LayoutSize RenderMultiColumnFlowThread::physicalTranslationOffsetFromFlowToRegion(const RenderRegion* renderRegion, const LayoutUnit logicalOffset) const
{
    // Now that we know which multicolumn set we hit, we need to get the appropriