { ngpu = (int)ceil((double)NB/nb); h = 1+(2+ngpu); NB = (magma_int_t)(0.8*freeMem/maxm-h*nb); } else { ngpu = ngpu0; } if ( ngpu*NB >= n ) { #ifdef CHECK_ZGETRF_OOC printf( " * still fit in GPU memory.\n" ); #endif NB = n; } else { #ifdef CHECK_ZGETRF_OOC printf( " * don't fit in GPU memory.\n" ); #endif NB = ngpu*NB; NB = max( nb, (NB / nb) * nb); /* making sure it's devisable by nb (x64) */ } #ifdef CHECK_ZGETRF_OOC if ( NB != n ) printf( " * running in out-core mode (n=%d, NB=%d, nb=%d, freeMem=%.2e).\n", n, NB, nb, (double)freeMem ); else printf( " * running in in-core mode (n=%d, NB=%d, nb=%d, freeMem=%.2e).\n", n, NB, nb, (double)freeMem ); #endif if ( (nb <= 1) || (nb >= min(m,n)) ) { /* Use CPU code for scalar of one tile. */ lapackf77_zgetrf(&m, &n, A, &lda, ipiv, info); } else { /* Use hybrid blocked code. */ /* allocate memory on GPU to store the big panel */ timer_start( time_alloc ); n_local[0] = (NB/nb)/ngpu; if ( NB%(nb*ngpu) != 0 ) n_local[0]++; n_local[0] *= nb; ldn_local = ((n_local[0]+31)/32)*32; for( d=0; d < ngpu; d++ ) { magma_setdevice(d); if (MAGMA_SUCCESS != magma_zmalloc( &dA[d], (ldn_local+h*nb)*maxm )) { *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } dPT[d] = dA[d] + nb*maxm; /* for storing the previous panel from CPU */ dAT[d] = dA[d] + h*nb*maxm; /* for storing the big panel */ magma_queue_create( &stream[d][0] ); magma_queue_create( &stream[d][1] ); magma_event_create( &event[d][0] ); magma_event_create( &event[d][1] ); } //magma_setdevice(0); timer_stop( time_alloc ); for( I=0; I < n; I += NB ) { M = m; N = min( NB, n-I ); /* number of columns in this big panel */ //s = min( max(m-I,0), N )/nb; /* number of small block-columns in this big panel */ maxm = ((M + 31)/32)*32; if ( ngpu0 > ceil((double)N/nb) ) { ngpu = (int)ceil((double)N/nb); } else { ngpu = ngpu0; } for( d=0; d < ngpu; d++ ) { n_local[d] = ((N/nb)/ngpu)*nb; if (d < (N/nb)%ngpu) n_local[d] += nb; else if (d == (N/nb)%ngpu) n_local[d] += N%nb; } ldn_local = ((n_local[0]+31)/32)*32; /* upload the next big panel into GPU, transpose (A->A'), and pivot it */ timer_start( time ); magmablas_zsetmatrix_transpose_mgpu(ngpu, stream, A(0,I), lda, dAT, ldn_local, dA, maxm, M, N, nb); for( d=0; d < ngpu; d++ ) { magma_setdevice(d); magma_queue_sync( stream[d][0] ); magma_queue_sync( stream[d][1] ); magmablasSetKernelStream(NULL); } time_set += timer_stop( time ); timer_start( time ); /* == --------------------------------------------------------------- == */ /* == loop around the previous big-panels to update the new big-panel == */ for( offset = 0; offset < min(m,I); offset += NB ) { NBk = min( m-offset, NB ); /* start sending the first tile from the previous big-panels to gpus */ for( d=0; d < ngpu; d++ ) { magma_setdevice(d); nbi = min( nb, NBk ); magma_zsetmatrix_async( (M-offset), nbi, A(offset,offset), lda, dA[d], (maxm-offset), stream[d][0] ); /* make sure the previous update finished */ magmablasSetKernelStream(stream[d][0]); //magma_queue_sync( stream[d][1] ); magma_queue_wait_event( stream[d][0], event[d][0] ); /* transpose */ magmablas_ztranspose( M-offset, nbi, dA[d], maxm-offset, dPT(d,0,0), nb ); } /* applying the pivot from the previous big-panel */ for( d=0; d < ngpu; d++ ) { magma_setdevice(d); magmablas_zlaswp_q( ldn_local, dAT(d,0,0), ldn_local, offset+1, offset+NBk, ipiv, 1, stream[d][1] ); } /* == going through each block-column of previous big-panels == */ for( jj=0, ib=offset/nb; jj < NBk; jj += nb, ib++ ) { ii = offset+jj; rows = maxm - ii; nbi = min( nb, NBk-jj ); for( d=0; d < ngpu; d++ ) { magma_setdevice(d); /* wait for a block-column on GPU */ magma_queue_sync( stream[d][0] ); /* start sending next column */ if ( jj+nb < NBk ) { magma_zsetmatrix_async( (M-ii-nb), min(nb,NBk-jj-nb), A(ii+nb,ii+nb), lda, dA[d], (rows-nb), stream[d][0] ); /* make sure the previous update finished */ magmablasSetKernelStream(stream[d][0]); //magma_queue_sync( stream[d][1] ); magma_queue_wait_event( stream[d][0], event[d][(1+jj/nb)%2] ); /* transpose next column */ magmablas_ztranspose( M-ii-nb, nb, dA[d], rows-nb, dPT(d,0,(1+jj/nb)%2), nb ); } /* update with the block column */ magmablasSetKernelStream(stream[d][1]); magma_ztrsm( MagmaRight, MagmaUpper, MagmaNoTrans, MagmaUnit, n_local[d], nbi, c_one, dPT(d,0,(jj/nb)%2), nb, dAT(d,ib,0), ldn_local ); if ( M > ii+nb ) { magma_zgemm( MagmaNoTrans, MagmaNoTrans, n_local[d], M-(ii+nb), nbi, c_neg_one, dAT(d,ib,0), ldn_local, dPT(d,1,(jj/nb)%2), nb, c_one, dAT(d,ib+1,0), ldn_local ); } magma_event_record( event[d][(jj/nb)%2], stream[d][1] ); } /* end of for each block-columns in a big-panel */ } } /* end of for each previous big-panels */ for( d=0; d < ngpu; d++ ) { magma_setdevice(d); magma_queue_sync( stream[d][0] ); magma_queue_sync( stream[d][1] ); magmablasSetKernelStream(NULL); } /* calling magma-gpu interface to panel-factorize the big panel */ if ( M > I ) { magma_zgetrf2_mgpu(ngpu, M-I, N, nb, I, dAT, ldn_local, ipiv+I, dA, A(0,I), lda, stream, &iinfo); if ( iinfo < 0 ) { *info = iinfo; break; } else if ( iinfo != 0 ) { *info = iinfo + I * NB; //break; } /* adjust pivots */ for( ii=I; ii < min(I+N,m); ii++ ) ipiv[ii] += I; } time_comp += timer_stop( time ); /* download the current big panel to CPU */ timer_start( time ); magmablas_zgetmatrix_transpose_mgpu(ngpu, stream, dAT, ldn_local, A(0,I), lda, dA, maxm, M, N, nb); for( d=0; d < ngpu; d++ ) { magma_setdevice(d); magma_queue_sync( stream[d][0] ); magma_queue_sync( stream[d][1] ); magmablasSetKernelStream(NULL); } time_get += timer_stop( time ); } /* end of for */ timer_stop( time_total ); flops = FLOPS_ZGETRF( m, n ) / 1e9; timer_printf(" memory-allocation time: %e\n", time_alloc ); timer_printf(" NB=%d nb=%d\n", (int) NB, (int) nb ); timer_printf(" memcopy and transpose %e seconds\n", time_set ); timer_printf(" total time %e seconds\n", time_total ); timer_printf(" Performance %f GFlop/s, %f seconds without htod and dtoh\n", flops / (time_comp), time_comp ); timer_printf(" Performance %f GFlop/s, %f seconds with htod\n", flops / (time_comp + time_set), time_comp + time_set ); timer_printf(" Performance %f GFlop/s, %f seconds with dtoh\n", flops / (time_comp + time_get), time_comp + time_get ); timer_printf(" Performance %f GFlop/s, %f seconds without memory-allocation\n", flops / (time_total - time_alloc), time_total - time_alloc ); for( d=0; d < ngpu0; d++ ) { magma_setdevice(d); magma_free( dA[d] ); magma_event_destroy( event[d][0] ); magma_event_destroy( event[d][1] ); magma_queue_destroy( stream[d][0] ); magma_queue_destroy( stream[d][1] ); } magma_setdevice( orig_dev ); magmablasSetKernelStream( orig_stream ); } if ( *info >= 0 ) magma_zgetrf_piv(m, n, NB, A, lda, ipiv, info); return *info; } /* magma_zgetrf_m */
/** Purpose ------- SSYGVD computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and B are assumed to be symmetric and B is also positive definite. If eigenvectors are desired, it uses a divide and conquer algorithm. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none. Arguments --------- @param[in] ngpu INTEGER Number of GPUs to use. ngpu > 0. @param[in] itype INTEGER Specifies the problem type to be solved: = 1: A*x = (lambda)*B*x = 2: A*B*x = (lambda)*x = 3: B*A*x = (lambda)*x @param[in] jobz magma_vec_t - = MagmaNoVec: Compute eigenvalues only; - = MagmaVec: Compute eigenvalues and eigenvectors. @param[in] uplo magma_uplo_t - = MagmaUpper: Upper triangles of A and B are stored; - = MagmaLower: Lower triangles of A and B are stored. @param[in] n INTEGER The order of the matrices A and B. N >= 0. @param[in,out] A REAL array, dimension (LDA, N) On entry, the symmetric matrix A. If UPLO = MagmaUpper, the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A. If UPLO = MagmaLower, the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A. \n On exit, if JOBZ = MagmaVec, then if INFO = 0, A contains the matrix Z of eigenvectors. The eigenvectors are normalized as follows: if ITYPE = 1 or 2, Z**T * B * Z = I; if ITYPE = 3, Z**T * inv(B) * Z = I. If JOBZ = MagmaNoVec, then on exit the upper triangle (if UPLO=MagmaUpper) or the lower triangle (if UPLO=MagmaLower) of A, including the diagonal, is destroyed. @param[in] lda INTEGER The leading dimension of the array A. LDA >= max(1,N). @param[in,out] B REAL array, dimension (LDB, N) On entry, the symmetric matrix B. If UPLO = MagmaUpper, the leading N-by-N upper triangular part of B contains the upper triangular part of the matrix B. If UPLO = MagmaLower, the leading N-by-N lower triangular part of B contains the lower triangular part of the matrix B. \n On exit, if INFO <= N, the part of B containing the matrix is overwritten by the triangular factor U or L from the Cholesky factorization B = U**T * U or B = L * L**T. @param[in] ldb INTEGER The leading dimension of the array B. LDB >= max(1,N). @param[out] w REAL array, dimension (N) If INFO = 0, the eigenvalues in ascending order. @param[out] work (workspace) REAL array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK[0] returns the optimal LWORK. @param[in] lwork INTEGER The length of the array WORK. If N <= 1, LWORK >= 1. If JOBZ = MagmaNoVec and N > 1, LWORK >= 2*N + N*NB. If JOBZ = MagmaVec and N > 1, LWORK >= max( 2*N + N*NB, 1 + 6*N + 2*N**2 ). NB can be obtained through magma_get_ssytrd_nb(N). \n If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK and IWORK arrays, returns these values as the first entries of the WORK and IWORK arrays, and no error message related to LWORK or LIWORK is issued by XERBLA. @param[out] iwork (workspace) INTEGER array, dimension (MAX(1,LIWORK)) On exit, if INFO = 0, IWORK[0] returns the optimal LIWORK. @param[in] liwork INTEGER The dimension of the array IWORK. If N <= 1, LIWORK >= 1. If JOBZ = MagmaNoVec and N > 1, LIWORK >= 1. If JOBZ = MagmaVec and N > 1, LIWORK >= 3 + 5*N. \n If LIWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK and IWORK arrays, returns these values as the first entries of the WORK and IWORK arrays, and no error message related to LWORK or LIWORK is issued by XERBLA. @param[out] info INTEGER - = 0: successful exit - < 0: if INFO = -i, the i-th argument had an illegal value - > 0: SPOTRF or SSYEVD returned an error code: <= N: if INFO = i and JOBZ = MagmaNoVec, then the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero; if INFO = i and JOBZ = MagmaVec, then the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns INFO/(N+1) through mod(INFO,N+1); > N: if INFO = N + i, for 1 <= i <= N, then the leading minor of order i of B is not positive definite. The factorization of B could not be completed and no eigenvalues or eigenvectors were computed. Further Details --------------- Based on contributions by Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA Modified so that no backsubstitution is performed if SSYEVD fails to converge (NEIG in old code could be greater than N causing out of bounds reference to A - reported by Ralf Meyer). Also corrected the description of INFO and the test on ITYPE. Sven, 16 Feb 05. @ingroup magma_ssygv_driver ********************************************************************/ extern "C" magma_int_t magma_ssygvd_m( magma_int_t ngpu, magma_int_t itype, magma_vec_t jobz, magma_uplo_t uplo, magma_int_t n, float *A, magma_int_t lda, float *B, magma_int_t ldb, float *w, float *work, magma_int_t lwork, #ifdef COMPLEX float *rwork, magma_int_t lrwork, #endif magma_int_t *iwork, magma_int_t liwork, magma_int_t *info) { const char* uplo_ = lapack_uplo_const( uplo ); const char* jobz_ = lapack_vec_const( jobz ); float d_one = MAGMA_S_ONE; magma_int_t lower; magma_trans_t trans; magma_int_t wantz, lquery; magma_int_t lwmin, liwmin; magma_queue_t stream; magma_queue_create( &stream ); wantz = (jobz == MagmaVec); lower = (uplo == MagmaLower); lquery = (lwork == -1 || liwork == -1); *info = 0; if (itype < 1 || itype > 3) { *info = -1; } else if (! (wantz || (jobz == MagmaNoVec))) { *info = -2; } else if (! (lower || (uplo == MagmaUpper))) { *info = -3; } else if (n < 0) { *info = -4; } else if (lda < max(1,n)) { *info = -6; } else if (ldb < max(1,n)) { *info = -8; } magma_int_t nb = magma_get_ssytrd_nb( n ); if ( n <= 1 ) { lwmin = 1; liwmin = 1; } else if ( wantz ) { lwmin = max( 2*n + n*nb, 1 + 6*n + 2*n*n ); liwmin = 3 + 5*n; } else { lwmin = 2*n + n*nb; liwmin = 1; } // multiply by 1+eps (in Double!) to ensure length gets rounded up, // if it cannot be exactly represented in floating point. real_Double_t one_eps = 1. + lapackf77_slamch("Epsilon"); work[0] = lwmin * one_eps; iwork[0] = liwmin; if (lwork < lwmin && ! lquery) { *info = -11; } else if (liwork < liwmin && ! lquery) { *info = -13; } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } else if (lquery) { return *info; } /* Quick return if possible */ if (n == 0) { return *info; } /* If matrix is very small, then just call LAPACK on CPU, no need for GPU */ if (n <= 128) { lapackf77_ssygvd( &itype, jobz_, uplo_, &n, A, &lda, B, &ldb, w, work, &lwork, iwork, &liwork, info ); return *info; } magma_timer_t time=0; timer_start( time ); magma_spotrf_m( ngpu, uplo, n, B, ldb, info ); if (*info != 0) { *info = n + *info; return *info; } timer_stop( time ); timer_printf( "time spotrf = %6.2f\n", time ); timer_start( time ); /* Transform problem to standard eigenvalue problem and solve. */ magma_ssygst_m( ngpu, itype, uplo, n, A, lda, B, ldb, info ); timer_stop( time ); timer_printf( "time ssygst = %6.2f\n", time ); timer_start( time ); magma_ssyevd_m( ngpu, jobz, uplo, n, A, lda, w, work, lwork, iwork, liwork, info ); timer_stop( time ); timer_printf( "time ssyevd = %6.2f\n", time ); if (wantz && *info == 0) { timer_start( time ); /* Backtransform eigenvectors to the original problem. */ if (itype == 1 || itype == 2) { /* For A*x=(lambda)*B*x and A*B*x=(lambda)*x; backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */ if (lower) { trans = MagmaTrans; } else { trans = MagmaNoTrans; } magma_strsm_m( ngpu, MagmaLeft, uplo, trans, MagmaNonUnit, n, n, d_one, B, ldb, A, lda ); } else if (itype == 3) { /* For B*A*x=(lambda)*x; backtransform eigenvectors: x = L*y or U'*y */ if (lower) { trans = MagmaNoTrans; } else { trans = MagmaTrans; } printf("--- the multi GPU version is falling back to 1 GPU to perform the last TRMM since there is no TRMM_mgpu --- \n"); float *dA=NULL, *dB=NULL; magma_int_t ldda = roundup( n, 32 ); magma_int_t lddb = ldda; if (MAGMA_SUCCESS != magma_smalloc( &dA, n*ldda ) || MAGMA_SUCCESS != magma_smalloc( &dB, n*lddb ) ) { magma_free( dA ); magma_free( dB ); *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } magma_ssetmatrix( n, n, B, ldb, dB, lddb ); magma_ssetmatrix( n, n, A, lda, dA, ldda ); magma_strmm( MagmaLeft, uplo, trans, MagmaNonUnit, n, n, d_one, dB, lddb, dA, ldda ); magma_sgetmatrix( n, n, dA, ldda, A, lda ); magma_free( dA ); magma_free( dB ); } timer_stop( time ); timer_printf( "time setmatrices trsm/mm + getmatrices = %6.2f\n", time ); } work[0] = lwmin * one_eps; // round up iwork[0] = liwmin; return *info; } /* magma_ssygvd_m */
/** Purpose ------- ZHEEVDX computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues. If eigenvectors are desired, it uses a divide and conquer algorithm. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none. Arguments --------- @param[in] jobz magma_vec_t - = MagmaNoVec: Compute eigenvalues only; - = MagmaVec: Compute eigenvalues and eigenvectors. @param[in] range magma_range_t - = MagmaRangeAll: all eigenvalues will be found. - = MagmaRangeV: all eigenvalues in the half-open interval (VL,VU] will be found. - = MagmaRangeI: the IL-th through IU-th eigenvalues will be found. @param[in] uplo magma_uplo_t - = MagmaUpper: Upper triangle of A is stored; - = MagmaLower: Lower triangle of A is stored. @param[in] n INTEGER The order of the matrix A. N >= 0. @param[in,out] A COMPLEX_16 array, dimension (LDA, N) On entry, the Hermitian matrix A. If UPLO = MagmaUpper, the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A. If UPLO = MagmaLower, the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A. On exit, if JOBZ = MagmaVec, then if INFO = 0, the first m columns of A contains the required orthonormal eigenvectors of the matrix A. If JOBZ = MagmaNoVec, then on exit the lower triangle (if UPLO=MagmaLower) or the upper triangle (if UPLO=MagmaUpper) of A, including the diagonal, is destroyed. @param[in] lda INTEGER The leading dimension of the array A. LDA >= max(1,N). @param[in] vl DOUBLE PRECISION @param[in] vu DOUBLE PRECISION If RANGE=MagmaRangeV, the lower and upper bounds of the interval to be searched for eigenvalues. VL < VU. Not referenced if RANGE = MagmaRangeAll or MagmaRangeI. @param[in] il INTEGER @param[in] iu INTEGER If RANGE=MagmaRangeI, the indices (in ascending order) of the smallest and largest eigenvalues to be returned. 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. Not referenced if RANGE = MagmaRangeAll or MagmaRangeV. @param[out] m INTEGER The total number of eigenvalues found. 0 <= M <= N. If RANGE = MagmaRangeAll, M = N, and if RANGE = MagmaRangeI, M = IU-IL+1. @param[out] w DOUBLE PRECISION array, dimension (N) If INFO = 0, the required m eigenvalues in ascending order. @param[out] work (workspace) COMPLEX_16 array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK[0] returns the optimal LWORK. @param[in] lwork INTEGER The length of the array WORK. If N <= 1, LWORK >= 1. If JOBZ = MagmaNoVec and N > 1, LWORK >= N + N*NB. If JOBZ = MagmaVec and N > 1, LWORK >= max( N + N*NB, 2*N + N**2 ). NB can be obtained through magma_get_zhetrd_nb(N). \n If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA. @param[out] rwork (workspace) DOUBLE PRECISION array, dimension (LRWORK) On exit, if INFO = 0, RWORK[0] returns the optimal LRWORK. @param[in] lrwork INTEGER The dimension of the array RWORK. If N <= 1, LRWORK >= 1. If JOBZ = MagmaNoVec and N > 1, LRWORK >= N. If JOBZ = MagmaVec and N > 1, LRWORK >= 1 + 5*N + 2*N**2. \n If LRWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA. @param[out] iwork (workspace) INTEGER array, dimension (MAX(1,LIWORK)) On exit, if INFO = 0, IWORK[0] returns the optimal LIWORK. @param[in] liwork INTEGER The dimension of the array IWORK. If N <= 1, LIWORK >= 1. If JOBZ = MagmaNoVec and N > 1, LIWORK >= 1. If JOBZ = MagmaVec and N > 1, LIWORK >= 3 + 5*N. \n If LIWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA. @param[out] info INTEGER - = 0: successful exit - < 0: if INFO = -i, the i-th argument had an illegal value - > 0: if INFO = i and JOBZ = MagmaNoVec, then the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero; if INFO = i and JOBZ = MagmaVec, then the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns INFO/(N+1) through mod(INFO,N+1). Further Details --------------- Based on contributions by Jeff Rutter, Computer Science Division, University of California at Berkeley, USA Modified description of INFO. Sven, 16 Feb 05. @ingroup magma_zheev_driver ********************************************************************/ extern "C" magma_int_t magma_zheevdx( magma_vec_t jobz, magma_range_t range, magma_uplo_t uplo, magma_int_t n, magmaDoubleComplex *A, magma_int_t lda, double vl, double vu, magma_int_t il, magma_int_t iu, magma_int_t *m, double *w, magmaDoubleComplex *work, magma_int_t lwork, #ifdef COMPLEX double *rwork, magma_int_t lrwork, #endif magma_int_t *iwork, magma_int_t liwork, magma_int_t *info) { const char* uplo_ = lapack_uplo_const( uplo ); const char* jobz_ = lapack_vec_const( jobz ); magma_int_t ione = 1; magma_int_t izero = 0; double d_one = 1.; double d__1; double eps; magma_int_t inde; double anrm; magma_int_t imax; double rmin, rmax; double sigma; magma_int_t iinfo, lwmin; magma_int_t lower; magma_int_t llrwk; magma_int_t wantz; magma_int_t indwk2, llwrk2; magma_int_t iscale; double safmin; double bignum; magma_int_t indtau; magma_int_t indrwk, indwrk, liwmin; magma_int_t lrwmin, llwork; double smlnum; magma_int_t lquery; magma_int_t alleig, valeig, indeig; double* dwork; wantz = (jobz == MagmaVec); lower = (uplo == MagmaLower); alleig = (range == MagmaRangeAll); valeig = (range == MagmaRangeV); indeig = (range == MagmaRangeI); lquery = (lwork == -1 || lrwork == -1 || liwork == -1); *info = 0; if (! (wantz || (jobz == MagmaNoVec))) { *info = -1; } else if (! (alleig || valeig || indeig)) { *info = -2; } else if (! (lower || (uplo == MagmaUpper))) { *info = -3; } else if (n < 0) { *info = -4; } else if (lda < max(1,n)) { *info = -6; } else { if (valeig) { if (n > 0 && vu <= vl) { *info = -8; } } else if (indeig) { if (il < 1 || il > max(1,n)) { *info = -9; } else if (iu < min(n,il) || iu > n) { *info = -10; } } } magma_int_t nb = magma_get_zhetrd_nb( n ); if ( n <= 1 ) { lwmin = 1; lrwmin = 1; liwmin = 1; } else if ( wantz ) { lwmin = max( n + n*nb, 2*n + n*n ); lrwmin = 1 + 5*n + 2*n*n; liwmin = 3 + 5*n; } else { lwmin = n + n*nb; lrwmin = n; liwmin = 1; } // multiply by 1+eps (in Double!) to ensure length gets rounded up, // if it cannot be exactly represented in floating point. real_Double_t one_eps = 1. + lapackf77_dlamch("Epsilon"); work[0] = MAGMA_Z_MAKE( lwmin * one_eps, 0.); rwork[0] = lrwmin * one_eps; iwork[0] = liwmin; if ((lwork < lwmin) && !lquery) { *info = -14; } else if ((lrwork < lrwmin) && ! lquery) { *info = -16; } else if ((liwork < liwmin) && ! lquery) { *info = -18; } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } else if (lquery) { return *info; } /* Quick return if possible */ if (n == 0) { return *info; } if (n == 1) { w[0] = MAGMA_Z_REAL(A[0]); if (wantz) { A[0] = MAGMA_Z_ONE; } return *info; } /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */ if (n <= 128) { #ifdef ENABLE_DEBUG printf("--------------------------------------------------------------\n"); printf(" warning matrix too small N=%d NB=%d, calling lapack on CPU \n", (int) n, (int) nb); printf("--------------------------------------------------------------\n"); #endif lapackf77_zheevd(jobz_, uplo_, &n, A, &lda, w, work, &lwork, #if defined(PRECISION_z) || defined(PRECISION_c) rwork, &lrwork, #endif iwork, &liwork, info); return *info; } /* Get machine constants. */ safmin = lapackf77_dlamch("Safe minimum"); eps = lapackf77_dlamch("Precision"); smlnum = safmin / eps; bignum = 1. / smlnum; rmin = magma_dsqrt(smlnum); rmax = magma_dsqrt(bignum); /* Scale matrix to allowable range, if necessary. */ anrm = lapackf77_zlanhe("M", uplo_, &n, A, &lda, rwork); iscale = 0; if (anrm > 0. && anrm < rmin) { iscale = 1; sigma = rmin / anrm; } else if (anrm > rmax) { iscale = 1; sigma = rmax / anrm; } if (iscale == 1) { lapackf77_zlascl(uplo_, &izero, &izero, &d_one, &sigma, &n, &n, A, &lda, info); } /* Call ZHETRD to reduce Hermitian matrix to tridiagonal form. */ // zhetrd rwork: e (n) // zstedx rwork: e (n) + llrwk (1 + 4*N + 2*N**2) ==> 1 + 5n + 2n^2 inde = 0; indrwk = inde + n; llrwk = lrwork - indrwk; // zhetrd work: tau (n) + llwork (n*nb) ==> n + n*nb // zstedx work: tau (n) + z (n^2) // zunmtr work: tau (n) + z (n^2) + llwrk2 (n or n*nb) ==> 2n + n^2, or n + n*nb + n^2 indtau = 0; indwrk = indtau + n; indwk2 = indwrk + n*n; llwork = lwork - indwrk; llwrk2 = lwork - indwk2; magma_timer_t time=0; timer_start( time ); magma_zhetrd(uplo, n, A, lda, w, &rwork[inde], &work[indtau], &work[indwrk], llwork, &iinfo); timer_stop( time ); timer_printf( "time zhetrd = %6.2f\n", time ); /* For eigenvalues only, call DSTERF. For eigenvectors, first call ZSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the tridiagonal matrix, then call ZUNMTR to multiply it to the Householder transformations represented as Householder vectors in A. */ if (! wantz) { lapackf77_dsterf(&n, w, &rwork[inde], info); magma_dmove_eig(range, n, w, &il, &iu, vl, vu, m); } else { timer_start( time ); if (MAGMA_SUCCESS != magma_dmalloc( &dwork, 3*n*(n/2 + 1) )) { *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } magma_zstedx(range, n, vl, vu, il, iu, w, &rwork[inde], &work[indwrk], n, &rwork[indrwk], llrwk, iwork, liwork, dwork, info); magma_free( dwork ); timer_stop( time ); timer_printf( "time zstedx = %6.2f\n", time ); timer_start( time ); magma_dmove_eig(range, n, w, &il, &iu, vl, vu, m); magma_zunmtr(MagmaLeft, uplo, MagmaNoTrans, n, *m, A, lda, &work[indtau], &work[indwrk + n * (il-1) ], n, &work[indwk2], llwrk2, &iinfo); lapackf77_zlacpy("A", &n, m, &work[indwrk + n * (il-1)], &n, A, &lda); timer_stop( time ); timer_printf( "time zunmtr + copy = %6.2f\n", time ); } /* If matrix was scaled, then rescale eigenvalues appropriately. */ if (iscale == 1) { if (*info == 0) { imax = n; } else { imax = *info - 1; } d__1 = 1. / sigma; blasf77_dscal(&imax, &d__1, w, &ione); } work[0] = MAGMA_Z_MAKE( lwmin * one_eps, 0.); // round up rwork[0] = lrwmin * one_eps; iwork[0] = liwmin; return *info; } /* magma_zheevdx */
/** Purpose ------- DSYGVD computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and B are assumed to be symmetric and B is also positive definite. If eigenvectors are desired, it uses a divide and conquer algorithm. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none. Arguments --------- @param[in] itype INTEGER Specifies the problem type to be solved: = 1: A*x = (lambda)*B*x = 2: A*B*x = (lambda)*x = 3: B*A*x = (lambda)*x @param[in] jobz magma_vec_t - = MagmaNoVec: Compute eigenvalues only; - = MagmaVec: Compute eigenvalues and eigenvectors. @param[in] uplo magma_uplo_t - = MagmaUpper: Upper triangles of A and B are stored; - = MagmaLower: Lower triangles of A and B are stored. @param[in] n INTEGER The order of the matrices A and B. N >= 0. @param[in,out] A DOUBLE PRECISION array, dimension (LDA, N) On entry, the symmetric matrix A. If UPLO = MagmaUpper, the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A. If UPLO = MagmaLower, the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A. \n On exit, if JOBZ = MagmaVec, then if INFO = 0, A contains the matrix Z of eigenvectors. The eigenvectors are normalized as follows: if ITYPE = 1 or 2, Z**T * B * Z = I; if ITYPE = 3, Z**T * inv(B) * Z = I. If JOBZ = MagmaNoVec, then on exit the upper triangle (if UPLO=MagmaUpper) or the lower triangle (if UPLO=MagmaLower) of A, including the diagonal, is destroyed. @param[in] lda INTEGER The leading dimension of the array A. LDA >= max(1,N). @param[in,out] B DOUBLE PRECISION array, dimension (LDB, N) On entry, the symmetric matrix B. If UPLO = MagmaUpper, the leading N-by-N upper triangular part of B contains the upper triangular part of the matrix B. If UPLO = MagmaLower, the leading N-by-N lower triangular part of B contains the lower triangular part of the matrix B. \n On exit, if INFO <= N, the part of B containing the matrix is overwritten by the triangular factor U or L from the Cholesky factorization B = U**T * U or B = L * L**T. @param[in] ldb INTEGER The leading dimension of the array B. LDB >= max(1,N). @param[out] w DOUBLE PRECISION array, dimension (N) If INFO = 0, the eigenvalues in ascending order. @param[out] work (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK[0] returns the optimal LWORK. @param[in] lwork INTEGER The length of the array WORK. If N <= 1, LWORK >= 1. If JOBZ = MagmaNoVec and N > 1, LWORK >= 2*N + N*NB. If JOBZ = MagmaVec and N > 1, LWORK >= max( 2*N + N*NB, 1 + 6*N + 2*N**2 ). NB can be obtained through magma_get_dsytrd_nb(N). \n If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK and IWORK arrays, returns these values as the first entries of the WORK and IWORK arrays, and no error message related to LWORK or LIWORK is issued by XERBLA. @param[out] iwork (workspace) INTEGER array, dimension (MAX(1,LIWORK)) On exit, if INFO = 0, IWORK[0] returns the optimal LIWORK. @param[in] liwork INTEGER The dimension of the array IWORK. If N <= 1, LIWORK >= 1. If JOBZ = MagmaNoVec and N > 1, LIWORK >= 1. If JOBZ = MagmaVec and N > 1, LIWORK >= 3 + 5*N. \n If LIWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK and IWORK arrays, returns these values as the first entries of the WORK and IWORK arrays, and no error message related to LWORK or LIWORK is issued by XERBLA. @param[out] info INTEGER - = 0: successful exit - < 0: if INFO = -i, the i-th argument had an illegal value - > 0: DPOTRF or DSYEVD returned an error code: <= N: if INFO = i and JOBZ = MagmaNoVec, then the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero; if INFO = i and JOBZ = MagmaVec, then the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns INFO/(N+1) through mod(INFO,N+1); > N: if INFO = N + i, for 1 <= i <= N, then the leading minor of order i of B is not positive definite. The factorization of B could not be completed and no eigenvalues or eigenvectors were computed. Further Details --------------- Based on contributions by Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA Modified so that no backsubstitution is performed if DSYEVD fails to converge (NEIG in old code could be greater than N causing out of bounds reference to A - reported by Ralf Meyer). Also corrected the description of INFO and the test on ITYPE. Sven, 16 Feb 05. @ingroup magma_dsygv_driver ********************************************************************/ extern "C" magma_int_t magma_dsygvd( magma_int_t itype, magma_vec_t jobz, magma_uplo_t uplo, magma_int_t n, double *A, magma_int_t lda, double *B, magma_int_t ldb, double *w, double *work, magma_int_t lwork, #ifdef COMPLEX double *rwork, magma_int_t lrwork, #endif magma_int_t *iwork, magma_int_t liwork, magma_int_t *info) { const char* uplo_ = lapack_uplo_const( uplo ); const char* jobz_ = lapack_vec_const( jobz ); double d_one = MAGMA_D_ONE; double *dA=NULL, *dB=NULL; magma_int_t ldda = n; magma_int_t lddb = n; magma_int_t lower; magma_trans_t trans; magma_int_t wantz, lquery; magma_int_t lwmin, liwmin; magma_queue_t stream; magma_queue_create( &stream ); wantz = (jobz == MagmaVec); lower = (uplo == MagmaLower); lquery = (lwork == -1 || liwork == -1); *info = 0; if (itype < 1 || itype > 3) { *info = -1; } else if (! (wantz || (jobz == MagmaNoVec))) { *info = -2; } else if (! (lower || (uplo == MagmaUpper))) { *info = -3; } else if (n < 0) { *info = -4; } else if (lda < max(1,n)) { *info = -6; } else if (ldb < max(1,n)) { *info = -8; } magma_int_t nb = magma_get_dsytrd_nb( n ); if ( n <= 1 ) { lwmin = 1; liwmin = 1; } else if ( wantz ) { lwmin = max( 2*n + n*nb, 1 + 6*n + 2*n*n ); liwmin = 3 + 5*n; } else { lwmin = 2*n + n*nb; liwmin = 1; } // multiply by 1+eps (in Double!) to ensure length gets rounded up, // if it cannot be exactly represented in floating point. real_Double_t one_eps = 1. + lapackf77_dlamch("Epsilon"); work[0] = lwmin * one_eps; iwork[0] = liwmin; if (lwork < lwmin && ! lquery) { *info = -11; } else if (liwork < liwmin && ! lquery) { *info = -13; } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } else if (lquery) { return *info; } /* Quick return if possible */ if (n == 0) { return *info; } /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */ if (n <= 128) { #ifdef ENABLE_DEBUG printf("--------------------------------------------------------------\n"); printf(" warning matrix too small N=%d NB=%d, calling lapack on CPU \n", (int) n, (int) nb); printf("--------------------------------------------------------------\n"); #endif lapackf77_dsygvd(&itype, jobz_, uplo_, &n, A, &lda, B, &ldb, w, work, &lwork, iwork, &liwork, info); return *info; } if (MAGMA_SUCCESS != magma_dmalloc( &dA, n*ldda ) || MAGMA_SUCCESS != magma_dmalloc( &dB, n*lddb )) { magma_free( dA ); magma_free( dB ); *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } /* Form a Cholesky factorization of B. */ magma_dsetmatrix( n, n, B, ldb, dB, lddb ); magma_dsetmatrix_async( n, n, A, lda, dA, ldda, stream ); magma_timer_t time=0; timer_start( time ); magma_dpotrf_gpu(uplo, n, dB, lddb, info); if (*info != 0) { *info = n + *info; return *info; } timer_stop( time ); timer_printf( "time dpotrf_gpu = %6.2f\n", time ); magma_queue_sync( stream ); magma_dgetmatrix_async( n, n, dB, lddb, B, ldb, stream ); timer_start( time ); /* Transform problem to standard eigenvalue problem and solve. */ magma_dsygst_gpu(itype, uplo, n, dA, ldda, dB, lddb, info); timer_stop( time ); timer_printf( "time dsygst_gpu = %6.2f\n", time ); /* simple fix to be able to run bigger size. * need to have a dwork here that will be used * as dB and then passed to dsyevd. * */ if (n > 5000) { magma_queue_sync( stream ); magma_free( dB ); } timer_start( time ); magma_dsyevd_gpu(jobz, uplo, n, dA, ldda, w, A, lda, work, lwork, iwork, liwork, info); timer_stop( time ); timer_printf( "time dsyevd_gpu = %6.2f\n", time ); if (wantz && *info == 0) { timer_start( time ); /* allocate and copy dB back */ if (n > 5000) { if (MAGMA_SUCCESS != magma_dmalloc( &dB, n*lddb ) ) { *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } magma_dsetmatrix( n, n, B, ldb, dB, lddb ); } /* Backtransform eigenvectors to the original problem. */ if (itype == 1 || itype == 2) { /* For A*x=(lambda)*B*x and A*B*x=(lambda)*x; backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */ if (lower) { trans = MagmaTrans; } else { trans = MagmaNoTrans; } magma_dtrsm(MagmaLeft, uplo, trans, MagmaNonUnit, n, n, d_one, dB, lddb, dA, ldda); } else if (itype == 3) { /* For B*A*x=(lambda)*x; backtransform eigenvectors: x = L*y or U'*y */ if (lower) { trans = MagmaNoTrans; } else { trans = MagmaTrans; } magma_dtrmm(MagmaLeft, uplo, trans, MagmaNonUnit, n, n, d_one, dB, lddb, dA, ldda); } magma_dgetmatrix( n, n, dA, ldda, A, lda ); /* free dB */ if (n > 5000) { magma_free( dB ); } timer_stop( time ); timer_printf( "time dtrsm/mm + getmatrix = %6.2f\n", time ); } magma_queue_sync( stream ); magma_queue_destroy( stream ); work[0] = lwmin * one_eps; // round up iwork[0] = liwmin; magma_free( dA ); if (n <= 5000) { magma_free( dB ); } return *info; } /* magma_dsygvd */
/** Purpose ------- CHEGVD computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and B are assumed to be Hermitian and B is also positive definite. If eigenvectors are desired, it uses a divide and conquer algorithm. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none. Arguments --------- @param[in] nrgpu INTEGER Number of GPUs to use. @param[in] itype INTEGER Specifies the problem type to be solved: = 1: A*x = (lambda)*B*x = 2: A*B*x = (lambda)*x = 3: B*A*x = (lambda)*x @param[in] jobz magma_vec_t - = MagmaNoVec: Compute eigenvalues only; - = MagmaVec: Compute eigenvalues and eigenvectors. @param[in] range magma_range_t - = MagmaRangeAll: all eigenvalues will be found. - = MagmaRangeV: all eigenvalues in the half-open interval (VL,VU] will be found. - = MagmaRangeI: the IL-th through IU-th eigenvalues will be found. @param[in] uplo magma_uplo_t - = MagmaUpper: Upper triangles of A and B are stored; - = MagmaLower: Lower triangles of A and B are stored. @param[in] n INTEGER The order of the matrices A and B. N >= 0. @param[in,out] A COMPLEX array, dimension (LDA, N) On entry, the Hermitian matrix A. If UPLO = MagmaUpper, the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A. If UPLO = MagmaLower, the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A. \n On exit, if JOBZ = MagmaVec, then if INFO = 0, A contains the matrix Z of eigenvectors. The eigenvectors are normalized as follows: if ITYPE = 1 or 2, Z**H*B*Z = I; if ITYPE = 3, Z**H*inv(B)*Z = I. If JOBZ = MagmaNoVec, then on exit the upper triangle (if UPLO=MagmaUpper) or the lower triangle (if UPLO=MagmaLower) of A, including the diagonal, is destroyed. @param[in] lda INTEGER The leading dimension of the array A. LDA >= max(1,N). @param[in,out] B COMPLEX array, dimension (LDB, N) On entry, the Hermitian matrix B. If UPLO = MagmaUpper, the leading N-by-N upper triangular part of B contains the upper triangular part of the matrix B. If UPLO = MagmaLower, the leading N-by-N lower triangular part of B contains the lower triangular part of the matrix B. \n On exit, if INFO <= N, the part of B containing the matrix is overwritten by the triangular factor U or L from the Cholesky factorization B = U**H*U or B = L*L**H. @param[in] ldb INTEGER The leading dimension of the array B. LDB >= max(1,N). @param[in] vl REAL @param[in] vu REAL If RANGE=MagmaRangeV, the lower and upper bounds of the interval to be searched for eigenvalues. VL < VU. Not referenced if RANGE = MagmaRangeAll or MagmaRangeI. @param[in] il INTEGER @param[in] iu INTEGER If RANGE=MagmaRangeI, the indices (in ascending order) of the smallest and largest eigenvalues to be returned. 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. Not referenced if RANGE = MagmaRangeAll or MagmaRangeV. @param[out] m INTEGER The total number of eigenvalues found. 0 <= M <= N. If RANGE = MagmaRangeAll, M = N, and if RANGE = MagmaRangeI, M = IU-IL+1. @param[out] w REAL array, dimension (N) If INFO = 0, the eigenvalues in ascending order. @param[out] work (workspace) COMPLEX array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. @param[in] lwork INTEGER The length of the array WORK. If N <= 1, LWORK >= 1. If JOBZ = MagmaNoVec and N > 1, LWORK >= N + 1. If JOBZ = MagmaVec and N > 1, LWORK >= 2*N*nb + N**2. \n If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA. @param[out] rwork (workspace) REAL array, dimension (MAX(1,LRWORK)) On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK. @param[in] lrwork INTEGER The dimension of the array RWORK. If N <= 1, LRWORK >= 1. If JOBZ = MagmaNoVec and N > 1, LRWORK >= N. If JOBZ = MagmaVec and N > 1, LRWORK >= 1 + 5*N + 2*N**2. \n If LRWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA. @param[out] iwork (workspace) INTEGER array, dimension (MAX(1,LIWORK)) On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. @param[in] liwork INTEGER The dimension of the array IWORK. If N <= 1, LIWORK >= 1. If JOBZ = MagmaNoVec and N > 1, LIWORK >= 1. If JOBZ = MagmaVec and N > 1, LIWORK >= 3 + 5*N. \n If LIWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA. @param[out] info INTEGER - = 0: successful exit - < 0: if INFO = -i, the i-th argument had an illegal value - > 0: CPOTRF or CHEEVD returned an error code: <= N: if INFO = i and JOBZ = MagmaNoVec, then the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero; if INFO = i and JOBZ = MagmaVec, then the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns INFO/(N+1) through mod(INFO,N+1); > N: if INFO = N + i, for 1 <= i <= N, then the leading minor of order i of B is not positive definite. The factorization of B could not be completed and no eigenvalues or eigenvectors were computed. Further Details --------------- Based on contributions by Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA Modified so that no backsubstitution is performed if CHEEVD fails to converge (NEIG in old code could be greater than N causing out of bounds reference to A - reported by Ralf Meyer). Also corrected the description of INFO and the test on ITYPE. Sven, 16 Feb 05. @ingroup magma_chegv_driver ********************************************************************/ extern "C" magma_int_t magma_chegvdx_m(magma_int_t nrgpu, magma_int_t itype, magma_vec_t jobz, magma_range_t range, magma_uplo_t uplo, magma_int_t n, magmaFloatComplex *A, magma_int_t lda, magmaFloatComplex *B, magma_int_t ldb, float vl, float vu, magma_int_t il, magma_int_t iu, magma_int_t *m, float *w, magmaFloatComplex *work, magma_int_t lwork, float *rwork, magma_int_t lrwork, magma_int_t *iwork, magma_int_t liwork, magma_int_t *info) { const char* uplo_ = lapack_uplo_const( uplo ); const char* jobz_ = lapack_vec_const( jobz ); magmaFloatComplex c_one = MAGMA_C_ONE; magma_int_t lower; magma_trans_t trans; magma_int_t wantz; magma_int_t lquery; magma_int_t alleig, valeig, indeig; magma_int_t lwmin; magma_int_t liwmin; magma_int_t lrwmin; wantz = (jobz == MagmaVec); lower = (uplo == MagmaLower); alleig = (range == MagmaRangeAll); valeig = (range == MagmaRangeV); indeig = (range == MagmaRangeI); lquery = (lwork == -1 || lrwork == -1 || liwork == -1); *info = 0; if (itype < 1 || itype > 3) { *info = -1; } else if (! (alleig || valeig || indeig)) { *info = -2; } else if (! (wantz || (jobz == MagmaNoVec))) { *info = -3; } else if (! (lower || (uplo == MagmaUpper))) { *info = -4; } else if (n < 0) { *info = -5; } else if (lda < max(1,n)) { *info = -7; } else if (ldb < max(1,n)) { *info = -9; } else { if (valeig) { if (n > 0 && vu <= vl) { *info = -11; } } else if (indeig) { if (il < 1 || il > max(1,n)) { *info = -12; } else if (iu < min(n,il) || iu > n) { *info = -13; } } } magma_int_t nb = magma_get_chetrd_nb( n ); if ( n <= 1 ) { lwmin = 1; lrwmin = 1; liwmin = 1; } else if ( wantz ) { lwmin = 2*n + n*n; lrwmin = 1 + 5*n + 2*n*n; liwmin = 3 + 5*n; } else { lwmin = n + n*nb; lrwmin = n; liwmin = 1; } // multiply by 1+eps (in Double!) to ensure length gets rounded up, // if it cannot be exactly represented in floating point. real_Double_t one_eps = 1. + lapackf77_slamch("Epsilon"); work[0] = MAGMA_C_MAKE( lwmin * one_eps, 0.); // round up rwork[0] = lrwmin * one_eps; iwork[0] = liwmin; if (lwork < lwmin && ! lquery) { *info = -17; } else if (lrwork < lrwmin && ! lquery) { *info = -19; } else if (liwork < liwmin && ! lquery) { *info = -21; } if (*info != 0) { magma_xerbla( __func__, -(*info)); return *info; } else if (lquery) { return *info; } /* Quick return if possible */ if (n == 0) { return *info; } /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */ if (n <= 128) { #ifdef ENABLE_DEBUG printf("--------------------------------------------------------------\n"); printf(" warning matrix too small N=%d NB=%d, calling lapack on CPU \n", (int) n, (int) nb); printf("--------------------------------------------------------------\n"); #endif lapackf77_chegvd(&itype, jobz_, uplo_, &n, A, &lda, B, &ldb, w, work, &lwork, #if defined(PRECISION_z) || defined(PRECISION_c) rwork, &lrwork, #endif iwork, &liwork, info); *m = n; return *info; } magma_timer_t time=0; timer_start( time ); magma_cpotrf_m(nrgpu, uplo, n, B, ldb, info); if (*info != 0) { *info = n + *info; return *info; } timer_stop( time ); timer_printf("time cpotrf = %6.2f\n", time ); timer_start( time ); /* Transform problem to standard eigenvalue problem and solve. */ magma_chegst_m(nrgpu, itype, uplo, n, A, lda, B, ldb, info); timer_stop( time ); timer_printf( "time chegst = %6.2f\n", time ); timer_start( time ); magma_cheevdx_m(nrgpu, jobz, range, uplo, n, A, lda, vl, vu, il, iu, m, w, work, lwork, rwork, lrwork, iwork, liwork, info); timer_stop( time ); timer_printf( "time cheevd = %6.2f\n", time ); if (wantz && *info == 0) { timer_start( time ); /* Backtransform eigenvectors to the original problem. */ if (itype == 1 || itype == 2) { /* For A*x=(lambda)*B*x and A*B*x=(lambda)*x; backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */ if (lower) { trans = MagmaConjTrans; } else { trans = MagmaNoTrans; } magma_ctrsm_m(nrgpu, MagmaLeft, uplo, trans, MagmaNonUnit, n, *m, c_one, B, ldb, A, lda); } else if (itype == 3) { /* For B*A*x=(lambda)*x; backtransform eigenvectors: x = L*y or U'*y */ if (lower) { trans = MagmaNoTrans; } else { trans = MagmaConjTrans; } //magma_ctrmm(MagmaLeft, uplo, trans, MagmaNonUnit, // n, n, c_one, db, lddb, da, ldda); } timer_stop( time ); timer_printf( "time setmatrices trsm/mm + getmatrices = %6.2f\n", time ); } work[0] = MAGMA_C_MAKE( lwmin * one_eps, 0.); // round up rwork[0] = lrwmin * one_eps; iwork[0] = liwmin; return *info; } /* magma_chegvd_m */
/** Purpose ------- SSYEVD_GPU computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A. If eigenvectors are desired, it uses a divide and conquer algorithm. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none. Arguments --------- @param[in] jobz magma_vec_t - = MagmaNoVec: Compute eigenvalues only; - = MagmaVec: Compute eigenvalues and eigenvectors. @param[in] uplo magma_uplo_t - = MagmaUpper: Upper triangle of A is stored; - = MagmaLower: Lower triangle of A is stored. @param[in] n INTEGER The order of the matrix A. N >= 0. @param[in,out] dA REAL array on the GPU, dimension (LDDA, N). On entry, the symmetric matrix A. If UPLO = MagmaUpper, the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A. If UPLO = MagmaLower, the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A. On exit, if JOBZ = MagmaVec, then if INFO = 0, A contains the orthonormal eigenvectors of the matrix A. If JOBZ = MagmaNoVec, then on exit the lower triangle (if UPLO=MagmaLower) or the upper triangle (if UPLO=MagmaUpper) of A, including the diagonal, is destroyed. @param[in] ldda INTEGER The leading dimension of the array DA. LDDA >= max(1,N). @param[out] w REAL array, dimension (N) If INFO = 0, the eigenvalues in ascending order. @param wA (workspace) REAL array, dimension (LDWA, N) @param[in] ldwa INTEGER The leading dimension of the array wA. LDWA >= max(1,N). @param[out] work (workspace) REAL array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK[0] returns the optimal LWORK. @param[in] lwork INTEGER The length of the array WORK. If N <= 1, LWORK >= 1. If JOBZ = MagmaNoVec and N > 1, LWORK >= 2*N + N*NB. If JOBZ = MagmaVec and N > 1, LWORK >= max( 2*N + N*NB, 1 + 6*N + 2*N**2 ). NB can be obtained through magma_get_ssytrd_nb(N). \n If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK and IWORK arrays, returns these values as the first entries of the WORK and IWORK arrays, and no error message related to LWORK or LIWORK is issued by XERBLA. @param[out] iwork (workspace) INTEGER array, dimension (MAX(1,LIWORK)) On exit, if INFO = 0, IWORK[0] returns the optimal LIWORK. @param[in] liwork INTEGER The dimension of the array IWORK. If N <= 1, LIWORK >= 1. If JOBZ = MagmaNoVec and N > 1, LIWORK >= 1. If JOBZ = MagmaVec and N > 1, LIWORK >= 3 + 5*N. \n If LIWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK and IWORK arrays, returns these values as the first entries of the WORK and IWORK arrays, and no error message related to LWORK or LIWORK is issued by XERBLA. @param[out] info INTEGER - = 0: successful exit - < 0: if INFO = -i, the i-th argument had an illegal value - > 0: if INFO = i and JOBZ = MagmaNoVec, then the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero; if INFO = i and JOBZ = MagmaVec, then the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns INFO/(N+1) through mod(INFO,N+1). Further Details --------------- Based on contributions by Jeff Rutter, Computer Science Division, University of California at Berkeley, USA Modified description of INFO. Sven, 16 Feb 05. @ingroup magma_ssyev_driver ********************************************************************/ extern "C" magma_int_t magma_ssyevd_gpu( magma_vec_t jobz, magma_uplo_t uplo, magma_int_t n, magmaFloat_ptr dA, magma_int_t ldda, float *w, float *wA, magma_int_t ldwa, float *work, magma_int_t lwork, #ifdef COMPLEX float *rwork, magma_int_t lrwork, #endif magma_int_t *iwork, magma_int_t liwork, magma_int_t *info) { magma_int_t ione = 1; float d__1; float eps; magma_int_t inde; float anrm; float rmin, rmax; float sigma; magma_int_t iinfo, lwmin; magma_int_t lower; magma_int_t wantz; magma_int_t indwk2, llwrk2; magma_int_t iscale; float safmin; float bignum; magma_int_t indtau; magma_int_t indwrk, liwmin; magma_int_t llwork; float smlnum; magma_int_t lquery; magmaFloat_ptr dwork; magma_int_t lddc = ldda; wantz = (jobz == MagmaVec); lower = (uplo == MagmaLower); lquery = (lwork == -1 || liwork == -1); *info = 0; if (! (wantz || (jobz == MagmaNoVec))) { *info = -1; } else if (! (lower || (uplo == MagmaUpper))) { *info = -2; } else if (n < 0) { *info = -3; } else if (ldda < max(1,n)) { *info = -5; } magma_int_t nb = magma_get_ssytrd_nb( n ); if ( n <= 1 ) { lwmin = 1; liwmin = 1; } else if ( wantz ) { lwmin = max( 2*n + n*nb, 1 + 6*n + 2*n*n ); liwmin = 3 + 5*n; } else { lwmin = 2*n + n*nb; liwmin = 1; } work[0] = magma_smake_lwork( lwmin ); iwork[0] = liwmin; if ((lwork < lwmin) && !lquery) { *info = -10; } else if ((liwork < liwmin) && ! lquery) { *info = -12; } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } else if (lquery) { return *info; } magma_queue_t queue; magma_device_t cdev; magma_getdevice( &cdev ); magma_queue_create( cdev, &queue ); /* If matrix is very small, then just call LAPACK on CPU, no need for GPU */ if (n <= 128) { magma_int_t lda = n; float *A; magma_smalloc_cpu( &A, lda*n ); magma_sgetmatrix( n, n, dA, ldda, A, lda, queue ); lapackf77_ssyevd( lapack_vec_const(jobz), lapack_uplo_const(uplo), &n, A, &lda, w, work, &lwork, iwork, &liwork, info ); magma_ssetmatrix( n, n, A, lda, dA, ldda, queue ); magma_free_cpu( A ); magma_queue_destroy( queue ); return *info; } // ssytrd2_gpu requires ldda*ceildiv(n,64) + 2*ldda*nb // sormtr_gpu requires lddc*n // slansy requires n magma_int_t ldwork = max( ldda*magma_ceildiv(n,64) + 2*ldda*nb, lddc*n ); ldwork = max( ldwork, n ); if ( wantz ) { // sstedx requires 3n^2/2 ldwork = max( ldwork, 3*n*(n/2 + 1) ); } if (MAGMA_SUCCESS != magma_smalloc( &dwork, ldwork )) { *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } /* Get machine constants. */ safmin = lapackf77_slamch("Safe minimum"); eps = lapackf77_slamch("Precision"); smlnum = safmin / eps; bignum = 1. / smlnum; rmin = magma_ssqrt( smlnum ); rmax = magma_ssqrt( bignum ); /* Scale matrix to allowable range, if necessary. */ anrm = magmablas_slansy( MagmaMaxNorm, uplo, n, dA, ldda, dwork, ldwork, queue ); iscale = 0; sigma = 1; if (anrm > 0. && anrm < rmin) { iscale = 1; sigma = rmin / anrm; } else if (anrm > rmax) { iscale = 1; sigma = rmax / anrm; } if (iscale == 1) { magmablas_slascl( uplo, 0, 0, 1., sigma, n, n, dA, ldda, queue, info ); } /* Call SSYTRD to reduce symmetric matrix to tridiagonal form. */ // ssytrd work: e (n) + tau (n) + llwork (n*nb) ==> 2n + n*nb // sstedx work: e (n) + tau (n) + z (n*n) + llwrk2 (1 + 4*n + n^2) ==> 1 + 6n + 2n^2 inde = 0; indtau = inde + n; indwrk = indtau + n; indwk2 = indwrk + n*n; llwork = lwork - indwrk; llwrk2 = lwork - indwk2; magma_timer_t time=0; timer_start( time ); #ifdef FAST_SYMV magma_ssytrd2_gpu( uplo, n, dA, ldda, w, &work[inde], &work[indtau], wA, ldwa, &work[indwrk], llwork, dwork, ldwork, &iinfo ); #else magma_ssytrd_gpu( uplo, n, dA, ldda, w, &work[inde], &work[indtau], wA, ldwa, &work[indwrk], llwork, &iinfo ); #endif timer_stop( time ); #ifdef FAST_SYMV timer_printf( "time ssytrd2 = %6.2f\n", time ); #else timer_printf( "time ssytrd = %6.2f\n", time ); #endif /* For eigenvalues only, call SSTERF. For eigenvectors, first call SSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the tridiagonal matrix, then call SORMTR to multiply it to the Householder transformations represented as Householder vectors in A. */ if (! wantz) { lapackf77_ssterf( &n, w, &work[inde], info ); } else { timer_start( time ); magma_sstedx( MagmaRangeAll, n, 0., 0., 0, 0, w, &work[inde], &work[indwrk], n, &work[indwk2], llwrk2, iwork, liwork, dwork, info ); timer_stop( time ); timer_printf( "time sstedx = %6.2f\n", time ); timer_start( time ); magma_ssetmatrix( n, n, &work[indwrk], n, dwork, lddc, queue ); magma_sormtr_gpu( MagmaLeft, uplo, MagmaNoTrans, n, n, dA, ldda, &work[indtau], dwork, lddc, wA, ldwa, &iinfo ); magma_scopymatrix( n, n, dwork, lddc, dA, ldda, queue ); timer_stop( time ); timer_printf( "time sormtr + copy = %6.2f\n", time ); } /* If matrix was scaled, then rescale eigenvalues appropriately. */ if (iscale == 1) { d__1 = 1. / sigma; blasf77_sscal( &n, &d__1, w, &ione ); } work[0] = magma_smake_lwork( lwmin ); iwork[0] = liwmin; magma_queue_destroy( queue ); magma_free( dwork ); return *info; } /* magma_ssyevd_gpu */
/** Purpose ------- SPOTRF_OOC computes the Cholesky factorization of a real symmetric positive definite matrix A. This version does not require work space on the GPU passed as input. GPU memory is allocated in the routine. The matrix A may exceed the GPU memory. The factorization has the form A = U**H * U, if UPLO = MagmaUpper, or A = L * L**H, if UPLO = MagmaLower, where U is an upper triangular matrix and L is lower triangular. This is the block version of the algorithm, calling Level 3 BLAS. Arguments --------- @param[in] num_gpus INTEGER The number of GPUs. num_gpus > 0. @param[in] uplo magma_uplo_t - = MagmaUpper: Upper triangle of A is stored; - = MagmaLower: Lower triangle of A is stored. @param[in] n INTEGER The order of the matrix A. N >= 0. @param[in,out] A REAL array, dimension (LDA,N) On entry, the symmetric matrix A. If UPLO = MagmaUpper, the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = MagmaLower, the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. \n On exit, if INFO = 0, the factor U or L from the Cholesky factorization A = U**H * U or A = L * L**H. \n Higher performance is achieved if A is in pinned memory, e.g. allocated using magma_malloc_pinned. @param[in] lda INTEGER The leading dimension of the array A. LDA >= max(1,N). @param[out] info INTEGER - = 0: successful exit - < 0: if INFO = -i, the i-th argument had an illegal value or another error occured, such as memory allocation failed. - > 0: if INFO = i, the leading minor of order i is not positive definite, and the factorization could not be completed. @ingroup magma_sposv_comp ********************************************************************/ extern "C" magma_int_t magma_spotrf_m(magma_int_t num_gpus, magma_uplo_t uplo, magma_int_t n, float *A, magma_int_t lda, magma_int_t *info) { #define A(i, j) ( A + (j)*lda + (i)) #define dA(d, i, j) (dwork[(d)] + (j)*lddla + (i)) #define dT(d, i, j) ( dt[(d)] + (j)*ldda + (i)) #define dAup(d, i, j) (dwork[(d)] + (j)*NB + (i)) #define dTup(d, i, j) ( dt[(d)] + (j)*nb + (i)) /* Local variables */ float d_one = 1.0; float d_neg_one = -1.0; float c_one = MAGMA_S_ONE; float c_neg_one = MAGMA_S_NEG_ONE; const char* uplo_ = lapack_uplo_const( uplo ); int upper = (uplo == MagmaUpper); float *dwork[MagmaMaxGPUs], *dt[MagmaMaxGPUs]; magma_int_t ldda, lddla, nb, iinfo, n_local[MagmaMaxGPUs], J2, d, num_gpus0 = num_gpus; magma_int_t j, jj, jb, J, JB, NB, MB, h; magma_queue_t stream[MagmaMaxGPUs][3]; magma_event_t event[MagmaMaxGPUs][5]; magma_timer_t time_total=0, time_sum=0, time=0; *info = 0; if (! upper && uplo != MagmaLower) { *info = -1; } else if (n < 0) { *info = -2; } else if (lda < max(1,n)) { *info = -4; } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } /* Quick return */ if ( n == 0 ) return *info; magma_device_t orig_dev; magma_getdevice( &orig_dev ); magma_queue_t orig_stream; magmablasGetKernelStream( &orig_stream ); nb = magma_get_dpotrf_nb(n); if ( num_gpus0 > n/nb ) { num_gpus = n/nb; if ( n%nb != 0 ) num_gpus ++; } else { num_gpus = num_gpus0; } //ldda = ((n+31)/32)*32; ldda = ((n+nb-1)/nb)*nb; lddla = ((nb*((n+nb*num_gpus-1)/(nb*num_gpus))+31)/32)*32; /* figure out NB */ size_t freeMem, totalMem; cudaMemGetInfo( &freeMem, &totalMem ); freeMem /= sizeof(float); MB = n; /* number of rows in the big panel */ NB = (magma_int_t)((0.8*freeMem-max(2,num_gpus)*nb*ldda-(n+nb)*nb)/lddla); /* number of columns in the big panel */ //NB = min(5*nb,n); if ( NB >= n ) { #ifdef CHECK_SPOTRF_OOC printf( " * still fits in GPU memory.\n" ); #endif NB = n; } else { #ifdef CHECK_SPOTRF_OOC printf( " * doesn't fit in GPU memory.\n" ); #endif NB = (NB/nb) * nb; /* making sure it's devisable by nb */ } #ifdef CHECK_SPOTRF_OOC if ( NB != n ) printf( " * running in out-core mode (n=%d, NB=%d, nb=%d, lddla=%d, freeMem=%.2e).\n", n, NB, nb, lddla, (float)freeMem ); else printf( " * running in in-core mode (n=%d, NB=%d, nb=%d, lddla=%d, freeMem=%.2e).\n", n, NB, nb, lddla, (float)freeMem ); fflush(stdout); #endif for (d=0; d < num_gpus; d++ ) { magma_setdevice(d); if (MAGMA_SUCCESS != magma_smalloc( &dt[d], NB*lddla + max(2,num_gpus)*nb*ldda )) { *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } dwork[d] = &dt[d][max(2,num_gpus)*nb*ldda]; for( j=0; j < 3; j++ ) magma_queue_create( &stream[d][j] ); for( j=0; j < 5; j++ ) magma_event_create( &event[d][j] ); magma_device_sync(); // synch the device } magma_setdevice(0); timer_start( time_total ); if (nb <= 1 || nb >= n) { lapackf77_spotrf(uplo_, &n, A, &lda, info); } else { /* Use hybrid blocked code. */ if (upper) { /* =========================================================== * * Compute the Cholesky factorization A = U'*U. * * big panel is divided by block-row and distributed in block * * column cyclic format */ /* for each big-panel */ for( J=0; J < n; J += NB ) { JB = min(NB,n-J); if ( num_gpus0 > (n-J)/nb ) { num_gpus = (n-J)/nb; if ( (n-J)%nb != 0 ) num_gpus ++; } else { num_gpus = num_gpus0; } /* load the new big-panel by block-rows */ magma_shtodpo( num_gpus, uplo, JB, n, J, J, nb, A, lda, dwork, NB, stream, &iinfo); /* update with the previous big-panels */ timer_start( time ); for( j=0; j < J; j += nb ) { /* upload the diagonal of the block column (broadcast to all GPUs) */ for( d=0; d < num_gpus; d++ ) { magma_setdevice(d); magma_ssetmatrix_async( nb, JB, A(j, J), lda, dTup(d, 0, J), nb, stream[d][0] ); n_local[d] = 0; } /* distribute off-diagonal blocks to GPUs */ for( jj=J+JB; jj < n; jj += nb ) { d = ((jj-J)/nb)%num_gpus; magma_setdevice(d); jb = min(nb, n-jj); magma_ssetmatrix_async( nb, jb, A(j, jj), lda, dTup(d, 0, J+JB+n_local[d]), nb, stream[d][0] ); n_local[d] += jb; } /* wait for the communication */ for( d=0; d < num_gpus; d++ ) { magma_setdevice(d); magma_queue_sync( stream[d][0] ); } /* update the current big-panel using the previous block-row */ /* -- process the big diagonal block of the big panel */ for( jj=0; jj < JB; jj += nb ) { // jj is 'local' column index within the big panel d = (jj/nb)%num_gpus; J2 = jj/(nb*num_gpus); magma_setdevice(d); magmablasSetKernelStream(stream[d][J2%2]); // the last stream (2) used to process off-diagonal J2 = nb*J2; jb = min(nb,JB-jj); // number of columns in this current block-row magma_sgemm( MagmaConjTrans, MagmaNoTrans, jj, jb, nb, c_neg_one, dTup(d, 0, J ), nb, dTup(d, 0, J+jj), nb, c_one, dAup(d, 0, J2), NB); magma_ssyrk(MagmaUpper, MagmaConjTrans, jb, nb, d_neg_one, dTup(d, 0, J+jj), nb, d_one, dAup(d, jj, J2), NB); } /* -- process the remaining big off-diagonal block of the big panel */ if ( n > J+JB ) { for( d=0; d < num_gpus; d++ ) { magma_setdevice(d); magmablasSetKernelStream(stream[d][2]); /* local number of columns in the big panel */ n_local[d] = ((n-J)/(nb*num_gpus))*nb; if (d < ((n-J)/nb)%num_gpus) n_local[d] += nb; else if (d == ((n-J)/nb)%num_gpus) n_local[d] += (n-J)%nb; /* subtracting the local number of columns in the diagonal */ J2 = nb*(JB/(nb*num_gpus)); if ( d < (JB/nb)%num_gpus ) J2 += nb; n_local[d] -= J2; magma_sgemm( MagmaConjTrans, MagmaNoTrans, JB, n_local[d], nb, c_neg_one, dTup(d, 0, J ), nb, dTup(d, 0, J+JB), nb, c_one, dAup(d, 0, J2), NB); } } /* wait for the previous updates */ for( d=0; d < num_gpus; d++ ) { magma_setdevice(d); for( jj=0; jj < 3; jj++ ) magma_queue_sync( stream[d][jj] ); magmablasSetKernelStream(NULL); } magma_setdevice(0); } /* end of updates with previous rows */ /* factor the big panel */ h = (JB+nb-1)/nb; // big diagonal of big panel will be on CPU // using two streams //magma_spotrf2_mgpu(num_gpus, uplo, JB, n-J, J, J, nb, // dwork, NB, dt, ldda, A, lda, h, stream, event, &iinfo); // using three streams magma_spotrf3_mgpu(num_gpus, uplo, JB, n-J, J, J, nb, dwork, NB, dt, ldda, A, lda, h, stream, event, &iinfo); if ( iinfo != 0 ) { *info = J+iinfo; break; } time_sum += timer_stop( time ); /* upload the off-diagonal (and diagonal!!!) big panel */ magma_sdtohpo(num_gpus, uplo, JB, n, J, J, nb, NB, A, lda, dwork, NB, stream, &iinfo); //magma_sdtohpo(num_gpus, uplo, JB, n, J, J, nb, 0, A, lda, dwork, NB, stream, &iinfo); } } else { /* ========================================================= * * Compute the Cholesky factorization A = L*L'. */ /* for each big-panel */ for( J=0; J < n; J += NB ) { JB = min(NB,n-J); if ( num_gpus0 > (n-J)/nb ) { num_gpus = (n-J)/nb; if ( (n-J)%nb != 0 ) num_gpus ++; } else { num_gpus = num_gpus0; } /* load the new big-panel by block-columns */ magma_shtodpo( num_gpus, uplo, n, JB, J, J, nb, A, lda, dwork, lddla, stream, &iinfo); /* update with the previous big-panels */ timer_start( time ); for( j=0; j < J; j += nb ) { /* upload the diagonal of big panel */ for( d=0; d < num_gpus; d++ ) { magma_setdevice(d); magma_ssetmatrix_async( JB, nb, A(J, j), lda, dT(d, J, 0), ldda, stream[d][0] ); n_local[d] = 0; } /* upload off-diagonals */ for( jj=J+JB; jj < n; jj += nb ) { d = ((jj-J)/nb)%num_gpus; magma_setdevice(d); jb = min(nb, n-jj); magma_ssetmatrix_async( jb, nb, A(jj, j), lda, dT(d, J+JB+n_local[d], 0), ldda, stream[d][0] ); n_local[d] += jb; } /* wait for the communication */ for( d=0; d < num_gpus; d++ ) { magma_setdevice(d); magma_queue_sync( stream[d][0] ); } /* update the current big-panel using the previous block-row */ for( jj=0; jj < JB; jj += nb ) { /* diagonal */ d = (jj/nb)%num_gpus; J2 = jj/(nb*num_gpus); magma_setdevice(d); magmablasSetKernelStream(stream[d][J2%2]); J2 = nb*J2; jb = min(nb,JB-jj); magma_sgemm( MagmaNoTrans, MagmaConjTrans, jb, jj, nb, c_neg_one, dT(d, J+jj, 0), ldda, dT(d, J, 0), ldda, c_one, dA(d, J2, 0), lddla); magma_ssyrk(MagmaLower, MagmaNoTrans, jb, nb, d_neg_one, dT(d, J+jj, 0), ldda, d_one, dA(d, J2, jj), lddla); } if ( n > J+JB ) { /* off-diagonal */ for( d=0; d < num_gpus; d++ ) { magma_setdevice(d); magmablasSetKernelStream(stream[d][2]); /* local number of columns in the big panel */ n_local[d] = (((n-J)/nb)/num_gpus)*nb; if (d < ((n-J)/nb)%num_gpus) n_local[d] += nb; else if (d == ((n-J)/nb)%num_gpus) n_local[d] += (n-J)%nb; /* subtracting local number of columns in diagonal */ J2 = nb*(JB/(nb*num_gpus)); if ( d < (JB/nb)%num_gpus ) J2 += nb; n_local[d] -= J2; magma_sgemm( MagmaNoTrans, MagmaConjTrans, n_local[d], JB, nb, c_neg_one, dT(d, J+JB, 0), ldda, dT(d, J, 0), ldda, c_one, dA(d, J2, 0), lddla); } } /* wait for the previous updates */ for( d=0; d < num_gpus; d++ ) { magma_setdevice(d); for( jj=0; jj < 3; jj++ ) magma_queue_sync( stream[d][jj] ); magmablasSetKernelStream(NULL); } magma_setdevice(0); } /* factor the big panel */ h = (JB+nb-1)/nb; // big diagonal of big panel will be on CPU // using two streams //magma_spotrf2_mgpu(num_gpus, uplo, n-J, JB, J, J, nb, // dwork, lddla, dt, ldda, A, lda, h, stream, event, &iinfo); // using three streams magma_spotrf3_mgpu(num_gpus, uplo, n-J, JB, J, J, nb, dwork, lddla, dt, ldda, A, lda, h, stream, event, &iinfo); if ( iinfo != 0 ) { *info = J+iinfo; break; } time_sum += timer_stop( time ); /* upload the off-diagonal big panel */ magma_sdtohpo( num_gpus, uplo, n, JB, J, J, nb, JB, A, lda, dwork, lddla, stream, &iinfo); } /* end of for J */ } /* if upper */ } /* if nb */ timer_stop( time_total ); if ( num_gpus0 > n/nb ) { num_gpus = n/nb; if ( n%nb != 0 ) num_gpus ++; } else { num_gpus = num_gpus0; } for (d=0; d < num_gpus; d++ ) { magma_setdevice(d); for( j=0; j < 3; j++ ) { magma_queue_destroy( stream[d][j] ); } magma_free( dt[d] ); for( j=0; j < 5; j++ ) { magma_event_destroy( event[d][j] ); } } magma_setdevice( orig_dev ); magmablasSetKernelStream( orig_stream ); timer_printf( "\n n=%d NB=%d nb=%d\n", (int) n, (int) NB, (int) nb ); timer_printf( " Without memory allocation: %f / %f = %f GFlop/s\n", FLOPS_SPOTRF(n) / 1e9, time_total, FLOPS_SPOTRF(n) / 1e9 / time_total ); timer_printf( " Performance %f / %f = %f GFlop/s\n", FLOPS_SPOTRF(n) / 1e9, time_sum, FLOPS_SPOTRF(n) / 1e9 / time_sum ); return *info; } /* magma_spotrf_ooc */
/** Purpose ------- SGETRF computes an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges. The factorization has the form A = P * L * U where P is a permutation matrix, L is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and U is upper triangular (upper trapezoidal if m < n). This is the right-looking Level 3 BLAS version of the algorithm. Use two buffer to send panels. Arguments --------- @param[in] num_gpus INTEGER The number of GPUs to be used for the factorization. @param[in] m INTEGER The number of rows of the matrix A. M >= 0. @param[in] n INTEGER The number of columns of the matrix A. N >= 0. @param[in,out] A REAL array on the GPU, dimension (LDDA,N). On entry, the M-by-N matrix to be factored. On exit, the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored. @param[in] ldda INTEGER The leading dimension of the array A. LDDA >= max(1,M). @param[out] ipiv INTEGER array, dimension (min(M,N)) The pivot indices; for 1 <= i <= min(M,N), row i of the matrix was interchanged with row IPIV(i). @param[out] info INTEGER - = 0: successful exit - < 0: if INFO = -i, the i-th argument had an illegal value or another error occured, such as memory allocation failed. - > 0: if INFO = i, U(i,i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations. @ingroup magma_sgesv_comp ********************************************************************/ extern "C" magma_int_t magma_sgetrf2_mgpu(magma_int_t num_gpus, magma_int_t m, magma_int_t n, magma_int_t nb, magma_int_t offset, float *d_lAT[], magma_int_t lddat, magma_int_t *ipiv, float *d_lAP[], float *w, magma_int_t ldw, magma_queue_t streaml[][2], magma_int_t *info) { #define dAT(id,i,j) (d_lAT[(id)] + ((offset)+(i)*nb)*lddat + (j)*nb) #define W(j) (w+((j)%num_gpus)*nb*ldw) float c_one = MAGMA_S_ONE; float c_neg_one = MAGMA_S_NEG_ONE; magma_int_t block_size = 32; magma_int_t iinfo, n_local[MagmaMaxGPUs]; magma_int_t maxm, mindim; magma_int_t i, d, dd, rows, cols, s, ldpan[MagmaMaxGPUs]; magma_int_t id, i_local, i_local2, nb0, nb1, h = 2+num_gpus; float *d_panel[MagmaMaxGPUs], *panel_local[MagmaMaxGPUs]; /* Check arguments */ *info = 0; if (m < 0) *info = -2; else if (n < 0) *info = -3; else if (num_gpus*lddat < max(1,n)) *info = -5; if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } /* Quick return if possible */ if (m == 0 || n == 0) return *info; /* Function Body */ mindim = min(m, n); if ( num_gpus > ceil((float)n/nb) ) { *info = -1; return *info; } /* Use hybrid blocked code. */ maxm = ((m + block_size-1)/block_size)*block_size; /* some initializations */ for (i=0; i < num_gpus; i++) { magma_setdevice(i); n_local[i] = ((n/nb)/num_gpus)*nb; if (i < (n/nb)%num_gpus) n_local[i] += nb; else if (i == (n/nb)%num_gpus) n_local[i] += n%nb; /* workspaces */ d_panel[i] = &(d_lAP[i][h*nb*maxm]); /* temporary panel storage */ } trace_init( 1, num_gpus, 2, (CUstream_st**)streaml ); /* start sending the panel to cpu */ nb0 = min(mindim, nb); magma_setdevice(0); magmablasSetKernelStream(streaml[0][1]); trace_gpu_start( 0, 1, "comm", "get" ); magmablas_stranspose( nb0, m, dAT(0,0,0), lddat, d_lAP[0], maxm ); magma_sgetmatrix_async( m, nb0, d_lAP[0], maxm, W(0), ldw, streaml[0][1] ); trace_gpu_end( 0, 1 ); /* ------------------------------------------------------------------------------------- */ magma_timer_t time=0; timer_start( time ); s = mindim / nb; for( i=0; i < s; i++ ) { /* Set the GPU number that holds the current panel */ id = i%num_gpus; magma_setdevice(id); /* Set the local index where the current panel is */ i_local = i/num_gpus; cols = maxm - i*nb; rows = m - i*nb; /* synchrnoize i-th panel from id-th gpu into work */ magma_queue_sync( streaml[id][1] ); /* i-th panel factorization */ trace_cpu_start( 0, "getrf", "getrf" ); lapackf77_sgetrf( &rows, &nb, W(i), &ldw, ipiv+i*nb, &iinfo); if ( (*info == 0) && (iinfo > 0) ) { *info = iinfo + i*nb; } trace_cpu_end( 0 ); /* start sending the panel to all the gpus */ d = (i+1)%num_gpus; for( dd=0; dd < num_gpus; dd++ ) { magma_setdevice(d); trace_gpu_start( 0, 1, "comm", "set" ); magma_ssetmatrix_async( rows, nb, W(i), ldw, &d_lAP[d][(i%h)*nb*maxm], cols, streaml[d][1] ); trace_gpu_end( 0, 1 ); d = (d+1)%num_gpus; } /* apply the pivoting */ d = (i+1)%num_gpus; for( dd=0; dd < num_gpus; dd++ ) { magma_setdevice(d); magmablasSetKernelStream(streaml[d][0]); trace_gpu_start( d, 1, "pivot", "pivot" ); if ( dd == 0 ) magmablas_spermute_long2( lddat, dAT(d,0,0), lddat, ipiv, nb, i*nb ); else magmablas_spermute_long3( dAT(d,0,0), lddat, ipiv, nb, i*nb ); trace_gpu_end( d, 1 ); d = (d+1)%num_gpus; } /* update the trailing-matrix/look-ahead */ d = (i+1)%num_gpus; for( dd=0; dd < num_gpus; dd++ ) { magma_setdevice(d); /* storage for panel */ if ( d == id ) { /* the panel belond to this gpu */ panel_local[d] = dAT(d,i,i_local); ldpan[d] = lddat; /* next column */ i_local2 = i_local+1; } else { /* the panel belong to another gpu */ panel_local[d] = d_panel[d]; ldpan[d] = nb; /* next column */ i_local2 = i_local; if ( d < id ) i_local2 ++; } /* the size of the next column */ if ( s > (i+1) ) { nb0 = nb; } else { nb0 = n_local[d]-nb*(s/num_gpus); if ( d < s%num_gpus ) nb0 -= nb; } if ( d == (i+1)%num_gpus) { /* owns the next column, look-ahead the column */ nb1 = nb0; magmablasSetKernelStream(streaml[d][1]); /* make sure all the pivoting has been applied */ magma_queue_sync(streaml[d][0]); trace_gpu_start( d, 1, "gemm", "gemm" ); /* transpose panel on GPU */ magmablas_stranspose( rows, nb, &d_lAP[d][(i%h)*nb*maxm], cols, panel_local[d], ldpan[d] ); /* synch for remaining update */ magma_queue_sync(streaml[d][1]); } else { /* update the entire trailing matrix */ nb1 = n_local[d] - i_local2*nb; magmablasSetKernelStream(streaml[d][0]); /* synchronization to make sure panel arrived on gpu */ magma_queue_sync(streaml[d][1]); trace_gpu_start( d, 0, "gemm", "gemm" ); /* transpose panel on GPU */ magmablas_stranspose( rows, nb, &d_lAP[d][(i%h)*nb*maxm], cols, panel_local[d], ldpan[d] ); } /* gpu updating the trailing matrix */ magma_strsm( MagmaRight, MagmaUpper, MagmaNoTrans, MagmaUnit, nb1, nb, c_one, panel_local[d], ldpan[d], dAT(d, i, i_local2), lddat); magma_sgemm( MagmaNoTrans, MagmaNoTrans, nb1, m-(i+1)*nb, nb, c_neg_one, dAT(d, i, i_local2), lddat, &(panel_local[d][nb*ldpan[d]]), ldpan[d], c_one, dAT(d, i+1, i_local2), lddat ); if ( d == (i+1)%num_gpus ) { /* Set the local index where the current panel is */ int loff = i+1; int i_local = (i+1)/num_gpus; int ldda = maxm - (i+1)*nb; int cols = m - (i+1)*nb; nb0 = min(nb, mindim - (i+1)*nb); /* size of the diagonal block */ trace_gpu_end( d, 1 ); if ( nb0 > 0 ) { /* transpose the panel for sending it to cpu */ trace_gpu_start( d, 1, "comm", "get" ); magmablas_stranspose( nb0, m-(i+1)*nb, dAT(d,loff,i_local), lddat, &d_lAP[d][((i+1)%h)*nb*maxm], ldda ); /* send the panel to cpu */ magma_sgetmatrix_async( cols, nb0, &d_lAP[d][((i+1)%h)*nb*maxm], ldda, W(i+1), ldw, streaml[d][1] ); trace_gpu_end( d, 1 ); } } else { trace_gpu_end( d, 0 ); } d = (d+1)%num_gpus; } /* update the remaining matrix by gpu owning the next panel */ if ( (i+1) < s ) { int i_local = (i+1)/num_gpus; int rows = m - (i+1)*nb; d = (i+1)%num_gpus; magma_setdevice(d); magmablasSetKernelStream(streaml[d][0]); trace_gpu_start( d, 0, "gemm", "gemm" ); magma_strsm( MagmaRight, MagmaUpper, MagmaNoTrans, MagmaUnit, n_local[d] - (i_local+1)*nb, nb, c_one, panel_local[d], ldpan[d], dAT(d,i,i_local+1), lddat ); magma_sgemm( MagmaNoTrans, MagmaNoTrans, n_local[d]-(i_local+1)*nb, rows, nb, c_neg_one, dAT(d,i,i_local+1), lddat, &(panel_local[d][nb*ldpan[d]]), ldpan[d], c_one, dAT(d,i+1, i_local+1), lddat ); trace_gpu_end( d, 0 ); } } /* end of for i=1..s */ /* ------------------------------------------------------------------------------ */ /* Set the GPU number that holds the last panel */ id = s%num_gpus; /* Set the local index where the last panel is */ i_local = s/num_gpus; /* size of the last diagonal-block */ nb0 = min(m - s*nb, n - s*nb); rows = m - s*nb; cols = maxm - s*nb; if ( nb0 > 0 ) { magma_setdevice(id); /* wait for the last panel on cpu */ magma_queue_sync( streaml[id][1] ); /* factor on cpu */ lapackf77_sgetrf( &rows, &nb0, W(s), &ldw, ipiv+s*nb, &iinfo); if ( (*info == 0) && (iinfo > 0) ) *info = iinfo + s*nb; /* send the factor to gpus */ for( d=0; d < num_gpus; d++ ) { magma_setdevice(d); i_local2 = i_local; if ( d < id ) i_local2 ++; if ( d == id || n_local[d] > i_local2*nb ) { magma_ssetmatrix_async( rows, nb0, W(s), ldw, &d_lAP[d][(s%h)*nb*maxm], cols, streaml[d][1] ); } } for( d=0; d < num_gpus; d++ ) { magma_setdevice(d); magmablasSetKernelStream(streaml[d][0]); if ( d == 0 ) magmablas_spermute_long2( lddat, dAT(d,0,0), lddat, ipiv, nb0, s*nb ); else magmablas_spermute_long3( dAT(d,0,0), lddat, ipiv, nb0, s*nb ); } for( d=0; d < num_gpus; d++ ) { magma_setdevice(d); magmablasSetKernelStream(streaml[d][1]); /* wait for the pivoting to be done */ magma_queue_sync( streaml[d][0] ); i_local2 = i_local; if ( d < id ) i_local2++; if ( d == id ) { /* the panel belond to this gpu */ panel_local[d] = dAT(d,s,i_local); /* next column */ nb1 = n_local[d] - i_local*nb-nb0; magmablas_stranspose( rows, nb0, &d_lAP[d][(s%h)*nb*maxm], cols, panel_local[d], lddat ); if ( nb1 > 0 ) { magma_strsm( MagmaRight, MagmaUpper, MagmaNoTrans, MagmaUnit, nb1, nb0, c_one, panel_local[d], lddat, dAT(d,s,i_local)+nb0, lddat); } } else if ( n_local[d] > i_local2*nb ) { /* the panel belong to another gpu */ panel_local[d] = d_panel[d]; /* next column */ nb1 = n_local[d] - i_local2*nb; magmablas_stranspose( rows, nb0, &d_lAP[d][(s%h)*nb*maxm], cols, panel_local[d], nb ); magma_strsm( MagmaRight, MagmaUpper, MagmaNoTrans, MagmaUnit, nb1, nb0, c_one, panel_local[d], nb, dAT(d,s,i_local2), lddat); } } } /* if ( nb0 > 0 ) */ /* clean up */ trace_finalize( "sgetrf_mgpu.svg","trace.css" ); for( d=0; d < num_gpus; d++ ) { magma_setdevice(d); magma_queue_sync( streaml[d][0] ); magma_queue_sync( streaml[d][1] ); magmablasSetKernelStream(NULL); } magma_setdevice(0); timer_start( time ); timer_printf("\n Performance %f GFlop/s\n", FLOPS_SGETRF(m,n) / 1e9 / time ); return *info; } /* magma_sgetrf2_mgpu */
magma_int_t magma_ztrevc3( magma_side_t side, magma_vec_t howmany, magma_int_t *select, // logical in Fortran magma_int_t n, magmaDoubleComplex *T, magma_int_t ldt, magmaDoubleComplex *VL, magma_int_t ldvl, magmaDoubleComplex *VR, magma_int_t ldvr, magma_int_t mm, magma_int_t *mout, magmaDoubleComplex *work, magma_int_t lwork, double *rwork, magma_int_t *info ) { #define T(i,j) ( T + (i) + (j)*ldt ) #define VL(i,j) (VL + (i) + (j)*ldvl) #define VR(i,j) (VR + (i) + (j)*ldvr) #define work(i,j) (work + (i) + (j)*n) // .. Parameters .. const magmaDoubleComplex c_zero = MAGMA_Z_ZERO; const magmaDoubleComplex c_one = MAGMA_Z_ONE; const magma_int_t nbmin = 16, nbmax = 128; const magma_int_t ione = 1; // .. Local Scalars .. magma_int_t allv, bothv, leftv, over, rightv, somev; magma_int_t i, ii, is, j, k, ki, iv, n2, nb, nb2, version; double ovfl, remax, scale, smin, smlnum, ulp, unfl; // Decode and test the input parameters bothv = (side == MagmaBothSides); rightv = (side == MagmaRight) || bothv; leftv = (side == MagmaLeft ) || bothv; allv = (howmany == MagmaAllVec); over = (howmany == MagmaBacktransVec); somev = (howmany == MagmaSomeVec); // Set mout to the number of columns required to store the selected // eigenvectors. if ( somev ) { *mout = 0; for( j=0; j < n; ++j ) { if ( select[j] ) { *mout += 1; } } } else { *mout = n; } *info = 0; if ( ! rightv && ! leftv ) *info = -1; else if ( ! allv && ! over && ! somev ) *info = -2; else if ( n < 0 ) *info = -4; else if ( ldt < max( 1, n ) ) *info = -6; else if ( ldvl < 1 || ( leftv && ldvl < n ) ) *info = -8; else if ( ldvr < 1 || ( rightv && ldvr < n ) ) *info = -10; else if ( mm < *mout ) *info = -11; else if ( lwork < max( 1, 2*n ) ) *info = -14; if ( *info != 0 ) { magma_xerbla( __func__, -(*info) ); return *info; } // Quick return if possible. if ( n == 0 ) { return *info; } // Use blocked version (2) if sufficient workspace. // Requires 1 vector to save diagonal elements, and 2*nb vectors for x and Q*x. // (Compared to dtrevc3, rwork stores 1-norms.) // Zero-out the workspace to avoid potential NaN propagation. nb = 2; if ( lwork >= n + 2*n*nbmin ) { version = 2; nb = (lwork - n) / (2*n); nb = min( nb, nbmax ); nb2 = 1 + 2*nb; lapackf77_zlaset( "F", &n, &nb2, &c_zero, &c_zero, work, &n ); } else { version = 1; } // Set the constants to control overflow. unfl = lapackf77_dlamch( "Safe minimum" ); ovfl = 1. / unfl; lapackf77_dlabad( &unfl, &ovfl ); ulp = lapackf77_dlamch( "Precision" ); smlnum = unfl*( n / ulp ); // Store the diagonal elements of T in working array work. for( i=0; i < n; ++i ) { *work(i,0) = *T(i,i); } // Compute 1-norm of each column of strictly upper triangular // part of T to control overflow in triangular solver. rwork[0] = 0.; for( j=1; j < n; ++j ) { rwork[j] = cblas_dzasum( j, T(0,j), ione ); } magma_timer_t time_total=0, time_trsv=0, time_gemm=0, time_gemv=0, time_trsv_sum=0, time_gemm_sum=0, time_gemv_sum=0; timer_start( time_total ); if ( rightv ) { // ============================================================ // Compute right eigenvectors. // iv is index of column in current block. // Non-blocked version always uses iv=1; // blocked version starts with iv=nb, goes down to 1. // (Note the "0-th" column is used to store the original diagonal.) iv = 1; if ( version == 2 ) { iv = nb; } timer_start( time_trsv ); is = *mout - 1; for( ki=n-1; ki >= 0; --ki ) { if ( somev ) { if ( ! select[ki] ) { continue; } } smin = max( ulp*( MAGMA_Z_ABS1( *T(ki,ki) ) ), smlnum ); // -------------------------------------------------------- // Complex right eigenvector *work(ki,iv) = c_one; // Form right-hand side. for( k=0; k < ki; ++k ) { *work(k,iv) = -(*T(k,ki)); } // Solve upper triangular system: // [ T(1:ki-1,1:ki-1) - T(ki,ki) ]*X = scale*work. for( k=0; k < ki; ++k ) { *T(k,k) -= *T(ki,ki); if ( MAGMA_Z_ABS1( *T(k,k) ) < smin ) { *T(k,k) = MAGMA_Z_MAKE( smin, 0. ); } } if ( ki > 0 ) { lapackf77_zlatrs( "Upper", "No transpose", "Non-unit", "Y", &ki, T, &ldt, work(0,iv), &scale, rwork, info ); *work(ki,iv) = MAGMA_Z_MAKE( scale, 0. ); } // Copy the vector x or Q*x to VR and normalize. if ( ! over ) { // ------------------------------ // no back-transform: copy x to VR and normalize n2 = ki+1; blasf77_zcopy( &n2, work(0,iv), &ione, VR(0,is), &ione ); ii = blasf77_izamax( &n2, VR(0,is), &ione ) - 1; remax = 1. / MAGMA_Z_ABS1( *VR(ii,is) ); blasf77_zdscal( &n2, &remax, VR(0,is), &ione ); for( k=ki+1; k < n; ++k ) { *VR(k,is) = c_zero; } } else if ( version == 1 ) { // ------------------------------ // version 1: back-transform each vector with GEMV, Q*x. time_trsv_sum += timer_stop( time_trsv ); timer_start( time_gemv ); if ( ki > 0 ) { blasf77_zgemv( "n", &n, &ki, &c_one, VR, &ldvr, work(0, iv), &ione, work(ki,iv), VR(0,ki), &ione ); } time_gemv_sum += timer_stop( time_gemv ); ii = blasf77_izamax( &n, VR(0,ki), &ione ) - 1; remax = 1. / MAGMA_Z_ABS1( *VR(ii,ki) ); blasf77_zdscal( &n, &remax, VR(0,ki), &ione ); timer_start( time_trsv ); } else if ( version == 2 ) { // ------------------------------ // version 2: back-transform block of vectors with GEMM // zero out below vector for( k=ki+1; k < n; ++k ) { *work(k,iv) = c_zero; } // Columns iv:nb of work are valid vectors. // When the number of vectors stored reaches nb, // or if this was last vector, do the GEMM if ( (iv == 1) || (ki == 0) ) { time_trsv_sum += timer_stop( time_trsv ); timer_start( time_gemm ); nb2 = nb-iv+1; n2 = ki+nb-iv+1; blasf77_zgemm( "n", "n", &n, &nb2, &n2, &c_one, VR, &ldvr, work(0,iv ), &n, &c_zero, work(0,nb+iv), &n ); time_gemm_sum += timer_stop( time_gemm ); // normalize vectors // TODO if somev, should copy vectors individually to correct location. for( k = iv; k <= nb; ++k ) { ii = blasf77_izamax( &n, work(0,nb+k), &ione ) - 1; remax = 1. / MAGMA_Z_ABS1( *work(ii,nb+k) ); blasf77_zdscal( &n, &remax, work(0,nb+k), &ione ); } lapackf77_zlacpy( "F", &n, &nb2, work(0,nb+iv), &n, VR(0,ki), &ldvr ); iv = nb; timer_start( time_trsv ); } else { iv -= 1; } } // blocked back-transform // Restore the original diagonal elements of T. for( k=0; k <= ki - 1; ++k ) { *T(k,k) = *work(k,0); } is -= 1; } } timer_stop( time_trsv ); timer_stop( time_total ); timer_printf( "trevc trsv %.4f, gemm %.4f, gemv %.4f, total %.4f\n", time_trsv_sum, time_gemm_sum, time_gemv_sum, time_total ); if ( leftv ) { // ============================================================ // Compute left eigenvectors. // iv is index of column in current block. // Non-blocked version always uses iv=1; // blocked version starts with iv=1, goes up to nb. // (Note the "0-th" column is used to store the original diagonal.) iv = 1; is = 0; for( ki=0; ki < n; ++ki ) { if ( somev ) { if ( ! select[ki] ) { continue; } } smin = max( ulp*MAGMA_Z_ABS1( *T(ki,ki) ), smlnum ); // -------------------------------------------------------- // Complex left eigenvector *work(ki,iv) = c_one; // Form right-hand side. for( k = ki + 1; k < n; ++k ) { *work(k,iv) = -MAGMA_Z_CNJG( *T(ki,k) ); } // Solve conjugate-transposed triangular system: // [ T(ki+1:n,ki+1:n) - T(ki,ki) ]**H * X = scale*work. for( k = ki + 1; k < n; ++k ) { *T(k,k) -= *T(ki,ki); if ( MAGMA_Z_ABS1( *T(k,k) ) < smin ) { *T(k,k) = MAGMA_Z_MAKE( smin, 0. ); } } if ( ki < n-1 ) { n2 = n-ki-1; lapackf77_zlatrs( "Upper", "Conjugate transpose", "Non-unit", "Y", &n2, T(ki+1,ki+1), &ldt, work(ki+1,iv), &scale, rwork, info ); *work(ki,iv) = MAGMA_Z_MAKE( scale, 0. ); } // Copy the vector x or Q*x to VL and normalize. if ( ! over ) { // ------------------------------ // no back-transform: copy x to VL and normalize n2 = n-ki; blasf77_zcopy( &n2, work(ki,iv), &ione, VL(ki,is), &ione ); ii = blasf77_izamax( &n2, VL(ki,is), &ione ) + ki - 1; remax = 1. / MAGMA_Z_ABS1( *VL(ii,is) ); blasf77_zdscal( &n2, &remax, VL(ki,is), &ione ); for( k=0; k < ki; ++k ) { *VL(k,is) = c_zero; } } else if ( version == 1 ) { // ------------------------------ // version 1: back-transform each vector with GEMV, Q*x. if ( ki < n-1 ) { n2 = n-ki-1; blasf77_zgemv( "n", &n, &n2, &c_one, VL(0,ki+1), &ldvl, work(ki+1,iv), &ione, work(ki, iv), VL(0,ki), &ione ); } ii = blasf77_izamax( &n, VL(0,ki), &ione ) - 1; remax = 1. / MAGMA_Z_ABS1( *VL(ii,ki) ); blasf77_zdscal( &n, &remax, VL(0,ki), &ione ); } else if ( version == 2 ) { // ------------------------------ // version 2: back-transform block of vectors with GEMM // zero out above vector // could go from (ki+1)-NV+1 to ki for( k=0; k < ki; ++k ) { *work(k,iv) = c_zero; } // Columns 1:iv of work are valid vectors. // When the number of vectors stored reaches nb, // or if this was last vector, do the GEMM if ( (iv == nb) || (ki == n-1) ) { n2 = n-(ki+1)+iv; blasf77_zgemm( "n", "n", &n, &iv, &n2, &c_one, VL(0,ki-iv+1), &ldvl, work(ki-iv+1,1 ), &n, &c_zero, work(0, nb+1), &n ); // normalize vectors for( k=1; k <= iv; ++k ) { ii = blasf77_izamax( &n, work(0,nb+k), &ione ) - 1; remax = 1. / MAGMA_Z_ABS1( *work(ii,nb+k) ); blasf77_zdscal( &n, &remax, work(0,nb+k), &ione ); } lapackf77_zlacpy( "F", &n, &iv, work(0,nb+1), &n, VL(0,ki-iv+1), &ldvl ); iv = 1; } else { iv += 1; } } // blocked back-transform // Restore the original diagonal elements of T. for( k = ki + 1; k < n; ++k ) { *T(k,k) = *work(k,0); } is += 1; } } return *info; } // End of ZTREVC
extern "C" magma_int_t magma_dsyevd( magma_vec_t jobz, magma_uplo_t uplo, magma_int_t n, double *a, magma_int_t lda, double *w, double *work, magma_int_t lwork, magma_int_t *iwork, magma_int_t liwork, magma_queue_t queue, magma_int_t *info) { /* -- MAGMA (version 1.3.0) -- Univ. of Tennessee, Knoxville Univ. of California, Berkeley Univ. of Colorado, Denver @date November 2014 Purpose ======= DSYEVD computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A. If eigenvectors are desired, it uses a divide and conquer algorithm. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none. Arguments ========= JOBZ (input) CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors. UPLO (input) CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N (input) INTEGER The order of the matrix A. N >= 0. A (input/output) DOUBLE_PRECISION array, dimension (LDA, N) On entry, the symmetric matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A. On exit, if JOBZ = 'V', then if INFO = 0, A contains the orthonormal eigenvectors of the matrix A. If JOBZ = 'N', then on exit the lower triangle (if UPLO='L') or the upper triangle (if UPLO='U') of A, including the diagonal, is destroyed. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N). W (output) DOUBLE PRECISION array, dimension (N) If INFO = 0, the eigenvalues in ascending order. WORK (workspace/output) DOUBLE_PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK[0] returns the optimal LWORK. LWORK (input) INTEGER The length of the array WORK. If N <= 1, LWORK >= 1. If JOBZ = 'N' and N > 1, LWORK >= 2*N + N*NB. If JOBZ = 'V' and N > 1, LWORK >= max( 2*N + N*NB, 1 + 6*N + 2*N**2 ). NB can be obtained through magma_get_dsytrd_nb(N). If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK and IWORK arrays, returns these values as the first entries of the WORK and IWORK arrays, and no error message related to LWORK or LIWORK is issued by XERBLA. IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) On exit, if INFO = 0, IWORK[0] returns the optimal LIWORK. LIWORK (input) INTEGER The dimension of the array IWORK. If N <= 1, LIWORK >= 1. If JOBZ = 'N' and N > 1, LIWORK >= 1. If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N. If LIWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK and IWORK arrays, returns these values as the first entries of the WORK and IWORK arrays, and no error message related to LWORK or LIWORK is issued by XERBLA. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i and JOBZ = 'N', then the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero; if INFO = i and JOBZ = 'V', then the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns INFO/(N+1) through mod(INFO,N+1). Further Details =============== Based on contributions by Jeff Rutter, Computer Science Division, University of California at Berkeley, USA Modified description of INFO. Sven, 16 Feb 05. ===================================================================== */ const char* uplo_ = lapack_uplo_const( uplo ); const char* jobz_ = lapack_vec_const( jobz ); magma_int_t ione = 1; magma_int_t izero = 0; double d_one = 1.; double d__1; double eps; magma_int_t inde; double anrm; double rmin, rmax; double sigma; magma_int_t iinfo, lwmin; magma_int_t lower; magma_int_t wantz; magma_int_t indwk2, llwrk2; magma_int_t iscale; double safmin; double bignum; magma_int_t indtau; magma_int_t indwrk, liwmin; magma_int_t llwork; double smlnum; magma_int_t lquery; magmaDouble_ptr dwork; wantz = (jobz == MagmaVec); lower = (uplo == MagmaLower); lquery = (lwork == -1 || liwork == -1); *info = 0; if (! (wantz || (jobz == MagmaNoVec))) { *info = -1; } else if (! (lower || (uplo == MagmaUpper))) { *info = -2; } else if (n < 0) { *info = -3; } else if (lda < max(1,n)) { *info = -5; } magma_int_t nb = magma_get_dsytrd_nb( n ); if ( n <= 1 ) { lwmin = 1; liwmin = 1; } else if ( wantz ) { lwmin = max( 2*n + n*nb, 1 + 6*n + 2*n*n ); liwmin = 3 + 5*n; } else { lwmin = 2*n + n*nb; liwmin = 1; } // multiply by 1+eps to ensure length gets rounded up, // if it cannot be exactly represented in floating point. double one_eps = 1. + lapackf77_dlamch("Epsilon"); work[0] = lwmin * one_eps; iwork[0] = liwmin; if ((lwork < lwmin) && !lquery) { *info = -8; } else if ((liwork < liwmin) && ! lquery) { *info = -10; } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } else if (lquery) { return *info; } /* Quick return if possible */ if (n == 0) { return *info; } if (n == 1) { w[0] = a[0]; if (wantz) { a[0] = 1.; } return *info; } /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */ if (n <= 128) { #ifdef ENABLE_DEBUG printf("--------------------------------------------------------------\n"); printf(" warning matrix too small N=%d NB=%d, calling lapack on CPU \n", (int) n, (int) nb); printf("--------------------------------------------------------------\n"); #endif lapackf77_dsyevd(jobz_, uplo_, &n, a, &lda, w, work, &lwork, iwork, &liwork, info); return *info; } /* Get machine constants. */ safmin = lapackf77_dlamch("Safe minimum"); eps = lapackf77_dlamch("Precision"); smlnum = safmin / eps; bignum = 1. / smlnum; rmin = magma_dsqrt(smlnum); rmax = magma_dsqrt(bignum); /* Scale matrix to allowable range, if necessary. */ anrm = lapackf77_dlansy("M", uplo_, &n, a, &lda, work ); iscale = 0; if (anrm > 0. && anrm < rmin) { iscale = 1; sigma = rmin / anrm; } else if (anrm > rmax) { iscale = 1; sigma = rmax / anrm; } if (iscale == 1) { lapackf77_dlascl(uplo_, &izero, &izero, &d_one, &sigma, &n, &n, a, &lda, info); } /* Call DSYTRD to reduce symmetric matrix to tridiagonal form. */ // dsytrd work: e (n) + tau (n) + llwork (n*nb) ==> 2n + n*nb // dstedx work: e (n) + tau (n) + z (n*n) + llwrk2 (1 + 4*n + n^2) ==> 1 + 6n + 2n^2 inde = 0; indtau = inde + n; indwrk = indtau + n; indwk2 = indwrk + n*n; llwork = lwork - indwrk; llwrk2 = lwork - indwk2; magma_timer_t time; timer_start( time ); magma_dsytrd(uplo, n, a, lda, w, &work[inde], &work[indtau], &work[indwrk], llwork, queue, &iinfo); timer_stop( time ); timer_printf( "time dsytrd = %6.2f\n", time ); /* For eigenvalues only, call DSTERF. For eigenvectors, first call DSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the tridiagonal matrix, then call DORMTR to multiply it to the Householder transformations represented as Householder vectors in A. */ if (! wantz) { lapackf77_dsterf(&n, w, &work[inde], info); } else { timer_start( time ); if (MAGMA_SUCCESS != magma_dmalloc( &dwork, 3*n*(n/2 + 1) )) { *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } // TTT Possible bug for n < 128 magma_dstedx(MagmaRangeAll, n, 0., 0., 0, 0, w, &work[inde], &work[indwrk], n, &work[indwk2], llwrk2, iwork, liwork, dwork, queue, info); magma_free( dwork ); timer_stop( time ); timer_printf( "time dstedx = %6.2f\n", time ); timer_start( time ); magma_dormtr(MagmaLeft, uplo, MagmaNoTrans, n, n, a, lda, &work[indtau], &work[indwrk], n, &work[indwk2], llwrk2, queue, &iinfo); lapackf77_dlacpy("A", &n, &n, &work[indwrk], &n, a, &lda); timer_stop( time ); timer_printf( "time dormtr + copy = %6.2f\n", time ); } /* If matrix was scaled, then rescale eigenvalues appropriately. */ if (iscale == 1) { d__1 = 1. / sigma; blasf77_dscal(&n, &d__1, w, &ione); } work[0] = lwmin * one_eps; // round up iwork[0] = liwmin; return *info; } /* magma_dsyevd */
/** Purpose ------- DLAEX3 finds the roots of the secular equation, as defined by the values in D, W, and RHO, between 1 and K. It makes the appropriate calls to DLAED4 and then updates the eigenvectors by multiplying the matrix of eigenvectors of the pair of eigensystems being combined by the matrix of eigenvectors of the K-by-K system which is solved here. It is used in the last step when only a part of the eigenvectors is required. It compute only the required part of the eigenvectors and the rest is not used. This code makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none. Arguments --------- @param[in] k INTEGER The number of terms in the rational function to be solved by DLAED4. K >= 0. @param[in] n INTEGER The number of rows and columns in the Q matrix. N >= K (deflation may result in N > K). @param[in] n1 INTEGER The location of the last eigenvalue in the leading submatrix. min(1,N) <= N1 <= N/2. @param[out] d DOUBLE PRECISION array, dimension (N) D(I) contains the updated eigenvalues for 1 <= I <= K. @param[out] Q DOUBLE PRECISION array, dimension (LDQ,N) Initially the first K columns are used as workspace. On output the columns ??? to ??? contain the updated eigenvectors. @param[in] ldq INTEGER The leading dimension of the array Q. LDQ >= max(1,N). @param[in] rho DOUBLE PRECISION The value of the parameter in the rank one update equation. RHO >= 0 required. @param[in,out] dlamda DOUBLE PRECISION array, dimension (K) The first K elements of this array contain the old roots of the deflated updating problem. These are the poles of the secular equation. May be changed on output by having lowest order bit set to zero on Cray X-MP, Cray Y-MP, Cray-2, or Cray C-90, as described above. @param[in] Q2 DOUBLE PRECISION array, dimension (LDQ2, N) The first K columns of this matrix contain the non-deflated eigenvectors for the split problem. TODO what is LDQ2? @param[in] indx INTEGER array, dimension (N) The permutation used to arrange the columns of the deflated Q matrix into three groups (see DLAED2). The rows of the eigenvectors found by DLAED4 must be likewise permuted before the matrix multiply can take place. @param[in] ctot INTEGER array, dimension (4) A count of the total number of the various types of columns in Q, as described in INDX. The fourth column type is any column which has been deflated. @param[in,out] w DOUBLE PRECISION array, dimension (K) The first K elements of this array contain the components of the deflation-adjusted updating vector. Destroyed on output. @param s (workspace) DOUBLE PRECISION array, dimension (N1 + 1)*K Will contain the eigenvectors of the repaired matrix which will be multiplied by the previously accumulated eigenvectors to update the system. @param[out] indxq INTEGER array, dimension (N) On exit, the permutation which will reintegrate the subproblems back into sorted order, i.e. D( INDXQ( I = 1, N ) ) will be in ascending order. @param dwork (workspace) DOUBLE PRECISION array, dimension (3*N*N/2+3*N) @param[in] range magma_range_t - = MagmaRangeAll: all eigenvalues will be found. - = MagmaRangeV: all eigenvalues in the half-open interval (VL,VU] will be found. - = MagmaRangeI: the IL-th through IU-th eigenvalues will be found. TODO verify range, vl, vu, il, iu -- copied from dlaex1. @param[in] vl DOUBLE PRECISION @param[in] vu DOUBLE PRECISION if RANGE=MagmaRangeV, the lower and upper bounds of the interval to be searched for eigenvalues. VL < VU. Not referenced if RANGE = MagmaRangeAll or MagmaRangeI. @param[in] il INTEGER @param[in] iu INTEGER if RANGE=MagmaRangeI, the indices (in ascending order) of the smallest and largest eigenvalues to be returned. 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. Not referenced if RANGE = MagmaRangeAll or MagmaRangeV. @param[out] info INTEGER - = 0: successful exit. - < 0: if INFO = -i, the i-th argument had an illegal value. - > 0: if INFO = 1, an eigenvalue did not converge Further Details --------------- Based on contributions by Jeff Rutter, Computer Science Division, University of California at Berkeley, USA Modified by Francoise Tisseur, University of Tennessee. @ingroup magma_dsyev_aux ********************************************************************/ extern "C" magma_int_t magma_dlaex3(magma_int_t k, magma_int_t n, magma_int_t n1, double* d, double* Q, magma_int_t ldq, double rho, double* dlamda, double* Q2, magma_int_t* indx, magma_int_t* ctot, double* w, double* s, magma_int_t* indxq, double* dwork, magma_range_t range, double vl, double vu, magma_int_t il, magma_int_t iu, magma_int_t* info ) { #define Q(i_,j_) (Q + (i_) + (j_)*ldq) double d_one = 1.; double d_zero = 0.; magma_int_t ione = 1; magma_int_t ineg_one = -1; magma_int_t iil, iiu, rk; double* dq2= dwork; double* ds = dq2 + n*(n/2+1); double* dq = ds + n*(n/2+1); magma_int_t lddq = n/2 + 1; magma_int_t i, iq2, j, n12, n2, n23, tmp, lq2; double temp; magma_int_t alleig, valeig, indeig; alleig = (range == MagmaRangeAll); valeig = (range == MagmaRangeV); indeig = (range == MagmaRangeI); *info = 0; if (k < 0) *info=-1; else if (n < k) *info=-2; else if (ldq < max(1,n)) *info=-6; else if (! (alleig || valeig || indeig)) *info = -15; else { if (valeig) { if (n > 0 && vu <= vl) *info = -17; } else if (indeig) { if (il < 1 || il > max(1,n)) *info = -18; else if (iu < min(n,il) || iu > n) *info = -19; } } if (*info != 0) { magma_xerbla(__func__, -(*info)); return *info; } // Quick return if possible if (k == 0) return *info; /* Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can be computed with high relative accuracy (barring over/underflow). This is a problem on machines without a guard digit in add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I), which on any of these machines zeros out the bottommost bit of DLAMDA(I) if it is 1; this makes the subsequent subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation occurs. On binary machines with a guard digit (almost all machines) it does not change DLAMDA(I) at all. On hexadecimal and decimal machines with a guard digit, it slightly changes the bottommost bits of DLAMDA(I). It does not account for hexadecimal or decimal machines without guard digits (we know of none). We use a subroutine call to compute 2*DLAMBDA(I) to prevent optimizing compilers from eliminating this code.*/ n2 = n - n1; n12 = ctot[0] + ctot[1]; n23 = ctot[1] + ctot[2]; iq2 = n1 * n12; lq2 = iq2 + n2 * n23; magma_dsetvector_async( lq2, Q2, 1, dq2, 1, NULL ); #ifdef _OPENMP ///////////////////////////////////////////////////////////////////////////////// //openmp implementation ///////////////////////////////////////////////////////////////////////////////// magma_timer_t time=0; timer_start( time ); #pragma omp parallel private(i, j, tmp, temp) { magma_int_t id = omp_get_thread_num(); magma_int_t tot = omp_get_num_threads(); magma_int_t ib = ( id * k) / tot; //start index of local loop magma_int_t ie = ((id+1) * k) / tot; //end index of local loop magma_int_t ik = ie - ib; //number of local indices for (i = ib; i < ie; ++i) dlamda[i]=lapackf77_dlamc3(&dlamda[i], &dlamda[i]) - dlamda[i]; for (j = ib; j < ie; ++j) { magma_int_t tmpp=j+1; magma_int_t iinfo = 0; lapackf77_dlaed4(&k, &tmpp, dlamda, w, Q(0,j), &rho, &d[j], &iinfo); // If the zero finder fails, the computation is terminated. if (iinfo != 0) { #pragma omp critical (info) *info=iinfo; break; } } #pragma omp barrier if (*info == 0) { #pragma omp single { //Prepare the INDXQ sorting permutation. magma_int_t nk = n - k; lapackf77_dlamrg( &k, &nk, d, &ione, &ineg_one, indxq); //compute the lower and upper bound of the non-deflated eigenvectors if (valeig) magma_dvrange(k, d, &iil, &iiu, vl, vu); else if (indeig) magma_dirange(k, indxq, &iil, &iiu, il, iu); else { iil = 1; iiu = k; } rk = iiu - iil + 1; } if (k == 2) { #pragma omp single { for (j = 0; j < k; ++j) { w[0] = *Q(0,j); w[1] = *Q(1,j); i = indx[0] - 1; *Q(0,j) = w[i]; i = indx[1] - 1; *Q(1,j) = w[i]; } } } else if (k != 1) { // Compute updated W. blasf77_dcopy( &ik, &w[ib], &ione, &s[ib], &ione); // Initialize W(I) = Q(I,I) tmp = ldq + 1; blasf77_dcopy( &ik, Q(ib,ib), &tmp, &w[ib], &ione); for (j = 0; j < k; ++j) { magma_int_t i_tmp = min(j, ie); for (i = ib; i < i_tmp; ++i) w[i] = w[i] * ( *Q(i, j) / ( dlamda[i] - dlamda[j] ) ); i_tmp = max(j+1, ib); for (i = i_tmp; i < ie; ++i) w[i] = w[i] * ( *Q(i, j) / ( dlamda[i] - dlamda[j] ) ); } for (i = ib; i < ie; ++i) w[i] = copysign( sqrt( -w[i] ), s[i]); #pragma omp barrier //reduce the number of used threads to have enough S workspace tot = min(n1, omp_get_num_threads()); if (id < tot) { ib = ( id * rk) / tot + iil - 1; ie = ((id+1) * rk) / tot + iil - 1; ik = ie - ib; } else { ib = -1; ie = -1; ik = -1; } // Compute eigenvectors of the modified rank-1 modification. for (j = ib; j < ie; ++j) { for (i = 0; i < k; ++i) s[id*k + i] = w[i] / *Q(i,j); temp = magma_cblas_dnrm2( k, s+id*k, 1 ); for (i = 0; i < k; ++i) { magma_int_t iii = indx[i] - 1; *Q(i,j) = s[id*k + iii] / temp; } } } } } if (*info != 0) return *info; timer_stop( time ); timer_printf( "eigenvalues/vector D+zzT = %6.2f\n", time ); #else ///////////////////////////////////////////////////////////////////////////////// // Non openmp implementation ///////////////////////////////////////////////////////////////////////////////// magma_timer_t time=0; timer_start( time ); for (i = 0; i < k; ++i) dlamda[i]=lapackf77_dlamc3(&dlamda[i], &dlamda[i]) - dlamda[i]; for (j = 0; j < k; ++j) { magma_int_t tmpp=j+1; magma_int_t iinfo = 0; lapackf77_dlaed4(&k, &tmpp, dlamda, w, Q(0,j), &rho, &d[j], &iinfo); // If the zero finder fails, the computation is terminated. if (iinfo != 0) *info=iinfo; } if (*info != 0) return *info; //Prepare the INDXQ sorting permutation. magma_int_t nk = n - k; lapackf77_dlamrg( &k, &nk, d, &ione, &ineg_one, indxq); //compute the lower and upper bound of the non-deflated eigenvectors if (valeig) magma_dvrange(k, d, &iil, &iiu, vl, vu); else if (indeig) magma_dirange(k, indxq, &iil, &iiu, il, iu); else { iil = 1; iiu = k; } rk = iiu - iil + 1; if (k == 2) { for (j = 0; j < k; ++j) { w[0] = *Q(0,j); w[1] = *Q(1,j); i = indx[0] - 1; *Q(0,j) = w[i]; i = indx[1] - 1; *Q(1,j) = w[i]; } } else if (k != 1) { // Compute updated W. blasf77_dcopy( &k, w, &ione, s, &ione); // Initialize W(I) = Q(I,I) tmp = ldq + 1; blasf77_dcopy( &k, Q, &tmp, w, &ione); for (j = 0; j < k; ++j) { for (i = 0; i < j; ++i) w[i] = w[i] * ( *Q(i, j) / ( dlamda[i] - dlamda[j] ) ); for (i = j+1; i < k; ++i) w[i] = w[i] * ( *Q(i, j) / ( dlamda[i] - dlamda[j] ) ); } for (i = 0; i < k; ++i) w[i] = copysign( sqrt( -w[i] ), s[i]); // Compute eigenvectors of the modified rank-1 modification. for (j = iil-1; j < iiu; ++j) { for (i = 0; i < k; ++i) s[i] = w[i] / *Q(i,j); temp = magma_cblas_dnrm2( k, s, 1 ); for (i = 0; i < k; ++i) { magma_int_t iii = indx[i] - 1; *Q(i,j) = s[iii] / temp; } } } timer_stop( time ); timer_printf( "eigenvalues/vector D+zzT = %6.2f\n", time ); #endif //_OPENMP // Compute the updated eigenvectors. timer_start( time ); magma_queue_sync( NULL ); if (rk != 0) { if ( n23 != 0 ) { if (rk < magma_get_dlaed3_k()) { lapackf77_dlacpy("A", &n23, &rk, Q(ctot[0],iil-1), &ldq, s, &n23); blasf77_dgemm("N", "N", &n2, &rk, &n23, &d_one, &Q2[iq2], &n2, s, &n23, &d_zero, Q(n1,iil-1), &ldq ); } else { magma_dsetmatrix( n23, rk, Q(ctot[0],iil-1), ldq, ds, n23 ); magma_dgemm( MagmaNoTrans, MagmaNoTrans, n2, rk, n23, d_one, &dq2[iq2], n2, ds, n23, d_zero, dq, lddq); magma_dgetmatrix( n2, rk, dq, lddq, Q(n1,iil-1), ldq ); } } else lapackf77_dlaset("A", &n2, &rk, &d_zero, &d_zero, Q(n1,iil-1), &ldq); if ( n12 != 0 ) { if (rk < magma_get_dlaed3_k()) { lapackf77_dlacpy("A", &n12, &rk, Q(0,iil-1), &ldq, s, &n12); blasf77_dgemm("N", "N", &n1, &rk, &n12, &d_one, Q2, &n1, s, &n12, &d_zero, Q(0,iil-1), &ldq); } else { magma_dsetmatrix( n12, rk, Q(0,iil-1), ldq, ds, n12 ); magma_dgemm( MagmaNoTrans, MagmaNoTrans, n1, rk, n12, d_one, dq2, n1, ds, n12, d_zero, dq, lddq); magma_dgetmatrix( n1, rk, dq, lddq, Q(0,iil-1), ldq ); } } else lapackf77_dlaset("A", &n1, &rk, &d_zero, &d_zero, Q(0,iil-1), &ldq); } timer_stop( time ); timer_printf( "gemms = %6.2f\n", time ); return *info; } /* magma_dlaex3 */
/** Purpose ------- DSYEVD computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A. If eigenvectors are desired, it uses a divide and conquer algorithm. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none. Arguments --------- @param[in] nrgpu INTEGER Number of GPUs to use. @param[in] jobz magma_vec_t - = MagmaNoVec: Compute eigenvalues only; - = MagmaVec: Compute eigenvalues and eigenvectors. @param[in] uplo magma_uplo_t - = MagmaUpper: Upper triangle of A is stored; - = MagmaLower: Lower triangle of A is stored. @param[in] n INTEGER The order of the matrix A. N >= 0. @param[in,out] A DOUBLE_PRECISION array, dimension (LDA, N) On entry, the symmetric matrix A. If UPLO = MagmaUpper, the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A. If UPLO = MagmaLower, the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A. On exit, if JOBZ = MagmaVec, then if INFO = 0, A contains the orthonormal eigenvectors of the matrix A. If JOBZ = MagmaNoVec, then on exit the lower triangle (if UPLO=MagmaLower) or the upper triangle (if UPLO=MagmaUpper) of A, including the diagonal, is destroyed. @param[in] lda INTEGER The leading dimension of the array A. LDA >= max(1,N). @param[out] w DOUBLE PRECISION array, dimension (N) If INFO = 0, the eigenvalues in ascending order. @param[out] work (workspace) DOUBLE_PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK[0] returns the optimal LWORK. @param[in] lwork INTEGER The length of the array WORK. If N <= 1, LWORK >= 1. If JOBZ = MagmaNoVec and N > 1, LWORK >= 2*N + N*NB. If JOBZ = MagmaVec and N > 1, LWORK >= max( 2*N + N*NB, 1 + 6*N + 2*N**2 ). NB can be obtained through magma_get_dsytrd_nb(N). \n If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA. @param[out] iwork (workspace) INTEGER array, dimension (MAX(1,LIWORK)) On exit, if INFO = 0, IWORK[0] returns the optimal LIWORK. @param[in] liwork INTEGER The dimension of the array IWORK. If N <= 1, LIWORK >= 1. If JOBZ = MagmaNoVec and N > 1, LIWORK >= 1. If JOBZ = MagmaVec and N > 1, LIWORK >= 3 + 5*N. \n If LIWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA. @param[out] info INTEGER - = 0: successful exit - < 0: if INFO = -i, the i-th argument had an illegal value - > 0: if INFO = i and JOBZ = MagmaNoVec, then the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero; if INFO = i and JOBZ = MagmaVec, then the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns INFO/(N+1) through mod(INFO,N+1). Further Details --------------- Based on contributions by Jeff Rutter, Computer Science Division, University of California at Berkeley, USA Modified description of INFO. Sven, 16 Feb 05. @ingroup magma_dsyev_driver ********************************************************************/ extern "C" magma_int_t magma_dsyevd_m(magma_int_t nrgpu, magma_vec_t jobz, magma_uplo_t uplo, magma_int_t n, double *A, magma_int_t lda, double *w, double *work, magma_int_t lwork, magma_int_t *iwork, magma_int_t liwork, magma_int_t *info) { const char* uplo_ = lapack_uplo_const( uplo ); const char* jobz_ = lapack_vec_const( jobz ); magma_int_t ione = 1; magma_int_t izero = 0; double d_one = 1.; double d__1; double eps; magma_int_t inde; double anrm; double rmin, rmax; double sigma; magma_int_t iinfo, lwmin; magma_int_t lower; magma_int_t wantz; magma_int_t indwk2, llwrk2; magma_int_t iscale; double safmin; double bignum; magma_int_t indtau; magma_int_t indwrk, liwmin; magma_int_t llwork; double smlnum; magma_int_t lquery; wantz = (jobz == MagmaVec); lower = (uplo == MagmaLower); lquery = (lwork == -1 || liwork == -1); *info = 0; if (! (wantz || (jobz == MagmaNoVec))) { *info = -1; } else if (! (lower || (uplo == MagmaUpper))) { *info = -2; } else if (n < 0) { *info = -3; } else if (lda < max(1,n)) { *info = -5; } magma_int_t nb = magma_get_dsytrd_nb( n ); if ( n <= 1 ) { lwmin = 1; liwmin = 1; } else if ( wantz ) { lwmin = max( 2*n + n*nb, 1 + 6*n + 2*n*n ); liwmin = 3 + 5*n; } else { lwmin = 2*n + n*nb; liwmin = 1; } // multiply by 1+eps (in Double!) to ensure length gets rounded up, // if it cannot be exactly represented in floating point. real_Double_t one_eps = 1. + lapackf77_dlamch("Epsilon"); work[0] = lwmin * one_eps; iwork[0] = liwmin; if ((lwork < lwmin) && !lquery) { *info = -8; } else if ((liwork < liwmin) && ! lquery) { *info = -10; } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } else if (lquery) { return *info; } /* Quick return if possible */ if (n == 0) { return *info; } if (n == 1) { w[0] = A[0]; if (wantz) { A[0] = 1.; } return *info; } /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */ if (n <= 128) { #ifdef ENABLE_DEBUG printf("--------------------------------------------------------------\n"); printf(" warning matrix too small N=%d NB=%d, calling lapack on CPU \n", (int) n, (int) nb); printf("--------------------------------------------------------------\n"); #endif lapackf77_dsyevd(jobz_, uplo_, &n, A, &lda, w, work, &lwork, iwork, &liwork, info); return *info; } /* Get machine constants. */ safmin = lapackf77_dlamch("Safe minimum"); eps = lapackf77_dlamch("Precision"); smlnum = safmin / eps; bignum = 1. / smlnum; rmin = magma_dsqrt(smlnum); rmax = magma_dsqrt(bignum); /* Scale matrix to allowable range, if necessary. */ anrm = lapackf77_dlansy("M", uplo_, &n, A, &lda, work); iscale = 0; if (anrm > 0. && anrm < rmin) { iscale = 1; sigma = rmin / anrm; } else if (anrm > rmax) { iscale = 1; sigma = rmax / anrm; } if (iscale == 1) { lapackf77_dlascl(uplo_, &izero, &izero, &d_one, &sigma, &n, &n, A, &lda, info); } /* Call DSYTRD to reduce symmetric matrix to tridiagonal form. */ // dsytrd work: e (n) + tau (n) + llwork (n*nb) ==> 2n + n*nb // dstedx work: e (n) + tau (n) + z (n*n) + llwrk2 (1 + 4*n + n^2) ==> 1 + 6n + 2n^2 inde = 0; indtau = inde + n; indwrk = indtau + n; indwk2 = indwrk + n*n; llwork = lwork - indwrk; llwrk2 = lwork - indwk2; magma_timer_t time=0; timer_start( time ); magma_dsytrd_mgpu(nrgpu, 1, uplo, n, A, lda, w, &work[inde], &work[indtau], &work[indwrk], llwork, &iinfo); timer_stop( time ); timer_printf( "time dsytrd = %6.2f\n", time ); /* For eigenvalues only, call DSTERF. For eigenvectors, first call DSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the tridiagonal matrix, then call DORMTR to multiply it to the Householder transformations represented as Householder vectors in A. */ if (! wantz) { lapackf77_dsterf(&n, w, &work[inde], info); } else { timer_start( time ); #ifdef USE_SINGLE_GPU if (MAGMA_SUCCESS != magma_dmalloc( &dwork, 3*n*(n/2 + 1) )) { *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } magma_dstedx(MagmaRangeAll, n, 0., 0., 0, 0, w, &work[inde], &work[indwrk], n, &work[indwk2], llwrk2, iwork, liwork, dwork, info); magma_free( dwork ); #else magma_dstedx_m(nrgpu, MagmaRangeAll, n, 0., 0., 0, 0, w, &work[inde], &work[indwrk], n, &work[indwk2], llwrk2, iwork, liwork, info); #endif timer_stop( time ); timer_printf( "time dstedc = %6.2f\n", time ); timer_start( time ); magma_dormtr_m(nrgpu, MagmaLeft, uplo, MagmaNoTrans, n, n, A, lda, &work[indtau], &work[indwrk], n, &work[indwk2], llwrk2, &iinfo); lapackf77_dlacpy("A", &n, &n, &work[indwrk], &n, A, &lda); timer_stop( time ); timer_printf( "time dormtr + copy = %6.2f\n", time ); } /* If matrix was scaled, then rescale eigenvalues appropriately. */ if (iscale == 1) { d__1 = 1. / sigma; blasf77_dscal(&n, &d__1, w, &ione); } work[0] = lwmin * one_eps; // round up iwork[0] = liwmin; return *info; } /* magma_dsyevd_m */
/** Purpose ------- SGEEV computes for an N-by-N real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors. The right eigenvector v(j) of A satisfies A * v(j) = lambda(j) * v(j) where lambda(j) is its eigenvalue. The left eigenvector u(j) of A satisfies u(j)**T * A = lambda(j) * u(j)**T where u(j)**T denotes the transpose of u(j). The computed eigenvectors are normalized to have Euclidean norm equal to 1 and largest component real. Arguments --------- @param[in] jobvl magma_vec_t - = MagmaNoVec: left eigenvectors of A are not computed; - = MagmaVec: left eigenvectors of are computed. @param[in] jobvr magma_vec_t - = MagmaNoVec: right eigenvectors of A are not computed; - = MagmaVec: right eigenvectors of A are computed. @param[in] n INTEGER The order of the matrix A. N >= 0. @param[in,out] A REAL array, dimension (LDA,N) On entry, the N-by-N matrix A. On exit, A has been overwritten. @param[in] lda INTEGER The leading dimension of the array A. LDA >= max(1,N). @param[out] wr REAL array, dimension (N) @param[out] wi REAL array, dimension (N) WR and WI contain the real and imaginary parts, respectively, of the computed eigenvalues. Complex conjugate pairs of eigenvalues appear consecutively with the eigenvalue having the positive imaginary part first. @param[out] VL REAL array, dimension (LDVL,N) If JOBVL = MagmaVec, the left eigenvectors u(j) are stored one after another in the columns of VL, in the same order as their eigenvalues. If JOBVL = MagmaNoVec, VL is not referenced. u(j) = VL(:,j), the j-th column of VL. @param[in] ldvl INTEGER The leading dimension of the array VL. LDVL >= 1; if JOBVL = MagmaVec, LDVL >= N. @param[out] VR REAL array, dimension (LDVR,N) If JOBVR = MagmaVec, the right eigenvectors v(j) are stored one after another in the columns of VR, in the same order as their eigenvalues. If JOBVR = MagmaNoVec, VR is not referenced. v(j) = VR(:,j), the j-th column of VR. @param[in] ldvr INTEGER The leading dimension of the array VR. LDVR >= 1; if JOBVR = MagmaVec, LDVR >= N. @param[out] work (workspace) REAL array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK[0] returns the optimal LWORK. @param[in] lwork INTEGER The dimension of the array WORK. LWORK >= (2 + nb + nb*ngpu)*N. For optimal performance, LWORK >= (2 + 2*nb + nb*ngpu)*N. \n If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. @param[out] info INTEGER - = 0: successful exit - < 0: if INFO = -i, the i-th argument had an illegal value. - > 0: if INFO = i, the QR algorithm failed to compute all the eigenvalues, and no eigenvectors have been computed; elements and i+1:N of W contain eigenvalues which have converged. @ingroup magma_sgeev_driver ********************************************************************/ extern "C" magma_int_t magma_sgeev_m( magma_vec_t jobvl, magma_vec_t jobvr, magma_int_t n, float *A, magma_int_t lda, #ifdef COMPLEX float *w, #else float *wr, float *wi, #endif float *VL, magma_int_t ldvl, float *VR, magma_int_t ldvr, float *work, magma_int_t lwork, #ifdef COMPLEX float *rwork, #endif magma_int_t *info ) { #define VL(i,j) (VL + (i) + (j)*ldvl) #define VR(i,j) (VR + (i) + (j)*ldvr) const magma_int_t ione = 1; const magma_int_t izero = 0; float d__1, d__2; float r, cs, sn, scl; float dum[1], eps; float anrm, cscale, bignum, smlnum; magma_int_t i, k, ilo, ihi; magma_int_t ibal, ierr, itau, iwrk, nout, liwrk, nb; magma_int_t scalea, minwrk, optwrk, lquery, wantvl, wantvr, select[1]; magma_side_t side = MagmaRight; magma_int_t ngpu = magma_num_gpus(); magma_timer_t time_total=0, time_gehrd=0, time_unghr=0, time_hseqr=0, time_trevc=0, time_sum=0; magma_flops_t flop_total=0, flop_gehrd=0, flop_unghr=0, flop_hseqr=0, flop_trevc=0, flop_sum=0; timer_start( time_total ); flops_start( flop_total ); *info = 0; lquery = (lwork == -1); wantvl = (jobvl == MagmaVec); wantvr = (jobvr == MagmaVec); if (! wantvl && jobvl != MagmaNoVec) { *info = -1; } else if (! wantvr && jobvr != MagmaNoVec) { *info = -2; } else if (n < 0) { *info = -3; } else if (lda < max(1,n)) { *info = -5; } else if ( (ldvl < 1) || (wantvl && (ldvl < n))) { *info = -9; } else if ( (ldvr < 1) || (wantvr && (ldvr < n))) { *info = -11; } /* Compute workspace */ nb = magma_get_sgehrd_nb( n ); if (*info == 0) { minwrk = (2 + nb + nb*ngpu)*n; optwrk = (2 + 2*nb + nb*ngpu)*n; work[0] = magma_smake_lwork( optwrk ); if (lwork < minwrk && ! lquery) { *info = -13; } } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } else if (lquery) { return *info; } /* Quick return if possible */ if (n == 0) { return *info; } #if defined(Version3) float *dT; if (MAGMA_SUCCESS != magma_smalloc( &dT, nb*n )) { *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } #endif #if defined(Version5) float *T; if (MAGMA_SUCCESS != magma_smalloc_cpu( &T, nb*n )) { *info = MAGMA_ERR_HOST_ALLOC; return *info; } #endif /* Get machine constants */ eps = lapackf77_slamch( "P" ); smlnum = lapackf77_slamch( "S" ); bignum = 1. / smlnum; lapackf77_slabad( &smlnum, &bignum ); smlnum = magma_ssqrt( smlnum ) / eps; bignum = 1. / smlnum; /* Scale A if max element outside range [SMLNUM,BIGNUM] */ anrm = lapackf77_slange( "M", &n, &n, A, &lda, dum ); scalea = 0; if (anrm > 0. && anrm < smlnum) { scalea = 1; cscale = smlnum; } else if (anrm > bignum) { scalea = 1; cscale = bignum; } if (scalea) { lapackf77_slascl( "G", &izero, &izero, &anrm, &cscale, &n, &n, A, &lda, &ierr ); } /* Balance the matrix * (Workspace: need N) * - this space is reserved until after gebak */ ibal = 0; lapackf77_sgebal( "B", &n, A, &lda, &ilo, &ihi, &work[ibal], &ierr ); /* Reduce to upper Hessenberg form * (Workspace: need 3*N, prefer 2*N + N*NB + NB*NGPU) * - added NB*NGPU needed for multi-GPU magma_sgehrd_m * - including N reserved for gebal/gebak, unused by sgehrd */ itau = ibal + n; iwrk = itau + n; liwrk = lwork - iwrk; timer_start( time_gehrd ); flops_start( flop_gehrd ); #if defined(Version1) // Version 1 - LAPACK lapackf77_sgehrd( &n, &ilo, &ihi, A, &lda, &work[itau], &work[iwrk], &liwrk, &ierr ); #elif defined(Version2) // Version 2 - LAPACK consistent HRD magma_sgehrd2( n, ilo, ihi, A, lda, &work[itau], &work[iwrk], liwrk, &ierr ); #elif defined(Version3) // Version 3 - LAPACK consistent MAGMA HRD + T matrices stored, magma_sgehrd( n, ilo, ihi, A, lda, &work[itau], &work[iwrk], liwrk, dT, &ierr ); #elif defined(Version5) // Version 4 - Multi-GPU, T on host magma_sgehrd_m( n, ilo, ihi, A, lda, &work[itau], &work[iwrk], liwrk, T, &ierr ); #endif time_sum += timer_stop( time_gehrd ); flop_sum += flops_stop( flop_gehrd ); if (wantvl) { /* Want left eigenvectors * Copy Householder vectors to VL */ side = MagmaLeft; lapackf77_slacpy( MagmaLowerStr, &n, &n, A, &lda, VL, &ldvl ); /* Generate orthogonal matrix in VL * (Workspace: need 3*N-1, prefer 2*N + (N-1)*NB) * - including N reserved for gebal/gebak, unused by sorghr */ timer_start( time_unghr ); flops_start( flop_unghr ); #if defined(Version1) || defined(Version2) // Version 1 & 2 - LAPACK lapackf77_sorghr( &n, &ilo, &ihi, VL, &ldvl, &work[itau], &work[iwrk], &liwrk, &ierr ); #elif defined(Version3) // Version 3 - LAPACK consistent MAGMA HRD + T matrices stored magma_sorghr( n, ilo, ihi, VL, ldvl, &work[itau], dT, nb, &ierr ); #elif defined(Version5) // Version 5 - Multi-GPU, T on host magma_sorghr_m( n, ilo, ihi, VL, ldvl, &work[itau], T, nb, &ierr ); #endif time_sum += timer_stop( time_unghr ); flop_sum += flops_stop( flop_unghr ); timer_start( time_hseqr ); flops_start( flop_hseqr ); /* Perform QR iteration, accumulating Schur vectors in VL * (Workspace: need N+1, prefer N+HSWORK (see comments) ) * - including N reserved for gebal/gebak, unused by shseqr */ iwrk = itau; liwrk = lwork - iwrk; lapackf77_shseqr( "S", "V", &n, &ilo, &ihi, A, &lda, wr, wi, VL, &ldvl, &work[iwrk], &liwrk, info ); time_sum += timer_stop( time_hseqr ); flop_sum += flops_stop( flop_hseqr ); if (wantvr) { /* Want left and right eigenvectors * Copy Schur vectors to VR */ side = MagmaBothSides; lapackf77_slacpy( "F", &n, &n, VL, &ldvl, VR, &ldvr ); } } else if (wantvr) { /* Want right eigenvectors * Copy Householder vectors to VR */ side = MagmaRight; lapackf77_slacpy( "L", &n, &n, A, &lda, VR, &ldvr ); /* Generate orthogonal matrix in VR * (Workspace: need 3*N-1, prefer 2*N + (N-1)*NB) * - including N reserved for gebal/gebak, unused by sorghr */ timer_start( time_unghr ); flops_start( flop_unghr ); #if defined(Version1) || defined(Version2) // Version 1 & 2 - LAPACK lapackf77_sorghr( &n, &ilo, &ihi, VR, &ldvr, &work[itau], &work[iwrk], &liwrk, &ierr ); #elif defined(Version3) // Version 3 - LAPACK consistent MAGMA HRD + T matrices stored magma_sorghr( n, ilo, ihi, VR, ldvr, &work[itau], dT, nb, &ierr ); #elif defined(Version5) // Version 5 - Multi-GPU, T on host magma_sorghr_m( n, ilo, ihi, VR, ldvr, &work[itau], T, nb, &ierr ); #endif time_sum += timer_stop( time_unghr ); flop_sum += flops_stop( flop_unghr ); /* Perform QR iteration, accumulating Schur vectors in VR * (Workspace: need N+1, prefer N+HSWORK (see comments) ) * - including N reserved for gebal/gebak, unused by shseqr */ timer_start( time_hseqr ); flops_start( flop_hseqr ); iwrk = itau; liwrk = lwork - iwrk; lapackf77_shseqr( "S", "V", &n, &ilo, &ihi, A, &lda, wr, wi, VR, &ldvr, &work[iwrk], &liwrk, info ); time_sum += timer_stop( time_hseqr ); flop_sum += flops_stop( flop_hseqr ); } else { /* Compute eigenvalues only * (Workspace: need N+1, prefer N+HSWORK (see comments) ) * - including N reserved for gebal/gebak, unused by shseqr */ timer_start( time_hseqr ); flops_start( flop_hseqr ); iwrk = itau; liwrk = lwork - iwrk; lapackf77_shseqr( "E", "N", &n, &ilo, &ihi, A, &lda, wr, wi, VR, &ldvr, &work[iwrk], &liwrk, info ); time_sum += timer_stop( time_hseqr ); flop_sum += flops_stop( flop_hseqr ); } /* If INFO > 0 from SHSEQR, then quit */ if (*info > 0) { goto CLEANUP; } timer_start( time_trevc ); flops_start( flop_trevc ); if (wantvl || wantvr) { /* Compute left and/or right eigenvectors * (Workspace: need 4*N, prefer (2 + 2*nb)*N) * - including N reserved for gebal/gebak, unused by strevc */ liwrk = lwork - iwrk; #if TREVC_VERSION == 1 lapackf77_strevc( lapack_side_const(side), "B", select, &n, A, &lda, VL, &ldvl, VR, &ldvr, &n, &nout, &work[iwrk], &ierr ); #elif TREVC_VERSION == 2 lapackf77_strevc3( lapack_side_const(side), "B", select, &n, A, &lda, VL, &ldvl, VR, &ldvr, &n, &nout, &work[iwrk], &liwrk, &ierr ); #elif TREVC_VERSION == 3 magma_strevc3( side, MagmaBacktransVec, select, n, A, lda, VL, ldvl, VR, ldvr, n, &nout, &work[iwrk], liwrk, &ierr ); #elif TREVC_VERSION == 4 magma_strevc3_mt( side, MagmaBacktransVec, select, n, A, lda, VL, ldvl, VR, ldvr, n, &nout, &work[iwrk], liwrk, &ierr ); #elif TREVC_VERSION == 5 magma_strevc3_mt_gpu( side, MagmaBacktransVec, select, n, A, lda, VL, ldvl, VR, ldvr, n, &nout, &work[iwrk], liwrk, &ierr ); #else #error Unknown TREVC_VERSION #endif } time_sum += timer_stop( time_trevc ); flop_sum += flops_stop( flop_trevc ); if (wantvl) { /* Undo balancing of left eigenvectors * (Workspace: need N) */ lapackf77_sgebak( "B", "L", &n, &ilo, &ihi, &work[ibal], &n, VL, &ldvl, &ierr ); /* Normalize left eigenvectors and make largest component real */ for (i = 0; i < n; ++i) { if ( wi[i] == 0. ) { scl = 1. / magma_cblas_snrm2( n, VL(0,i), 1 ); blasf77_sscal( &n, &scl, VL(0,i), &ione ); } else if ( wi[i] > 0. ) { d__1 = magma_cblas_snrm2( n, VL(0,i), 1 ); d__2 = magma_cblas_snrm2( n, VL(0,i+1), 1 ); scl = 1. / lapackf77_slapy2( &d__1, &d__2 ); blasf77_sscal( &n, &scl, VL(0,i), &ione ); blasf77_sscal( &n, &scl, VL(0,i+1), &ione ); for (k = 0; k < n; ++k) { /* Computing 2nd power */ d__1 = *VL(k,i); d__2 = *VL(k,i+1); work[iwrk + k] = d__1*d__1 + d__2*d__2; } k = blasf77_isamax( &n, &work[iwrk], &ione ) - 1; // subtract 1; k is 0-based lapackf77_slartg( VL(k,i), VL(k,i+1), &cs, &sn, &r ); blasf77_srot( &n, VL(0,i), &ione, VL(0,i+1), &ione, &cs, &sn ); *VL(k,i+1) = 0.; } } } if (wantvr) { /* Undo balancing of right eigenvectors * (Workspace: need N) */ lapackf77_sgebak( "B", "R", &n, &ilo, &ihi, &work[ibal], &n, VR, &ldvr, &ierr ); /* Normalize right eigenvectors and make largest component real */ for (i = 0; i < n; ++i) { if ( wi[i] == 0. ) { scl = 1. / magma_cblas_snrm2( n, VR(0,i), 1 ); blasf77_sscal( &n, &scl, VR(0,i), &ione ); } else if ( wi[i] > 0. ) { d__1 = magma_cblas_snrm2( n, VR(0,i), 1 ); d__2 = magma_cblas_snrm2( n, VR(0,i+1), 1 ); scl = 1. / lapackf77_slapy2( &d__1, &d__2 ); blasf77_sscal( &n, &scl, VR(0,i), &ione ); blasf77_sscal( &n, &scl, VR(0,i+1), &ione ); for (k = 0; k < n; ++k) { /* Computing 2nd power */ d__1 = *VR(k,i); d__2 = *VR(k,i+1); work[iwrk + k] = d__1*d__1 + d__2*d__2; } k = blasf77_isamax( &n, &work[iwrk], &ione ) - 1; // subtract 1; k is 0-based lapackf77_slartg( VR(k,i), VR(k,i+1), &cs, &sn, &r ); blasf77_srot( &n, VR(0,i), &ione, VR(0,i+1), &ione, &cs, &sn ); *VR(k,i+1) = 0.; } } } CLEANUP: /* Undo scaling if necessary */ if (scalea) { // converged eigenvalues, stored in wr[i+1:n] and wi[i+1:n] for i = INFO magma_int_t nval = n - (*info); magma_int_t ld = max( nval, 1 ); lapackf77_slascl( "G", &izero, &izero, &cscale, &anrm, &nval, &ione, wr + (*info), &ld, &ierr ); lapackf77_slascl( "G", &izero, &izero, &cscale, &anrm, &nval, &ione, wi + (*info), &ld, &ierr ); if (*info > 0) { // first ilo columns were already upper triangular, // so the corresponding eigenvalues are also valid. nval = ilo - 1; lapackf77_slascl( "G", &izero, &izero, &cscale, &anrm, &nval, &ione, wr, &n, &ierr ); lapackf77_slascl( "G", &izero, &izero, &cscale, &anrm, &nval, &ione, wi, &n, &ierr ); } } #if defined(Version3) magma_free( dT ); #endif #if defined(Version5) magma_free_cpu( T ); #endif timer_stop( time_total ); flops_stop( flop_total ); timer_printf( "sgeev times n %5d, gehrd %7.3f, unghr %7.3f, hseqr %7.3f, trevc %7.3f, total %7.3f, sum %7.3f\n", (int) n, time_gehrd, time_unghr, time_hseqr, time_trevc, time_total, time_sum ); timer_printf( "sgeev flops n %5d, gehrd %7lld, unghr %7lld, hseqr %7lld, trevc %7lld, total %7lld, sum %7lld\n", (int) n, flop_gehrd, flop_unghr, flop_hseqr, flop_trevc, flop_total, flop_sum ); work[0] = magma_smake_lwork( optwrk ); return *info; } /* magma_sgeev */
/** Purpose ------- SSYEVDX computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix A. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues. If eigenvectors are desired, it uses a divide and conquer algorithm. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none. Arguments --------- @param[in] jobz magma_vec_t - = MagmaNoVec: Compute eigenvalues only; - = MagmaVec: Compute eigenvalues and eigenvectors. @param[in] range magma_range_t - = MagmaRangeAll: all eigenvalues will be found. - = MagmaRangeV: all eigenvalues in the half-open interval (VL,VU] will be found. - = MagmaRangeI: the IL-th through IU-th eigenvalues will be found. @param[in] uplo magma_uplo_t - = MagmaUpper: Upper triangle of A is stored; - = MagmaLower: Lower triangle of A is stored. @param[in] n INTEGER The order of the matrix A. N >= 0. @param[in,out] dA REAL array on the GPU, dimension (LDDA, N). On entry, the symmetric matrix A. If UPLO = MagmaUpper, the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A. If UPLO = MagmaLower, the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A. On exit, if JOBZ = MagmaVec, then if INFO = 0, the first m columns of A contains the required orthonormal eigenvectors of the matrix A. If JOBZ = MagmaNoVec, then on exit the lower triangle (if UPLO=MagmaLower) or the upper triangle (if UPLO=MagmaUpper) of A, including the diagonal, is destroyed. @param[in] ldda INTEGER The leading dimension of the array DA. LDDA >= max(1,N). @param[in] vl REAL @param[in] vu REAL If RANGE=MagmaRangeV, the lower and upper bounds of the interval to be searched for eigenvalues. VL < VU. Not referenced if RANGE = MagmaRangeAll or MagmaRangeI. @param[in] il INTEGER @param[in] iu INTEGER If RANGE=MagmaRangeI, the indices (in ascending order) of the smallest and largest eigenvalues to be returned. 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. Not referenced if RANGE = MagmaRangeAll or MagmaRangeV. @param[out] m INTEGER The total number of eigenvalues found. 0 <= M <= N. If RANGE = MagmaRangeAll, M = N, and if RANGE = MagmaRangeI, M = IU-IL+1. @param[out] w REAL array, dimension (N) If INFO = 0, the required m eigenvalues in ascending order. @param wA (workspace) REAL array, dimension (LDWA, N) @param[in] ldwa INTEGER The leading dimension of the array wA. LDWA >= max(1,N). @param[out] work (workspace) REAL array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK[0] returns the optimal LWORK. @param[in] lwork INTEGER The length of the array WORK. If N <= 1, LWORK >= 1. If JOBZ = MagmaNoVec and N > 1, LWORK >= 2*N + N*NB. If JOBZ = MagmaVec and N > 1, LWORK >= max( 2*N + N*NB, 1 + 6*N + 2*N**2 ). NB can be obtained through magma_get_ssytrd_nb(N). \n If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK and IWORK arrays, returns these values as the first entries of the WORK and IWORK arrays, and no error message related to LWORK or LIWORK is issued by XERBLA. @param[out] iwork (workspace) INTEGER array, dimension (MAX(1,LIWORK)) On exit, if INFO = 0, IWORK[0] returns the optimal LIWORK. @param[in] liwork INTEGER The dimension of the array IWORK. If N <= 1, LIWORK >= 1. If JOBZ = MagmaNoVec and N > 1, LIWORK >= 1. If JOBZ = MagmaVec and N > 1, LIWORK >= 3 + 5*N. \n If LIWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK and IWORK arrays, returns these values as the first entries of the WORK and IWORK arrays, and no error message related to LWORK or LIWORK is issued by XERBLA. @param[out] info INTEGER - = 0: successful exit - < 0: if INFO = -i, the i-th argument had an illegal value - > 0: if INFO = i and JOBZ = MagmaNoVec, then the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero; if INFO = i and JOBZ = MagmaVec, then the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns INFO/(N+1) through mod(INFO,N+1). Further Details --------------- Based on contributions by Jeff Rutter, Computer Science Division, University of California at Berkeley, USA Modified description of INFO. Sven, 16 Feb 05. @ingroup magma_ssyev_driver ********************************************************************/ extern "C" magma_int_t magma_ssyevdx_gpu(magma_vec_t jobz, magma_range_t range, magma_uplo_t uplo, magma_int_t n, float *dA, magma_int_t ldda, float vl, float vu, magma_int_t il, magma_int_t iu, magma_int_t *m, float *w, float *wA, magma_int_t ldwa, float *work, magma_int_t lwork, magma_int_t *iwork, magma_int_t liwork, magma_int_t *info) { magma_int_t ione = 1; float d__1; float eps; magma_int_t inde; float anrm; float rmin, rmax; float sigma; magma_int_t iinfo, lwmin; magma_int_t lower; magma_int_t wantz; magma_int_t indwk2, llwrk2; magma_int_t iscale; float safmin; float bignum; magma_int_t indtau; magma_int_t indwrk, liwmin; magma_int_t llwork; float smlnum; magma_int_t lquery; magma_int_t alleig, valeig, indeig; float *dwork; magma_int_t lddc = ldda; wantz = (jobz == MagmaVec); lower = (uplo == MagmaLower); alleig = (range == MagmaRangeAll); valeig = (range == MagmaRangeV); indeig = (range == MagmaRangeI); lquery = (lwork == -1 || liwork == -1); *info = 0; if (! (wantz || (jobz == MagmaNoVec))) { *info = -1; } else if (! (alleig || valeig || indeig)) { *info = -2; } else if (! (lower || (uplo == MagmaUpper))) { *info = -3; } else if (n < 0) { *info = -4; } else if (ldda < max(1,n)) { *info = -6; } else if (ldwa < max(1,n)) { *info = -14; } else { if (valeig) { if (n > 0 && vu <= vl) { *info = -8; } } else if (indeig) { if (il < 1 || il > max(1,n)) { *info = -9; } else if (iu < min(n,il) || iu > n) { *info = -10; } } } magma_int_t nb = magma_get_ssytrd_nb( n ); if ( n <= 1 ) { lwmin = 1; liwmin = 1; } else if ( wantz ) { lwmin = max( 2*n + n*nb, 1 + 6*n + 2*n*n ); liwmin = 3 + 5*n; } else { lwmin = 2*n + n*nb; liwmin = 1; } // multiply by 1+eps (in Double!) to ensure length gets rounded up, // if it cannot be exactly represented in floating point. real_Double_t one_eps = 1. + lapackf77_slamch("Epsilon"); work[0] = lwmin * one_eps; iwork[0] = liwmin; if ((lwork < lwmin) && !lquery) { *info = -16; } else if ((liwork < liwmin) && ! lquery) { *info = -18; } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } else if (lquery) { return *info; } /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */ if (n <= 128) { #ifdef ENABLE_DEBUG printf("--------------------------------------------------------------\n"); printf(" warning matrix too small N=%d NB=%d, calling lapack on CPU \n", (int) n, (int) nb); printf("--------------------------------------------------------------\n"); #endif const char* jobz_ = lapack_vec_const( jobz ); const char* uplo_ = lapack_uplo_const( uplo ); float *A; magma_smalloc_cpu( &A, n*n ); magma_sgetmatrix(n, n, dA, ldda, A, n); lapackf77_ssyevd(jobz_, uplo_, &n, A, &n, w, work, &lwork, iwork, &liwork, info); magma_ssetmatrix( n, n, A, n, dA, ldda); magma_free_cpu(A); return *info; } magma_queue_t stream; magma_queue_create( &stream ); // n*lddc for ssytrd2_gpu // n for slansy magma_int_t ldwork = n*lddc; if ( wantz ) { // need 3n^2/2 for sstedx ldwork = max( ldwork, 3*n*(n/2 + 1)); } if (MAGMA_SUCCESS != magma_smalloc( &dwork, ldwork )) { *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } /* Get machine constants. */ safmin = lapackf77_slamch("Safe minimum"); eps = lapackf77_slamch("Precision"); smlnum = safmin / eps; bignum = 1. / smlnum; rmin = magma_ssqrt(smlnum); rmax = magma_ssqrt(bignum); /* Scale matrix to allowable range, if necessary. */ anrm = magmablas_slansy(MagmaMaxNorm, uplo, n, dA, ldda, dwork); iscale = 0; sigma = 1; if (anrm > 0. && anrm < rmin) { iscale = 1; sigma = rmin / anrm; } else if (anrm > rmax) { iscale = 1; sigma = rmax / anrm; } if (iscale == 1) { magmablas_slascl(uplo, 0, 0, 1., sigma, n, n, dA, ldda, info); } /* Call SSYTRD to reduce symmetric matrix to tridiagonal form. */ // ssytrd work: e (n) + tau (n) + llwork (n*nb) ==> 2n + n*nb // sstedx work: e (n) + tau (n) + z (n*n) + llwrk2 (1 + 4*n + n^2) ==> 1 + 6n + 2n^2 inde = 0; indtau = inde + n; indwrk = indtau + n; indwk2 = indwrk + n*n; llwork = lwork - indwrk; llwrk2 = lwork - indwk2; magma_timer_t time=0; timer_start( time ); #ifdef FAST_SYMV magma_ssytrd2_gpu(uplo, n, dA, ldda, w, &work[inde], &work[indtau], wA, ldwa, &work[indwrk], llwork, dwork, n*lddc, &iinfo); #else magma_ssytrd_gpu(uplo, n, dA, ldda, w, &work[inde], &work[indtau], wA, ldwa, &work[indwrk], llwork, &iinfo); #endif timer_stop( time ); timer_printf( "time ssytrd = %6.2f\n", time ); /* For eigenvalues only, call SSTERF. For eigenvectors, first call SSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the tridiagonal matrix, then call SORMTR to multiply it to the Householder transformations represented as Householder vectors in A. */ if (! wantz) { lapackf77_ssterf(&n, w, &work[inde], info); magma_smove_eig(range, n, w, &il, &iu, vl, vu, m); } else { timer_start( time ); magma_sstedx(range, n, vl, vu, il, iu, w, &work[inde], &work[indwrk], n, &work[indwk2], llwrk2, iwork, liwork, dwork, info); timer_stop( time ); timer_printf( "time sstedx = %6.2f\n", time ); timer_start( time ); magma_smove_eig(range, n, w, &il, &iu, vl, vu, m); magma_ssetmatrix( n, *m, &work[indwrk + n* (il-1) ], n, dwork, lddc ); magma_sormtr_gpu(MagmaLeft, uplo, MagmaNoTrans, n, *m, dA, ldda, &work[indtau], dwork, lddc, wA, ldwa, &iinfo); magma_scopymatrix( n, *m, dwork, lddc, dA, ldda ); timer_stop( time ); timer_printf( "time sormtr + copy = %6.2f\n", time ); } /* If matrix was scaled, then rescale eigenvalues appropriately. */ if (iscale == 1) { d__1 = 1. / sigma; blasf77_sscal(&n, &d__1, w, &ione); } work[0] = lwmin * one_eps; // round up iwork[0] = liwmin; magma_queue_destroy( stream ); magma_free( dwork ); return *info; } /* magma_ssyevd_gpu */
/** Purpose ------- CHEEVD_GPU computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A. If eigenvectors are desired, it uses a divide and conquer algorithm. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none. Arguments --------- @param[in] jobz magma_vec_t - = MagmaNoVec: Compute eigenvalues only; - = MagmaVec: Compute eigenvalues and eigenvectors. @param[in] uplo magma_uplo_t - = MagmaUpper: Upper triangle of A is stored; - = MagmaLower: Lower triangle of A is stored. @param[in] n INTEGER The order of the matrix A. N >= 0. @param[in,out] dA COMPLEX array on the GPU, dimension (LDDA, N). On entry, the Hermitian matrix A. If UPLO = MagmaUpper, the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A. If UPLO = MagmaLower, the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A. On exit, if JOBZ = MagmaVec, then if INFO = 0, A contains the orthonormal eigenvectors of the matrix A. If JOBZ = MagmaNoVec, then on exit the lower triangle (if UPLO=MagmaLower) or the upper triangle (if UPLO=MagmaUpper) of A, including the diagonal, is destroyed. @param[in] ldda INTEGER The leading dimension of the array DA. LDDA >= max(1,N). @param[out] w REAL array, dimension (N) If INFO = 0, the eigenvalues in ascending order. @param wA (workspace) COMPLEX array, dimension (LDWA, N) @param[in] ldwa INTEGER The leading dimension of the array wA. LDWA >= max(1,N). @param[out] work (workspace) COMPLEX array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK[0] returns the optimal LWORK. @param[in] lwork INTEGER The length of the array WORK. If N <= 1, LWORK >= 1. If JOBZ = MagmaNoVec and N > 1, LWORK >= N + N*NB. If JOBZ = MagmaVec and N > 1, LWORK >= max( N + N*NB, 2*N + N**2 ). NB can be obtained through magma_get_chetrd_nb(N). \n If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA. @param[out] rwork (workspace) REAL array, dimension (LRWORK) On exit, if INFO = 0, RWORK[0] returns the optimal LRWORK. @param[in] lrwork INTEGER The dimension of the array RWORK. If N <= 1, LRWORK >= 1. If JOBZ = MagmaNoVec and N > 1, LRWORK >= N. If JOBZ = MagmaVec and N > 1, LRWORK >= 1 + 5*N + 2*N**2. \n If LRWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA. @param[out] iwork (workspace) INTEGER array, dimension (MAX(1,LIWORK)) On exit, if INFO = 0, IWORK[0] returns the optimal LIWORK. @param[in] liwork INTEGER The dimension of the array IWORK. If N <= 1, LIWORK >= 1. If JOBZ = MagmaNoVec and N > 1, LIWORK >= 1. If JOBZ = MagmaVec and N > 1, LIWORK >= 3 + 5*N. \n If LIWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA. @param[out] info INTEGER - = 0: successful exit - < 0: if INFO = -i, the i-th argument had an illegal value - > 0: if INFO = i and JOBZ = MagmaNoVec, then the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero; if INFO = i and JOBZ = MagmaVec, then the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns INFO/(N+1) through mod(INFO,N+1). Further Details --------------- Based on contributions by Jeff Rutter, Computer Science Division, University of California at Berkeley, USA Modified description of INFO. Sven, 16 Feb 05. @ingroup magma_cheev_driver ********************************************************************/ extern "C" magma_int_t magma_cheevd_gpu(magma_vec_t jobz, magma_uplo_t uplo, magma_int_t n, magmaFloatComplex *dA, magma_int_t ldda, float *w, magmaFloatComplex *wA, magma_int_t ldwa, magmaFloatComplex *work, magma_int_t lwork, float *rwork, magma_int_t lrwork, magma_int_t *iwork, magma_int_t liwork, magma_int_t *info) { const char* uplo_ = lapack_uplo_const( uplo ); const char* jobz_ = lapack_vec_const( jobz ); magma_int_t ione = 1; float d__1; float eps; magma_int_t inde; float anrm; magma_int_t imax; float rmin, rmax; float sigma; magma_int_t iinfo, lwmin; magma_int_t lower; magma_int_t llrwk; magma_int_t wantz; magma_int_t indwk2, llwrk2; magma_int_t iscale; float safmin; float bignum; magma_int_t indtau; magma_int_t indrwk, indwrk, liwmin; magma_int_t lrwmin, llwork; float smlnum; magma_int_t lquery; float *dwork; magmaFloatComplex *dC; magma_int_t lddc = ldda; wantz = (jobz == MagmaVec); lower = (uplo == MagmaLower); lquery = (lwork == -1 || lrwork == -1 || liwork == -1); *info = 0; if (! (wantz || (jobz == MagmaNoVec))) { *info = -1; } else if (! (lower || (uplo == MagmaUpper))) { *info = -2; } else if (n < 0) { *info = -3; } else if (ldda < max(1,n)) { *info = -5; } else if (ldwa < max(1,n)) { *info = -8; } magma_int_t nb = magma_get_chetrd_nb( n ); if ( n <= 1 ) { lwmin = 1; lrwmin = 1; liwmin = 1; } else if ( wantz ) { lwmin = max( n + n*nb, 2*n + n*n ); lrwmin = 1 + 5*n + 2*n*n; liwmin = 3 + 5*n; } else { lwmin = n + n*nb; lrwmin = n; liwmin = 1; } // multiply by 1+eps (in Double!) to ensure length gets rounded up, // if it cannot be exactly represented in floating point. real_Double_t one_eps = 1. + lapackf77_slamch("Epsilon"); work[0] = MAGMA_C_MAKE( lwmin * one_eps, 0.); rwork[0] = lrwmin * one_eps; iwork[0] = liwmin; if ((lwork < lwmin) && !lquery) { *info = -10; } else if ((lrwork < lrwmin) && ! lquery) { *info = -12; } else if ((liwork < liwmin) && ! lquery) { *info = -14; } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } else if (lquery) { return *info; } /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */ if (n <= 128) { #ifdef ENABLE_DEBUG printf("--------------------------------------------------------------\n"); printf(" warning matrix too small N=%d NB=%d, calling lapack on CPU \n", (int) n, (int) nb); printf("--------------------------------------------------------------\n"); #endif magmaFloatComplex *A; magma_cmalloc_cpu( &A, n*n ); magma_cgetmatrix(n, n, dA, ldda, A, n); lapackf77_cheevd(jobz_, uplo_, &n, A, &n, w, work, &lwork, rwork, &lrwork, iwork, &liwork, info); magma_csetmatrix( n, n, A, n, dA, ldda); magma_free_cpu(A); return *info; } magma_queue_t stream; magma_queue_create( &stream ); // dC and dwork are never used together, so use one buffer for both; // unfortunately they're different types (complex and float). // (this works better in dsyevd_gpu where they're both float). // n*lddc for chetrd2_gpu, *2 for complex // n for clanhe magma_int_t ldwork = n*lddc*2; if ( wantz ) { // need 3n^2/2 for cstedx ldwork = max( ldwork, 3*n*(n/2 + 1) ); } if (MAGMA_SUCCESS != magma_smalloc( &dwork, ldwork )) { *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } dC = (magmaFloatComplex*) dwork; /* Get machine constants. */ safmin = lapackf77_slamch("Safe minimum"); eps = lapackf77_slamch("Precision"); smlnum = safmin / eps; bignum = 1. / smlnum; rmin = magma_ssqrt(smlnum); rmax = magma_ssqrt(bignum); /* Scale matrix to allowable range, if necessary. */ anrm = magmablas_clanhe(MagmaMaxNorm, uplo, n, dA, ldda, dwork); iscale = 0; sigma = 1; if (anrm > 0. && anrm < rmin) { iscale = 1; sigma = rmin / anrm; } else if (anrm > rmax) { iscale = 1; sigma = rmax / anrm; } if (iscale == 1) { magmablas_clascl(uplo, 0, 0, 1., sigma, n, n, dA, ldda, info); } /* Call CHETRD to reduce Hermitian matrix to tridiagonal form. */ // chetrd rwork: e (n) // cstedx rwork: e (n) + llrwk (1 + 4*N + 2*N**2) ==> 1 + 5n + 2n^2 inde = 0; indrwk = inde + n; llrwk = lrwork - indrwk; // chetrd work: tau (n) + llwork (n*nb) ==> n + n*nb // cstedx work: tau (n) + z (n^2) // cunmtr work: tau (n) + z (n^2) + llwrk2 (n or n*nb) ==> 2n + n^2, or n + n*nb + n^2 indtau = 0; indwrk = indtau + n; indwk2 = indwrk + n*n; llwork = lwork - indwrk; llwrk2 = lwork - indwk2; magma_timer_t time=0; timer_start( time ); #ifdef FAST_HEMV magma_chetrd2_gpu(uplo, n, dA, ldda, w, &rwork[inde], &work[indtau], wA, ldwa, &work[indwrk], llwork, dC, n*lddc, &iinfo); #else magma_chetrd_gpu (uplo, n, dA, ldda, w, &rwork[inde], &work[indtau], wA, ldwa, &work[indwrk], llwork, &iinfo); #endif timer_stop( time ); timer_printf( "time chetrd_gpu = %6.2f\n", time ); /* For eigenvalues only, call SSTERF. For eigenvectors, first call CSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the tridiagonal matrix, then call CUNMTR to multiply it to the Householder transformations represented as Householder vectors in A. */ if (! wantz) { lapackf77_ssterf(&n, w, &rwork[inde], info); } else { timer_start( time ); magma_cstedx( MagmaRangeAll, n, 0., 0., 0, 0, w, &rwork[inde], &work[indwrk], n, &rwork[indrwk], llrwk, iwork, liwork, dwork, info); timer_stop( time ); timer_printf( "time cstedx = %6.2f\n", time ); timer_start( time ); magma_csetmatrix( n, n, &work[indwrk], n, dC, lddc ); magma_cunmtr_gpu(MagmaLeft, uplo, MagmaNoTrans, n, n, dA, ldda, &work[indtau], dC, lddc, wA, ldwa, &iinfo); magma_ccopymatrix( n, n, dC, lddc, dA, ldda ); timer_stop( time ); timer_printf( "time cunmtr_gpu + copy = %6.2f\n", time ); } /* If matrix was scaled, then rescale eigenvalues appropriately. */ if (iscale == 1) { if (*info == 0) { imax = n; } else { imax = *info - 1; } d__1 = 1. / sigma; blasf77_sscal(&imax, &d__1, w, &ione); } work[0] = MAGMA_C_MAKE( lwmin * one_eps, 0.); // round up rwork[0] = lrwmin * one_eps; iwork[0] = liwmin; magma_queue_destroy( stream ); magma_free( dwork ); return *info; } /* magma_cheevd_gpu */
/** Purpose ------- SLAEX3 finds the roots of the secular equation, as defined by the values in D, W, and RHO, between 1 and K. It makes the appropriate calls to SLAED4 and then updates the eigenvectors by multiplying the matrix of eigenvectors of the pair of eigensystems being combined by the matrix of eigenvectors of the K-by-K system which is solved here. It is used in the last step when only a part of the eigenvectors is required. It compute only the required part of the eigenvectors and the rest is not used. This code makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none. Arguments --------- @param[in] ngpu INTEGER Number of GPUs to use. ngpu > 0. @param[in] k INTEGER The number of terms in the rational function to be solved by SLAED4. K >= 0. @param[in] n INTEGER The number of rows and columns in the Q matrix. N >= K (deflation may result in N > K). @param[in] n1 INTEGER The location of the last eigenvalue in the leading submatrix. min(1,N) <= N1 <= N/2. @param[out] d REAL array, dimension (N) D(I) contains the updated eigenvalues for 1 <= I <= K. @param[out] Q REAL array, dimension (LDQ,N) Initially the first K columns are used as workspace. On output the columns ??? to ??? contain the updated eigenvectors. @param[in] ldq INTEGER The leading dimension of the array Q. LDQ >= max(1,N). @param[in] rho REAL The value of the parameter in the rank one update equation. RHO >= 0 required. @param[in,out] dlamda REAL array, dimension (K) The first K elements of this array contain the old roots of the deflated updating problem. These are the poles of the secular equation. May be changed on output by having lowest order bit set to zero on Cray X-MP, Cray Y-MP, Cray-2, or Cray C-90, as described above. @param[in] Q2 REAL array, dimension (LDQ2, N) The first K columns of this matrix contain the non-deflated eigenvectors for the split problem. @param[in] indx INTEGER array, dimension (N) The permutation used to arrange the columns of the deflated Q matrix into three groups (see SLAED2). The rows of the eigenvectors found by SLAED4 must be likewise permuted before the matrix multiply can take place. @param[in] ctot INTEGER array, dimension (4) A count of the total number of the various types of columns in Q, as described in INDX. The fourth column type is any column which has been deflated. @param[in,out] w REAL array, dimension (K) The first K elements of this array contain the components of the deflation-adjusted updating vector. Destroyed on output. @param s (workspace) REAL array, dimension (N1 + 1)*K Will contain the eigenvectors of the repaired matrix which will be multiplied by the previously accumulated eigenvectors to update the system. @param[out] indxq INTEGER array, dimension (N) On exit, the permutation which will reintegrate the subproblems back into sorted order, i.e. D( INDXQ( I = 1, N ) ) will be in ascending order. @param dwork (devices workspaces) REAL array of arrays, dimension NRGPU. if NRGPU = 1 the dimension of the first workspace should be (3*N*N/2+3*N) otherwise the NRGPU workspaces should have the size ceil((N-N1) * (N-N1) / floor(ngpu/2)) + NB * ((N-N1) + (N-N1) / floor(ngpu/2)) @param queues (device queues) magma_queue_t array, dimension (MagmaMaxGPUs,2) @param[in] range magma_range_t - = MagmaRangeAll: all eigenvalues will be found. - = MagmaRangeV: all eigenvalues in the half-open interval (VL,VU] will be found. - = MagmaRangeI: the IL-th through IU-th eigenvalues will be found. TODO verify range, vl, vu, il, iu -- copied from slaex1. @param[in] vl REAL @param[in] vu REAL if RANGE=MagmaRangeV, the lower and upper bounds of the interval to be searched for eigenvalues. VL < VU. Not referenced if RANGE = MagmaRangeAll or MagmaRangeI. @param[in] il INTEGER @param[in] iu INTEGER if RANGE=MagmaRangeI, the indices (in ascending order) of the smallest and largest eigenvalues to be returned. 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. Not referenced if RANGE = MagmaRangeAll or MagmaRangeV. @param[out] info INTEGER - = 0: successful exit. - < 0: if INFO = -i, the i-th argument had an illegal value. - > 0: if INFO = 1, an eigenvalue did not converge Further Details --------------- Based on contributions by Jeff Rutter, Computer Science Division, University of California at Berkeley, USA Modified by Francoise Tisseur, University of Tennessee. @ingroup magma_ssyev_aux ********************************************************************/ extern "C" magma_int_t magma_slaex3_m( magma_int_t ngpu, magma_int_t k, magma_int_t n, magma_int_t n1, float *d, float *Q, magma_int_t ldq, float rho, float *dlamda, float *Q2, magma_int_t *indx, magma_int_t *ctot, float *w, float *s, magma_int_t *indxq, magmaFloat_ptr dwork[], magma_queue_t queues[MagmaMaxGPUs][2], magma_range_t range, float vl, float vu, magma_int_t il, magma_int_t iu, magma_int_t *info ) { #define Q(i_,j_) (Q + (i_) + (j_)*ldq) #define dQ2(id) (dwork[id]) #define dS(id, ii) (dwork[id] + n2*n2_loc + (ii)*(n2*nb)) #define dQ(id, ii) (dwork[id] + n2*n2_loc + 2*(n2*nb) + (ii)*(n2_loc*nb)) if (ngpu == 1) { magma_setdevice(0); magma_slaex3(k, n, n1, d, Q, ldq, rho, dlamda, Q2, indx, ctot, w, s, indxq, *dwork, range, vl, vu, il, iu, info ); return *info; } float d_one = 1.; float d_zero = 0.; magma_int_t ione = 1; magma_int_t ineg_one = -1; magma_int_t iil, iiu, rk; magma_int_t n1_loc, n2_loc, ib, nb, ib2, igpu; magma_int_t ni_loc[MagmaMaxGPUs]; magma_int_t i, ind, iq2, j, n12, n2, n23, tmp; float temp; magma_int_t alleig, valeig, indeig; alleig = (range == MagmaRangeAll); valeig = (range == MagmaRangeV); indeig = (range == MagmaRangeI); *info = 0; if (k < 0) *info=-1; else if (n < k) *info=-2; else if (ldq < max(1,n)) *info=-6; else if (! (alleig || valeig || indeig)) *info = -15; else { if (valeig) { if (n > 0 && vu <= vl) *info = -17; } else if (indeig) { if (il < 1 || il > max(1,n)) *info = -18; else if (iu < min(n,il) || iu > n) *info = -19; } } if (*info != 0) { magma_xerbla(__func__, -(*info)); return *info; } // Quick return if possible if (k == 0) return *info; magma_device_t orig_dev; magma_getdevice( &orig_dev ); magma_queue_t orig_stream; magmablasGetKernelStream( &orig_stream ); /* Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can be computed with high relative accuracy (barring over/underflow). This is a problem on machines without a guard digit in add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I), which on any of these machines zeros out the bottommost bit of DLAMDA(I) if it is 1; this makes the subsequent subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation occurs. On binary machines with a guard digit (almost all machines) it does not change DLAMDA(I) at all. On hexadecimal and decimal machines with a guard digit, it slightly changes the bottommost bits of DLAMDA(I). It does not account for hexadecimal or decimal machines without guard digits (we know of none). We use a subroutine call to compute 2*DLAMBDA(I) to prevent optimizing compilers from eliminating this code.*/ //#define CHECK_CPU #ifdef CHECK_CPU float *hwS[2][MagmaMaxGPUs], *hwQ[2][MagmaMaxGPUs], *hwQ2[MagmaMaxGPUs]; #define hQ2(id) (hwQ2[id]) #define hS(id, ii) (hwS[ii][id]) #define hQ(id, ii) (hwQ[ii][id]) #endif n2 = n - n1; n12 = ctot[0] + ctot[1]; n23 = ctot[1] + ctot[2]; iq2 = n1 * n12; //lq2 = iq2 + n2 * n23; n1_loc = (n1-1) / (ngpu/2) + 1; n2_loc = (n2-1) / (ngpu/2) + 1; nb = magma_get_slaex3_m_nb(); if (n1 >= magma_get_slaex3_m_k()) { #ifdef CHECK_CPU for (igpu = 0; igpu < ngpu; ++igpu) { magma_smalloc_pinned( &(hwS[0][igpu]), n2*nb ); magma_smalloc_pinned( &(hwS[1][igpu]), n2*nb ); magma_smalloc_pinned( &(hwQ2[igpu]), n2*n2_loc ); magma_smalloc_pinned( &(hwQ[0][igpu]), n2_loc*nb ); magma_smalloc_pinned( &(hwQ[1][igpu]), n2_loc*nb ); } #endif for (igpu = 0; igpu < ngpu-1; igpu += 2) { ni_loc[igpu] = min(n1_loc, n1 - igpu/2 * n1_loc); #ifdef CHECK_CPU lapackf77_slacpy("A", &ni_loc[igpu], &n12, Q2+n1_loc*(igpu/2), &n1, hQ2(igpu), &n1_loc); #endif magma_setdevice(igpu); magma_ssetmatrix_async( ni_loc[igpu], n12, Q2+n1_loc*(igpu/2), n1, dQ2(igpu), n1_loc, queues[igpu][0] ); ni_loc[igpu+1] = min(n2_loc, n2 - igpu/2 * n2_loc); #ifdef CHECK_CPU lapackf77_slacpy("A", &ni_loc[igpu+1], &n23, Q2+iq2+n2_loc*(igpu/2), &n2, hQ2(igpu+1), &n2_loc); #endif magma_setdevice(igpu+1); magma_ssetmatrix_async( ni_loc[igpu+1], n23, Q2+iq2+n2_loc*(igpu/2), n2, dQ2(igpu+1), n2_loc, queues[igpu+1][0] ); } } // #ifdef _OPENMP ///////////////////////////////////////////////////////////////////////////////// //openmp implementation ///////////////////////////////////////////////////////////////////////////////// magma_timer_t time=0; timer_start( time ); #pragma omp parallel private(i, j, tmp, temp) { magma_int_t id = omp_get_thread_num(); magma_int_t tot = omp_get_num_threads(); magma_int_t ib = ( id * k) / tot; //start index of local loop magma_int_t ie = ((id+1) * k) / tot; //end index of local loop magma_int_t ik = ie - ib; //number of local indices for (i = ib; i < ie; ++i) dlamda[i]=lapackf77_slamc3(&dlamda[i], &dlamda[i]) - dlamda[i]; for (j = ib; j < ie; ++j) { magma_int_t tmpp=j+1; magma_int_t iinfo = 0; lapackf77_slaed4(&k, &tmpp, dlamda, w, Q(0,j), &rho, &d[j], &iinfo); // If the zero finder fails, the computation is terminated. if (iinfo != 0) { #pragma omp critical (info) *info = iinfo; break; } } #pragma omp barrier if (*info == 0) { #pragma omp single { //Prepare the INDXQ sorting permutation. magma_int_t nk = n - k; lapackf77_slamrg( &k, &nk, d, &ione, &ineg_one, indxq); //compute the lower and upper bound of the non-deflated eigenvectors if (valeig) magma_svrange(k, d, &iil, &iiu, vl, vu); else if (indeig) magma_sirange(k, indxq, &iil, &iiu, il, iu); else { iil = 1; iiu = k; } rk = iiu - iil + 1; } if (k == 2) { #pragma omp single { for (j = 0; j < k; ++j) { w[0] = *Q(0,j); w[1] = *Q(1,j); i = indx[0] - 1; *Q(0,j) = w[i]; i = indx[1] - 1; *Q(1,j) = w[i]; } } } else if (k != 1) { // Compute updated W. blasf77_scopy( &ik, &w[ib], &ione, &s[ib], &ione); // Initialize W(I) = Q(I,I) tmp = ldq + 1; blasf77_scopy( &ik, Q(ib,ib), &tmp, &w[ib], &ione); for (j = 0; j < k; ++j) { magma_int_t i_tmp = min(j, ie); for (i = ib; i < i_tmp; ++i) w[i] = w[i] * ( *Q(i, j) / ( dlamda[i] - dlamda[j] ) ); i_tmp = max(j+1, ib); for (i = i_tmp; i < ie; ++i) w[i] = w[i] * ( *Q(i, j) / ( dlamda[i] - dlamda[j] ) ); } for (i = ib; i < ie; ++i) w[i] = copysign( sqrt( -w[i] ), s[i]); #pragma omp barrier //reduce the number of used threads to have enough S workspace tot = min(n1, omp_get_num_threads()); if (id < tot) { ib = ( id * rk) / tot + iil - 1; ie = ((id+1) * rk) / tot + iil - 1; ik = ie - ib; } else { ib = -1; ie = -1; ik = -1; } // Compute eigenvectors of the modified rank-1 modification. for (j = ib; j < ie; ++j) { for (i = 0; i < k; ++i) s[id*k + i] = w[i] / *Q(i,j); temp = magma_cblas_snrm2( k, s+id*k, 1 ); for (i = 0; i < k; ++i) { magma_int_t iii = indx[i] - 1; *Q(i,j) = s[id*k + iii] / temp; } } } } } if (*info != 0) return *info; timer_stop( time ); timer_printf( "eigenvalues/vector D+zzT = %6.2f\n", time ); #else ///////////////////////////////////////////////////////////////////////////////// // Non openmp implementation ///////////////////////////////////////////////////////////////////////////////// magma_timer_t time=0; timer_start( time ); for (i = 0; i < k; ++i) dlamda[i]=lapackf77_slamc3(&dlamda[i], &dlamda[i]) - dlamda[i]; for (j = 0; j < k; ++j) { magma_int_t tmpp=j+1; magma_int_t iinfo = 0; lapackf77_slaed4(&k, &tmpp, dlamda, w, Q(0,j), &rho, &d[j], &iinfo); // If the zero finder fails, the computation is terminated. if (iinfo != 0) *info=iinfo; } if (*info != 0) return *info; //Prepare the INDXQ sorting permutation. magma_int_t nk = n - k; lapackf77_slamrg( &k, &nk, d, &ione, &ineg_one, indxq); //compute the lower and upper bound of the non-deflated eigenvectors if (valeig) magma_svrange(k, d, &iil, &iiu, vl, vu); else if (indeig) magma_sirange(k, indxq, &iil, &iiu, il, iu); else { iil = 1; iiu = k; } rk = iiu - iil + 1; if (k == 2) { for (j = 0; j < k; ++j) { w[0] = *Q(0,j); w[1] = *Q(1,j); i = indx[0] - 1; *Q(0,j) = w[i]; i = indx[1] - 1; *Q(1,j) = w[i]; } } else if (k != 1) { // Compute updated W. blasf77_scopy( &k, w, &ione, s, &ione); // Initialize W(I) = Q(I,I) tmp = ldq + 1; blasf77_scopy( &k, Q, &tmp, w, &ione); for (j = 0; j < k; ++j) { for (i = 0; i < j; ++i) w[i] = w[i] * ( *Q(i, j) / ( dlamda[i] - dlamda[j] ) ); for (i = j+1; i < k; ++i) w[i] = w[i] * ( *Q(i, j) / ( dlamda[i] - dlamda[j] ) ); } for (i = 0; i < k; ++i) w[i] = copysign( sqrt( -w[i] ), s[i]); // Compute eigenvectors of the modified rank-1 modification. for (j = iil-1; j < iiu; ++j) { for (i = 0; i < k; ++i) s[i] = w[i] / *Q(i,j); temp = magma_cblas_snrm2( k, s, 1 ); for (i = 0; i < k; ++i) { magma_int_t iii = indx[i] - 1; *Q(i,j) = s[iii] / temp; } } } timer_stop( time ); timer_printf( "eigenvalues/vector D+zzT = %6.2f\n", time ); #endif //_OPENMP // Compute the updated eigenvectors. timer_start( time ); if (rk > 0) { if (n1 < magma_get_slaex3_m_k()) { // stay on the CPU if ( n23 != 0 ) { lapackf77_slacpy("A", &n23, &rk, Q(ctot[0],iil-1), &ldq, s, &n23); blasf77_sgemm("N", "N", &n2, &rk, &n23, &d_one, &Q2[iq2], &n2, s, &n23, &d_zero, Q(n1,iil-1), &ldq ); } else lapackf77_slaset("A", &n2, &rk, &d_zero, &d_zero, Q(n1,iil-1), &ldq); if ( n12 != 0 ) { lapackf77_slacpy("A", &n12, &rk, Q(0,iil-1), &ldq, s, &n12); blasf77_sgemm("N", "N", &n1, &rk, &n12, &d_one, Q2, &n1, s, &n12, &d_zero, Q(0,iil-1), &ldq); } else lapackf77_slaset("A", &n1, &rk, &d_zero, &d_zero, Q(0,iil-1), &ldq); } else { //use the gpus ib = min(nb, rk); for (igpu = 0; igpu < ngpu-1; igpu += 2) { if (n23 != 0) { magma_setdevice(igpu+1); magma_ssetmatrix_async( n23, ib, Q(ctot[0],iil-1), ldq, dS(igpu+1,0), n23, queues[igpu+1][0] ); } if (n12 != 0) { magma_setdevice(igpu); magma_ssetmatrix_async( n12, ib, Q(0,iil-1), ldq, dS(igpu,0), n12, queues[igpu][0] ); } } for (i = 0; i < rk; i += nb) { ib = min(nb, rk - i); ind = (i/nb)%2; if (i+nb < rk) { ib2 = min(nb, rk - i - nb); for (igpu = 0; igpu < ngpu-1; igpu += 2) { if (n23 != 0) { magma_setdevice(igpu+1); magma_ssetmatrix_async( n23, ib2, Q(ctot[0],iil-1+i+nb), ldq, dS(igpu+1,(ind+1)%2), n23, queues[igpu+1][(ind+1)%2] ); } if (n12 != 0) { magma_setdevice(igpu); magma_ssetmatrix_async( n12, ib2, Q(0,iil-1+i+nb), ldq, dS(igpu,(ind+1)%2), n12, queues[igpu][(ind+1)%2] ); } } } // Ensure that the data is copied on gpu since we will overwrite it. for (igpu = 0; igpu < ngpu-1; igpu += 2) { if (n23 != 0) { #ifdef CHECK_CPU lapackf77_slacpy("A", &n23, &ib, Q(ctot[0],iil-1+i), &ldq, hS(igpu+1,ind), &n23); #endif magma_setdevice(igpu+1); magma_queue_sync( queues[igpu+1][ind] ); } if (n12 != 0) { #ifdef CHECK_CPU lapackf77_slacpy("A", &n12, &ib, Q(0,iil-1+i), &ldq, hS(igpu,ind), &n12); #endif magma_setdevice(igpu); magma_queue_sync( queues[igpu][ind] ); } } for (igpu = 0; igpu < ngpu-1; igpu += 2) { if (n23 != 0) { #ifdef CHECK_CPU blasf77_sgemm("N", "N", &ni_loc[igpu+1], &ib, &n23, &d_one, hQ2(igpu+1), &n2_loc, hS(igpu+1,ind), &n23, &d_zero, hQ(igpu+1, ind), &n2_loc); #endif magma_setdevice(igpu+1); magmablasSetKernelStream(queues[igpu+1][ind]); magma_sgemm(MagmaNoTrans, MagmaNoTrans, ni_loc[igpu+1], ib, n23, d_one, dQ2(igpu+1), n2_loc, dS(igpu+1, ind), n23, d_zero, dQ(igpu+1, ind), n2_loc); #ifdef CHECK_CPU printf("norm Q %d: %f\n", igpu+1, cpu_gpu_sdiff(ni_loc[igpu+1], ib, hQ(igpu+1, ind), n2_loc, dQ(igpu+1, ind), n2_loc)); #endif } if (n12 != 0) { #ifdef CHECK_CPU blasf77_sgemm("N", "N", &ni_loc[igpu], &ib, &n12, &d_one, hQ2(igpu), &n1_loc, hS(igpu,ind%2), &n12, &d_zero, hQ(igpu, ind%2), &n1_loc); #endif magma_setdevice(igpu); magmablasSetKernelStream(queues[igpu][ind]); magma_sgemm(MagmaNoTrans, MagmaNoTrans, ni_loc[igpu], ib, n12, d_one, dQ2(igpu), n1_loc, dS(igpu, ind), n12, d_zero, dQ(igpu, ind), n1_loc); #ifdef CHECK_CPU printf("norm Q %d: %f\n", igpu, cpu_gpu_sdiff(ni_loc[igpu], ib, hQ(igpu, ind), n1_loc, dQ(igpu, ind), n1_loc)); #endif } } for (igpu = 0; igpu < ngpu-1; igpu += 2) { if (n23 != 0) { magma_setdevice(igpu+1); magma_sgetmatrix( ni_loc[igpu+1], ib, dQ(igpu+1, ind), n2_loc, Q(n1+n2_loc*(igpu/2),iil-1+i), ldq ); // magma_sgetmatrix_async( ni_loc[igpu+1], ib, dQ(igpu+1, ind), n2_loc, // Q(n1+n2_loc*(igpu/2),iil-1+i), ldq, queues[igpu+1][ind] ); } if (n12 != 0) { magma_setdevice(igpu); magma_sgetmatrix( ni_loc[igpu], ib, dQ(igpu, ind), n1_loc, Q(n1_loc*(igpu/2),iil-1+i), ldq ); // magma_sgetmatrix_async( ni_loc[igpu], ib, dQ(igpu, ind), n1_loc, // Q(n1_loc*(igpu/2),iil-1+i), ldq, queues[igpu][ind] ); } } } for (igpu = 0; igpu < ngpu; ++igpu) { #ifdef CHECK_CPU magma_free_pinned( hwS[1][igpu] ); magma_free_pinned( hwS[0][igpu] ); magma_free_pinned( hwQ2[igpu] ); magma_free_pinned( hwQ[1][igpu] ); magma_free_pinned( hwQ[0][igpu] ); #endif magma_setdevice(igpu); magma_queue_sync( queues[igpu][0] ); magma_queue_sync( queues[igpu][1] ); } if ( n23 == 0 ) lapackf77_slaset("A", &n2, &rk, &d_zero, &d_zero, Q(n1,iil-1), &ldq); if ( n12 == 0 ) lapackf77_slaset("A", &n1, &rk, &d_zero, &d_zero, Q(0,iil-1), &ldq); } } timer_stop( time ); timer_printf( "gemms = %6.2f\n", time ); magma_setdevice( orig_dev ); magmablasSetKernelStream( orig_stream ); return *info; } /* magma_slaed3_m */
/** Purpose ------- ZHEGVDX_2STAGE computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and B are assumed to be Hermitian and B is also positive definite. It uses a two-stage algorithm for the tridiagonalization. If eigenvectors are desired, it uses a divide and conquer algorithm. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none. Arguments --------- @param[in] itype INTEGER Specifies the problem type to be solved: = 1: A*x = (lambda)*B*x = 2: A*B*x = (lambda)*x = 3: B*A*x = (lambda)*x @param[in] jobz magma_vec_t - = MagmaNoVec: Compute eigenvalues only; - = MagmaVec: Compute eigenvalues and eigenvectors. @param[in] range magma_range_t - = MagmaRangeAll: all eigenvalues will be found. - = MagmaRangeV: all eigenvalues in the half-open interval (VL,VU] will be found. - = MagmaRangeI: the IL-th through IU-th eigenvalues will be found. @param[in] uplo magma_uplo_t - = MagmaUpper: Upper triangles of A and B are stored; - = MagmaLower: Lower triangles of A and B are stored. @param[in] n INTEGER The order of the matrices A and B. N >= 0. @param[in,out] A COMPLEX_16 array, dimension (LDA, N) On entry, the Hermitian matrix A. If UPLO = MagmaUpper, the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A. If UPLO = MagmaLower, the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A. \n On exit, if JOBZ = MagmaVec, then if INFO = 0, A contains the matrix Z of eigenvectors. The eigenvectors are normalized as follows: if ITYPE = 1 or 2, Z**H*B*Z = I; if ITYPE = 3, Z**H*inv(B)*Z = I. If JOBZ = MagmaNoVec, then on exit the upper triangle (if UPLO=MagmaUpper) or the lower triangle (if UPLO=MagmaLower) of A, including the diagonal, is destroyed. @param[in] lda INTEGER The leading dimension of the array A. LDA >= max(1,N). @param[in,out] B COMPLEX_16 array, dimension (LDB, N) On entry, the Hermitian matrix B. If UPLO = MagmaUpper, the leading N-by-N upper triangular part of B contains the upper triangular part of the matrix B. If UPLO = MagmaLower, the leading N-by-N lower triangular part of B contains the lower triangular part of the matrix B. \n On exit, if INFO <= N, the part of B containing the matrix is overwritten by the triangular factor U or L from the Cholesky factorization B = U**H*U or B = L*L**H. @param[in] ldb INTEGER The leading dimension of the array B. LDB >= max(1,N). @param[in] vl DOUBLE PRECISION @param[in] vu DOUBLE PRECISION If RANGE=MagmaRangeV, the lower and upper bounds of the interval to be searched for eigenvalues. VL < VU. Not referenced if RANGE = MagmaRangeAll or MagmaRangeI. @param[in] il INTEGER @param[in] iu INTEGER If RANGE=MagmaRangeI, the indices (in ascending order) of the smallest and largest eigenvalues to be returned. 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. Not referenced if RANGE = MagmaRangeAll or MagmaRangeV. @param[out] m INTEGER The total number of eigenvalues found. 0 <= M <= N. If RANGE = MagmaRangeAll, M = N, and if RANGE = MagmaRangeI, M = IU-IL+1. @param[out] w DOUBLE PRECISION array, dimension (N) If INFO = 0, the eigenvalues in ascending order. @param[out] work (workspace) COMPLEX_16 array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. @param[in] lwork INTEGER The length of the array WORK. If N <= 1, LWORK >= 1. If JOBZ = MagmaNoVec and N > 1, LWORK >= LQ2 + N * (NB + 1). If JOBZ = MagmaVec and N > 1, LWORK >= LQ2 + 2*N + N**2. where LQ2 is the size needed to store the Q2 matrix and is returned by magma_bulge_get_lq2. \n If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA. @param[out] rwork (workspace) DOUBLE PRECISION array, dimension (MAX(1,LRWORK)) On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK. @param[in] lrwork INTEGER The dimension of the array RWORK. If N <= 1, LRWORK >= 1. If JOBZ = MagmaNoVec and N > 1, LRWORK >= N. If JOBZ = MagmaVec and N > 1, LRWORK >= 1 + 5*N + 2*N**2. \n If LRWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA. @param[out] iwork (workspace) INTEGER array, dimension (MAX(1,LIWORK)) On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. @param[in] liwork INTEGER The dimension of the array IWORK. If N <= 1, LIWORK >= 1. If JOBZ = MagmaNoVec and N > 1, LIWORK >= 1. If JOBZ = MagmaVec and N > 1, LIWORK >= 3 + 5*N. \n If LIWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA. @param[out] info INTEGER - = 0: successful exit - < 0: if INFO = -i, the i-th argument had an illegal value - > 0: ZPOTRF or ZHEEVD returned an error code: <= N: if INFO = i and JOBZ = MagmaNoVec, then the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero; if INFO = i and JOBZ = MagmaVec, then the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns INFO/(N+1) through mod(INFO,N+1); > N: if INFO = N + i, for 1 <= i <= N, then the leading minor of order i of B is not positive definite. The factorization of B could not be completed and no eigenvalues or eigenvectors were computed. Further Details --------------- Based on contributions by Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA Modified so that no backsubstitution is performed if ZHEEVD fails to converge (NEIG in old code could be greater than N causing out of bounds reference to A - reported by Ralf Meyer). Also corrected the description of INFO and the test on ITYPE. Sven, 16 Feb 05. @ingroup magma_zhegv_driver ********************************************************************/ extern "C" magma_int_t magma_zhegvdx_2stage(magma_int_t itype, magma_vec_t jobz, magma_range_t range, magma_uplo_t uplo, magma_int_t n, magmaDoubleComplex *A, magma_int_t lda, magmaDoubleComplex *B, magma_int_t ldb, double vl, double vu, magma_int_t il, magma_int_t iu, magma_int_t *m, double *w, magmaDoubleComplex *work, magma_int_t lwork, double *rwork, magma_int_t lrwork, magma_int_t *iwork, magma_int_t liwork, magma_int_t *info) { const char* uplo_ = lapack_uplo_const( uplo ); const char* jobz_ = lapack_vec_const( jobz ); magmaDoubleComplex c_one = MAGMA_Z_ONE; magmaDoubleComplex *dA; magmaDoubleComplex *dB; magma_int_t ldda = n; magma_int_t lddb = n; magma_int_t lower; magma_trans_t trans; magma_int_t wantz; magma_int_t lquery; magma_int_t alleig, valeig, indeig; magma_int_t lwmin; magma_int_t liwmin; magma_int_t lrwmin; magma_queue_t stream; magma_queue_create( &stream ); /* determine the number of threads */ magma_int_t parallel_threads = magma_get_parallel_numthreads(); wantz = (jobz == MagmaVec); lower = (uplo == MagmaLower); alleig = (range == MagmaRangeAll); valeig = (range == MagmaRangeV); indeig = (range == MagmaRangeI); lquery = (lwork == -1 || lrwork == -1 || liwork == -1); *info = 0; if (itype < 1 || itype > 3) { *info = -1; } else if (! (alleig || valeig || indeig)) { *info = -2; } else if (! (wantz || (jobz == MagmaNoVec))) { *info = -3; } else if (! (lower || (uplo == MagmaUpper))) { *info = -4; } else if (n < 0) { *info = -5; } else if (lda < max(1,n)) { *info = -7; } else if (ldb < max(1,n)) { *info = -9; } else { if (valeig) { if (n > 0 && vu <= vl) { *info = -11; } } else if (indeig) { if (il < 1 || il > max(1,n)) { *info = -12; } else if (iu < min(n,il) || iu > n) { *info = -13; } } } magma_int_t nb = magma_get_zbulge_nb(n, parallel_threads); magma_int_t lq2 = magma_zbulge_get_lq2(n, parallel_threads); if (wantz) { lwmin = lq2 + 2 * n + n * n; lrwmin = 1 + 5 * n + 2 * n * n; liwmin = 5 * n + 3; } else { lwmin = lq2 + n * (nb + 1); lrwmin = n; liwmin = 1; } // multiply by 1+eps (in Double!) to ensure length gets rounded up, // if it cannot be exactly represented in floating point. real_Double_t one_eps = 1. + lapackf77_dlamch("Epsilon"); work[0] = MAGMA_Z_MAKE( lwmin * one_eps, 0.); // round up rwork[0] = lrwmin * one_eps; iwork[0] = liwmin; if (lwork < lwmin && ! lquery) { *info = -17; } else if (lrwork < lrwmin && ! lquery) { *info = -19; } else if (liwork < liwmin && ! lquery) { *info = -21; } if (*info != 0) { magma_xerbla( __func__, -(*info)); return *info; } else if (lquery) { return *info; } /* Quick return if possible */ if (n == 0) { return *info; } /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */ if (n <= 128) { #ifdef ENABLE_DEBUG printf("--------------------------------------------------------------\n"); printf(" warning matrix too small N=%d NB=%d, calling lapack on CPU \n", (int) n, (int) nb); printf("--------------------------------------------------------------\n"); #endif lapackf77_zhegvd(&itype, jobz_, uplo_, &n, A, &lda, B, &ldb, w, work, &lwork, #if defined(PRECISION_z) || defined(PRECISION_c) rwork, &lrwork, #endif iwork, &liwork, info); *m = n; return *info; } // TODO: fix memory leak if (MAGMA_SUCCESS != magma_zmalloc( &dA, n*ldda ) || MAGMA_SUCCESS != magma_zmalloc( &dB, n*lddb )) { *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } /* Form a Cholesky factorization of B. */ magma_zsetmatrix( n, n, B, ldb, dB, lddb ); magma_zsetmatrix_async( n, n, A, lda, dA, ldda, stream ); magma_timer_t time=0; timer_start( time ); magma_zpotrf_gpu(uplo, n, dB, lddb, info); if (*info != 0) { *info = n + *info; return *info; } timer_stop( time ); timer_printf( "time zpotrf_gpu = %6.2f\n", time ); magma_queue_sync( stream ); magma_zgetmatrix_async( n, n, dB, lddb, B, ldb, stream ); /* Transform problem to standard eigenvalue problem and solve. */ timer_start( time ); magma_zhegst_gpu(itype, uplo, n, dA, ldda, dB, lddb, info); timer_stop( time ); timer_printf( "time zhegst_gpu = %6.2f\n", time ); magma_zgetmatrix( n, n, dA, ldda, A, lda ); magma_queue_sync( stream ); magma_free( dA ); magma_free( dB ); timer_start( time ); magma_zheevdx_2stage(jobz, range, uplo, n, A, lda, vl, vu, il, iu, m, w, work, lwork, rwork, lrwork, iwork, liwork, info); timer_stop( time ); timer_printf( "time zheevdx_2stage = %6.2f\n", time ); if (wantz && *info == 0) { // TODO fix memory leak if (MAGMA_SUCCESS != magma_zmalloc( &dA, n*ldda ) || MAGMA_SUCCESS != magma_zmalloc( &dB, n*lddb )) { *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } timer_start( time ); magma_zsetmatrix( n, *m, A, lda, dA, ldda ); magma_zsetmatrix( n, n, B, ldb, dB, lddb ); /* Backtransform eigenvectors to the original problem. */ if (itype == 1 || itype == 2) { /* For A*x=(lambda)*B*x and A*B*x=(lambda)*x; backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */ if (lower) { trans = MagmaConjTrans; } else { trans = MagmaNoTrans; } magma_ztrsm(MagmaLeft, uplo, trans, MagmaNonUnit, n, *m, c_one, dB, lddb, dA, ldda); } else if (itype == 3) { /* For B*A*x=(lambda)*x; backtransform eigenvectors: x = L*y or U'*y */ if (lower) { trans = MagmaNoTrans; } else { trans = MagmaConjTrans; } magma_ztrmm(MagmaLeft, uplo, trans, MagmaNonUnit, n, *m, c_one, dB, lddb, dA, ldda); } magma_zgetmatrix( n, *m, dA, ldda, A, lda ); timer_stop( time ); timer_printf( "time trsm/mm + getmatrix = %6.2f\n", time ); magma_free( dA ); magma_free( dB ); } magma_queue_destroy( stream ); work[0] = MAGMA_Z_MAKE( lwmin * one_eps, 0.); // round up rwork[0] = lrwmin * one_eps; iwork[0] = liwmin; return *info; } /* magma_zhegvdx_2stage */
/** Purpose ------- ZGEEV computes for an N-by-N complex nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors. The right eigenvector v(j) of A satisfies A * v(j) = lambda(j) * v(j) where lambda(j) is its eigenvalue. The left eigenvector u(j) of A satisfies u(j)**H * A = lambda(j) * u(j)**H where u(j)**H denotes the conjugate transpose of u(j). The computed eigenvectors are normalized to have Euclidean norm equal to 1 and largest component real. Arguments --------- @param[in] jobvl magma_vec_t - = MagmaNoVec: left eigenvectors of A are not computed; - = MagmaVec: left eigenvectors of are computed. @param[in] jobvr magma_vec_t - = MagmaNoVec: right eigenvectors of A are not computed; - = MagmaVec: right eigenvectors of A are computed. @param[in] n INTEGER The order of the matrix A. N >= 0. @param[in,out] A COMPLEX_16 array, dimension (LDA,N) On entry, the N-by-N matrix A. On exit, A has been overwritten. @param[in] lda INTEGER The leading dimension of the array A. LDA >= max(1,N). @param[out] w COMPLEX_16 array, dimension (N) w contains the computed eigenvalues. @param[out] VL COMPLEX_16 array, dimension (LDVL,N) If JOBVL = MagmaVec, the left eigenvectors u(j) are stored one after another in the columns of VL, in the same order as their eigenvalues. If JOBVL = MagmaNoVec, VL is not referenced. u(j) = VL(:,j), the j-th column of VL. @param[in] ldvl INTEGER The leading dimension of the array VL. LDVL >= 1; if JOBVL = MagmaVec, LDVL >= N. @param[out] VR COMPLEX_16 array, dimension (LDVR,N) If JOBVR = MagmaVec, the right eigenvectors v(j) are stored one after another in the columns of VR, in the same order as their eigenvalues. If JOBVR = MagmaNoVec, VR is not referenced. v(j) = VR(:,j), the j-th column of VR. @param[in] ldvr INTEGER The leading dimension of the array VR. LDVR >= 1; if JOBVR = MagmaVec, LDVR >= N. @param[out] work (workspace) COMPLEX_16 array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK[0] returns the optimal LWORK. @param[in] lwork INTEGER The dimension of the array WORK. LWORK >= (1+nb)*N. For optimal performance, LWORK >= (1+2*nb)*N. \n If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. @param rwork (workspace) DOUBLE PRECISION array, dimension (2*N) @param[out] info INTEGER - = 0: successful exit - < 0: if INFO = -i, the i-th argument had an illegal value. - > 0: if INFO = i, the QR algorithm failed to compute all the eigenvalues, and no eigenvectors have been computed; elements and i+1:N of w contain eigenvalues which have converged. @ingroup magma_zgeev_driver ********************************************************************/ extern "C" magma_int_t magma_zgeev( magma_vec_t jobvl, magma_vec_t jobvr, magma_int_t n, magmaDoubleComplex *A, magma_int_t lda, #ifdef COMPLEX magmaDoubleComplex *w, #else double *wr, double *wi, #endif magmaDoubleComplex *VL, magma_int_t ldvl, magmaDoubleComplex *VR, magma_int_t ldvr, magmaDoubleComplex *work, magma_int_t lwork, #ifdef COMPLEX double *rwork, #endif magma_int_t *info ) { #define VL(i,j) (VL + (i) + (j)*ldvl) #define VR(i,j) (VR + (i) + (j)*ldvr) const magma_int_t ione = 1; const magma_int_t izero = 0; double d__1, d__2; magmaDoubleComplex tmp; double scl; double dum[1], eps; double anrm, cscale, bignum, smlnum; magma_int_t i, k, ilo, ihi; magma_int_t ibal, ierr, itau, iwrk, nout, liwrk, nb; magma_int_t scalea, minwrk, optwrk, irwork, lquery, wantvl, wantvr, select[1]; magma_side_t side = MagmaRight; magma_timer_t time_total=0, time_gehrd=0, time_unghr=0, time_hseqr=0, time_trevc=0, time_sum=0; magma_flops_t flop_total=0, flop_gehrd=0, flop_unghr=0, flop_hseqr=0, flop_trevc=0, flop_sum=0; timer_start( time_total ); flops_start( flop_total ); irwork = 0; *info = 0; lquery = (lwork == -1); wantvl = (jobvl == MagmaVec); wantvr = (jobvr == MagmaVec); if (! wantvl && jobvl != MagmaNoVec) { *info = -1; } else if (! wantvr && jobvr != MagmaNoVec) { *info = -2; } else if (n < 0) { *info = -3; } else if (lda < max(1,n)) { *info = -5; } else if ( (ldvl < 1) || (wantvl && (ldvl < n))) { *info = -8; } else if ( (ldvr < 1) || (wantvr && (ldvr < n))) { *info = -10; } /* Compute workspace */ nb = magma_get_zgehrd_nb( n ); if (*info == 0) { minwrk = (1+ nb)*n; optwrk = (1+2*nb)*n; work[0] = MAGMA_Z_MAKE( optwrk, 0 ); if (lwork < minwrk && ! lquery) { *info = -12; } } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } else if (lquery) { return *info; } /* Quick return if possible */ if (n == 0) { return *info; } #if defined(VERSION3) magmaDoubleComplex_ptr dT; if (MAGMA_SUCCESS != magma_zmalloc( &dT, nb*n )) { *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } #endif /* Get machine constants */ eps = lapackf77_dlamch( "P" ); smlnum = lapackf77_dlamch( "S" ); bignum = 1. / smlnum; lapackf77_dlabad( &smlnum, &bignum ); smlnum = magma_dsqrt( smlnum ) / eps; bignum = 1. / smlnum; /* Scale A if max element outside range [SMLNUM,BIGNUM] */ anrm = lapackf77_zlange( "M", &n, &n, A, &lda, dum ); scalea = 0; if (anrm > 0. && anrm < smlnum) { scalea = 1; cscale = smlnum; } else if (anrm > bignum) { scalea = 1; cscale = bignum; } if (scalea) { lapackf77_zlascl( "G", &izero, &izero, &anrm, &cscale, &n, &n, A, &lda, &ierr ); } /* Balance the matrix * (CWorkspace: none) * (RWorkspace: need N) * - this space is reserved until after gebak */ ibal = 0; lapackf77_zgebal( "B", &n, A, &lda, &ilo, &ihi, &rwork[ibal], &ierr ); /* Reduce to upper Hessenberg form * (CWorkspace: need 2*N, prefer N + N*NB) * (RWorkspace: N) * - including N reserved for gebal/gebak, unused by zgehrd */ itau = 0; iwrk = itau + n; liwrk = lwork - iwrk; timer_start( time_gehrd ); flops_start( flop_gehrd ); #if defined(VERSION1) // Version 1 - LAPACK lapackf77_zgehrd( &n, &ilo, &ihi, A, &lda, &work[itau], &work[iwrk], &liwrk, &ierr ); #elif defined(VERSION2) // Version 2 - LAPACK consistent HRD magma_zgehrd2( n, ilo, ihi, A, lda, &work[itau], &work[iwrk], liwrk, &ierr ); #elif defined(VERSION3) // Version 3 - LAPACK consistent MAGMA HRD + T matrices stored, magma_zgehrd( n, ilo, ihi, A, lda, &work[itau], &work[iwrk], liwrk, dT, &ierr ); #endif time_sum += timer_stop( time_gehrd ); flop_sum += flops_stop( flop_gehrd ); if (wantvl) { /* Want left eigenvectors * Copy Householder vectors to VL */ side = MagmaLeft; lapackf77_zlacpy( MagmaLowerStr, &n, &n, A, &lda, VL, &ldvl ); /* Generate unitary matrix in VL * (CWorkspace: need 2*N-1, prefer N + (N-1)*NB) * (RWorkspace: N) * - including N reserved for gebal/gebak, unused by zunghr */ timer_start( time_unghr ); flops_start( flop_unghr ); #if defined(VERSION1) || defined(VERSION2) // Version 1 & 2 - LAPACK lapackf77_zunghr( &n, &ilo, &ihi, VL, &ldvl, &work[itau], &work[iwrk], &liwrk, &ierr ); #elif defined(VERSION3) // Version 3 - LAPACK consistent MAGMA HRD + T matrices stored magma_zunghr( n, ilo, ihi, VL, ldvl, &work[itau], dT, nb, &ierr ); #endif time_sum += timer_stop( time_unghr ); flop_sum += flops_stop( flop_unghr ); timer_start( time_hseqr ); flops_start( flop_hseqr ); /* Perform QR iteration, accumulating Schur vectors in VL * (CWorkspace: need 1, prefer HSWORK (see comments) ) * (RWorkspace: N) * - including N reserved for gebal/gebak, unused by zhseqr */ iwrk = itau; liwrk = lwork - iwrk; lapackf77_zhseqr( "S", "V", &n, &ilo, &ihi, A, &lda, w, VL, &ldvl, &work[iwrk], &liwrk, info ); time_sum += timer_stop( time_hseqr ); flop_sum += flops_stop( flop_hseqr ); if (wantvr) { /* Want left and right eigenvectors * Copy Schur vectors to VR */ side = MagmaBothSides; lapackf77_zlacpy( "F", &n, &n, VL, &ldvl, VR, &ldvr ); } } else if (wantvr) { /* Want right eigenvectors * Copy Householder vectors to VR */ side = MagmaRight; lapackf77_zlacpy( "L", &n, &n, A, &lda, VR, &ldvr ); /* Generate unitary matrix in VR * (CWorkspace: need 2*N-1, prefer N + (N-1)*NB) * (RWorkspace: N) * - including N reserved for gebal/gebak, unused by zunghr */ timer_start( time_unghr ); flops_start( flop_unghr ); #if defined(VERSION1) || defined(VERSION2) // Version 1 & 2 - LAPACK lapackf77_zunghr( &n, &ilo, &ihi, VR, &ldvr, &work[itau], &work[iwrk], &liwrk, &ierr ); #elif defined(VERSION3) // Version 3 - LAPACK consistent MAGMA HRD + T matrices stored magma_zunghr( n, ilo, ihi, VR, ldvr, &work[itau], dT, nb, &ierr ); #endif time_sum += timer_stop( time_unghr ); flop_sum += flops_stop( flop_unghr ); /* Perform QR iteration, accumulating Schur vectors in VR * (CWorkspace: need 1, prefer HSWORK (see comments) ) * (RWorkspace: N) * - including N reserved for gebal/gebak, unused by zhseqr */ timer_start( time_hseqr ); flops_start( flop_hseqr ); iwrk = itau; liwrk = lwork - iwrk; lapackf77_zhseqr( "S", "V", &n, &ilo, &ihi, A, &lda, w, VR, &ldvr, &work[iwrk], &liwrk, info ); time_sum += timer_stop( time_hseqr ); flop_sum += flops_stop( flop_hseqr ); } else { /* Compute eigenvalues only * (CWorkspace: need 1, prefer HSWORK (see comments) ) * (RWorkspace: N) * - including N reserved for gebal/gebak, unused by zhseqr */ timer_start( time_hseqr ); flops_start( flop_hseqr ); iwrk = itau; liwrk = lwork - iwrk; lapackf77_zhseqr( "E", "N", &n, &ilo, &ihi, A, &lda, w, VR, &ldvr, &work[iwrk], &liwrk, info ); time_sum += timer_stop( time_hseqr ); flop_sum += flops_stop( flop_hseqr ); } /* If INFO > 0 from ZHSEQR, then quit */ if (*info > 0) { goto CLEANUP; } timer_start( time_trevc ); flops_start( flop_trevc ); if (wantvl || wantvr) { /* Compute left and/or right eigenvectors * (CWorkspace: need 2*N) * (RWorkspace: need 2*N) * - including N reserved for gebal/gebak, unused by ztrevc */ irwork = ibal + n; #if TREVC_VERSION == 1 lapackf77_ztrevc( lapack_side_const(side), "B", select, &n, A, &lda, VL, &ldvl, VR, &ldvr, &n, &nout, &work[iwrk], &rwork[irwork], &ierr ); #elif TREVC_VERSION == 2 liwrk = lwork - iwrk; lapackf77_ztrevc3( lapack_side_const(side), "B", select, &n, A, &lda, VL, &ldvl, VR, &ldvr, &n, &nout, &work[iwrk], &liwrk, &rwork[irwork], &ierr ); #elif TREVC_VERSION == 3 magma_ztrevc3( side, MagmaBacktransVec, select, n, A, lda, VL, ldvl, VR, ldvr, n, &nout, &work[iwrk], liwrk, &rwork[irwork], &ierr ); #elif TREVC_VERSION == 4 magma_ztrevc3_mt( side, MagmaBacktransVec, select, n, A, lda, VL, ldvl, VR, ldvr, n, &nout, &work[iwrk], liwrk, &rwork[irwork], &ierr ); #elif TREVC_VERSION == 5 magma_ztrevc3_mt_gpu( side, MagmaBacktransVec, select, n, A, lda, VL, ldvl, VR, ldvr, n, &nout, &work[iwrk], liwrk, &rwork[irwork], &ierr ); #else #error Unknown TREVC_VERSION #endif } time_sum += timer_stop( time_trevc ); flop_sum += flops_stop( flop_trevc ); if (wantvl) { /* Undo balancing of left eigenvectors * (CWorkspace: none) * (RWorkspace: need N) */ lapackf77_zgebak( "B", "L", &n, &ilo, &ihi, &rwork[ibal], &n, VL, &ldvl, &ierr ); /* Normalize left eigenvectors and make largest component real */ for (i = 0; i < n; ++i) { scl = 1. / magma_cblas_dznrm2( n, VL(0,i), 1 ); blasf77_zdscal( &n, &scl, VL(0,i), &ione ); for (k = 0; k < n; ++k) { /* Computing 2nd power */ d__1 = MAGMA_Z_REAL( *VL(k,i) ); d__2 = MAGMA_Z_IMAG( *VL(k,i) ); rwork[irwork + k] = d__1*d__1 + d__2*d__2; } k = blasf77_idamax( &n, &rwork[irwork], &ione ) - 1; // subtract 1; k is 0-based tmp = MAGMA_Z_CNJG( *VL(k,i) ) / magma_dsqrt( rwork[irwork + k] ); blasf77_zscal( &n, &tmp, VL(0,i), &ione ); *VL(k,i) = MAGMA_Z_MAKE( MAGMA_Z_REAL( *VL(k,i) ), 0 ); } } if (wantvr) { /* Undo balancing of right eigenvectors * (CWorkspace: none) * (RWorkspace: need N) */ lapackf77_zgebak( "B", "R", &n, &ilo, &ihi, &rwork[ibal], &n, VR, &ldvr, &ierr ); /* Normalize right eigenvectors and make largest component real */ for (i = 0; i < n; ++i) { scl = 1. / magma_cblas_dznrm2( n, VR(0,i), 1 ); blasf77_zdscal( &n, &scl, VR(0,i), &ione ); for (k = 0; k < n; ++k) { /* Computing 2nd power */ d__1 = MAGMA_Z_REAL( *VR(k,i) ); d__2 = MAGMA_Z_IMAG( *VR(k,i) ); rwork[irwork + k] = d__1*d__1 + d__2*d__2; } k = blasf77_idamax( &n, &rwork[irwork], &ione ) - 1; // subtract 1; k is 0-based tmp = MAGMA_Z_CNJG( *VR(k,i) ) / magma_dsqrt( rwork[irwork + k] ); blasf77_zscal( &n, &tmp, VR(0,i), &ione ); *VR(k,i) = MAGMA_Z_MAKE( MAGMA_Z_REAL( *VR(k,i) ), 0 ); } } CLEANUP: /* Undo scaling if necessary */ if (scalea) { // converged eigenvalues, stored in WR[i+1:n] and WI[i+1:n] for i = INFO magma_int_t nval = n - (*info); magma_int_t ld = max( nval, 1 ); lapackf77_zlascl( "G", &izero, &izero, &cscale, &anrm, &nval, &ione, w + (*info), &ld, &ierr ); if (*info > 0) { // first ilo columns were already upper triangular, // so the corresponding eigenvalues are also valid. nval = ilo - 1; lapackf77_zlascl( "G", &izero, &izero, &cscale, &anrm, &nval, &ione, w, &n, &ierr ); } } #if defined(VERSION3) magma_free( dT ); #endif timer_stop( time_total ); flops_stop( flop_total ); timer_printf( "dgeev times n %5d, gehrd %7.3f, unghr %7.3f, hseqr %7.3f, trevc %7.3f, total %7.3f, sum %7.3f\n", (int) n, time_gehrd, time_unghr, time_hseqr, time_trevc, time_total, time_sum ); timer_printf( "dgeev flops n %5d, gehrd %7lld, unghr %7lld, hseqr %7lld, trevc %7lld, total %7lld, sum %7lld\n", (int) n, flop_gehrd, flop_unghr, flop_hseqr, flop_trevc, flop_total, flop_sum ); work[0] = MAGMA_Z_MAKE( (double) optwrk, 0. ); return *info; } /* magma_zgeev */
/***************************************************************************//** Purpose ------- CHEEVD computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A. If eigenvectors are desired, it uses a divide and conquer algorithm. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none. Arguments --------- @param[in] ngpu INTEGER Number of GPUs to use. ngpu > 0. @param[in] jobz magma_vec_t - = MagmaNoVec: Compute eigenvalues only; - = MagmaVec: Compute eigenvalues and eigenvectors. @param[in] range magma_range_t - = MagmaRangeAll: all eigenvalues will be found. - = MagmaRangeV: all eigenvalues in the half-open interval (VL,VU] will be found. - = MagmaRangeI: the IL-th through IU-th eigenvalues will be found. @param[in] uplo magma_uplo_t - = MagmaUpper: Upper triangle of A is stored; - = MagmaLower: Lower triangle of A is stored. @param[in] n INTEGER The order of the matrix A. N >= 0. @param[in,out] A COMPLEX array, dimension (LDA, N) On entry, the Hermitian matrix A. If UPLO = MagmaUpper, the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A. If UPLO = MagmaLower, the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A. On exit, if JOBZ = MagmaVec, then if INFO = 0, A contains the orthonormal eigenvectors of the matrix A. If JOBZ = MagmaNoVec, then on exit the lower triangle (if UPLO=MagmaLower) or the upper triangle (if UPLO=MagmaUpper) of A, including the diagonal, is destroyed. @param[in] lda INTEGER The leading dimension of the array A. LDA >= max(1,N). @param[in] vl REAL @param[in] vu REAL If RANGE=MagmaRangeV, the lower and upper bounds of the interval to be searched for eigenvalues. VL < VU. Not referenced if RANGE = MagmaRangeAll or MagmaRangeI. @param[in] il INTEGER @param[in] iu INTEGER If RANGE=MagmaRangeI, the indices (in ascending order) of the smallest and largest eigenvalues to be returned. 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. Not referenced if RANGE = MagmaRangeAll or MagmaRangeV. @param[out] m INTEGER The total number of eigenvalues found. 0 <= M <= N. If RANGE = MagmaRangeAll, M = N, and if RANGE = MagmaRangeI, M = IU-IL+1. @param[out] w REAL array, dimension (N) If INFO = 0, the eigenvalues in ascending order. @param[out] work (workspace) COMPLEX array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK[0] returns the optimal LWORK. @param[in] lwork INTEGER The length of the array WORK. - If N <= 1, LWORK >= 1. - If JOBZ = MagmaNoVec and N > 1, LWORK >= N + N*NB. - If JOBZ = MagmaVec and N > 1, LWORK >= max( N + N*NB, 2*N + N**2 ). NB can be obtained through magma_get_chetrd_nb(N). \n If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA. @param[out] rwork (workspace) REAL array, dimension (LRWORK) On exit, if INFO = 0, RWORK[0] returns the optimal LRWORK. @param[in] lrwork INTEGER The dimension of the array RWORK. - If N <= 1, LRWORK >= 1. - If JOBZ = MagmaNoVec and N > 1, LRWORK >= N. - If JOBZ = MagmaVec and N > 1, LRWORK >= 1 + 5*N + 2*N**2. \n If LRWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA. @param[out] iwork (workspace) INTEGER array, dimension (MAX(1,LIWORK)) On exit, if INFO = 0, IWORK[0] returns the optimal LIWORK. @param[in] liwork INTEGER The dimension of the array IWORK. - If N <= 1, LIWORK >= 1. - If JOBZ = MagmaNoVec and N > 1, LIWORK >= 1. - If JOBZ = MagmaVec and N > 1, LIWORK >= 3 + 5*N. \n If LIWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA. @param[out] info INTEGER - = 0: successful exit - < 0: if INFO = -i, the i-th argument had an illegal value - > 0: if INFO = i and JOBZ = MagmaNoVec, then the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero; if INFO = i and JOBZ = MagmaVec, then the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns INFO/(N+1) through mod(INFO,N+1). Further Details --------------- Based on contributions by Jeff Rutter, Computer Science Division, University of California at Berkeley, USA Modified description of INFO. Sven, 16 Feb 05. @ingroup magma_heevdx *******************************************************************************/ extern "C" magma_int_t magma_cheevdx_m( magma_int_t ngpu, magma_vec_t jobz, magma_range_t range, magma_uplo_t uplo, magma_int_t n, magmaFloatComplex *A, magma_int_t lda, float vl, float vu, magma_int_t il, magma_int_t iu, magma_int_t *m, float *w, magmaFloatComplex *work, magma_int_t lwork, #ifdef COMPLEX float *rwork, magma_int_t lrwork, #endif magma_int_t *iwork, magma_int_t liwork, magma_int_t *info) { const char* uplo_ = lapack_uplo_const( uplo ); const char* jobz_ = lapack_vec_const( jobz ); magma_int_t ione = 1; magma_int_t izero = 0; float d_one = 1.; float d__1; float eps; magma_int_t inde; float anrm; magma_int_t imax; float rmin, rmax; float sigma; magma_int_t iinfo, lwmin; magma_int_t lower; magma_int_t llrwk; magma_int_t wantz; magma_int_t indwk2, llwrk2; magma_int_t iscale; float safmin; float bignum; magma_int_t indtau; magma_int_t indrwk, indwrk, liwmin; magma_int_t lrwmin, llwork; float smlnum; magma_int_t lquery; magma_int_t alleig, valeig, indeig; wantz = (jobz == MagmaVec); lower = (uplo == MagmaLower); alleig = (range == MagmaRangeAll); valeig = (range == MagmaRangeV); indeig = (range == MagmaRangeI); lquery = (lwork == -1 || lrwork == -1 || liwork == -1); *info = 0; if (! (wantz || (jobz == MagmaNoVec))) { *info = -1; } else if (! (alleig || valeig || indeig)) { *info = -2; } else if (! (lower || (uplo == MagmaUpper))) { *info = -3; } else if (n < 0) { *info = -4; } else if (lda < max(1,n)) { *info = -6; } else { if (valeig) { if (n > 0 && vu <= vl) { *info = -8; } } else if (indeig) { if (il < 1 || il > max(1,n)) { *info = -9; } else if (iu < min(n,il) || iu > n) { *info = -10; } } } magma_int_t nb = magma_get_chetrd_nb( n ); if ( n <= 1 ) { lwmin = 1; lrwmin = 1; liwmin = 1; } else if ( wantz ) { lwmin = max( n + n*nb, 2*n + n*n ); lrwmin = 1 + 5*n + 2*n*n; liwmin = 3 + 5*n; } else { lwmin = n + n*nb; lrwmin = n; liwmin = 1; } work[0] = magma_cmake_lwork( lwmin ); rwork[0] = magma_smake_lwork( lrwmin ); iwork[0] = liwmin; if ((lwork < lwmin) && !lquery) { *info = -14; } else if ((lrwork < lrwmin) && ! lquery) { *info = -16; } else if ((liwork < liwmin) && ! lquery) { *info = -18; } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } else if (lquery) { return *info; } /* Quick return if possible */ if (n == 0) { return *info; } if (n == 1) { w[0] = MAGMA_C_REAL(A[0]); if (wantz) { A[0] = MAGMA_C_ONE; } return *info; } /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */ if (n <= 128) { #ifdef ENABLE_DEBUG printf("--------------------------------------------------------------\n"); printf(" warning matrix too small N=%lld NB=%lld, calling lapack on CPU\n", (long long) n, (long long) nb ); printf("--------------------------------------------------------------\n"); #endif lapackf77_cheevd(jobz_, uplo_, &n, A, &lda, w, work, &lwork, #ifdef COMPLEX rwork, &lrwork, #endif iwork, &liwork, info); return *info; } /* Get machine constants. */ safmin = lapackf77_slamch("Safe minimum"); eps = lapackf77_slamch("Precision"); smlnum = safmin / eps; bignum = 1. / smlnum; rmin = magma_ssqrt(smlnum); rmax = magma_ssqrt(bignum); /* Scale matrix to allowable range, if necessary. */ anrm = lapackf77_clanhe("M", uplo_, &n, A, &lda, rwork); iscale = 0; if (anrm > 0. && anrm < rmin) { iscale = 1; sigma = rmin / anrm; } else if (anrm > rmax) { iscale = 1; sigma = rmax / anrm; } if (iscale == 1) { lapackf77_clascl(uplo_, &izero, &izero, &d_one, &sigma, &n, &n, A, &lda, info); } /* Call CHETRD to reduce Hermitian matrix to tridiagonal form. */ inde = 0; indtau = 0; indwrk = indtau + n; indrwk = inde + n; indwk2 = indwrk + n * n; llwork = lwork - indwrk; llwrk2 = lwork - indwk2; llrwk = lrwork - indrwk; magma_timer_t time=0; timer_start( time ); magma_chetrd_mgpu(ngpu, 1, uplo, n, A, lda, w, &rwork[inde], &work[indtau], &work[indwrk], llwork, &iinfo); timer_stop( time ); timer_printf( "time chetrd = %6.2f\n", time ); /* For eigenvalues only, call SSTERF. For eigenvectors, first call CSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the tridiagonal matrix, then call CUNMTR to multiply it to the Householder transformations represented as Householder vectors in A. */ if (! wantz) { lapackf77_ssterf(&n, w, &rwork[inde], info); magma_smove_eig(range, n, w, &il, &iu, vl, vu, m); } else { timer_start( time ); magma_cstedx_m(ngpu, range, n, vl, vu, il, iu, w, &rwork[inde], &work[indwrk], n, &rwork[indrwk], llrwk, iwork, liwork, info); timer_stop( time ); timer_printf( "time cstedc = %6.2f\n", time ); timer_start( time ); magma_smove_eig(range, n, w, &il, &iu, vl, vu, m); magma_cunmtr_m(ngpu, MagmaLeft, uplo, MagmaNoTrans, n, *m, A, lda, &work[indtau], &work[indwrk + n * (il-1)], n, &work[indwk2], llwrk2, &iinfo); lapackf77_clacpy("A", &n, m, &work[indwrk + n * (il-1)], &n, A, &lda); timer_stop( time ); timer_printf( "time cunmtr + copy = %6.2f\n", time ); } /* If matrix was scaled, then rescale eigenvalues appropriately. */ if (iscale == 1) { if (*info == 0) { imax = n; } else { imax = *info - 1; } d__1 = 1. / sigma; blasf77_sscal(&imax, &d__1, w, &ione); } work[0] = magma_cmake_lwork( lwmin ); rwork[0] = magma_smake_lwork( lrwmin ); iwork[0] = liwmin; return *info; } /* magma_cheevd_m */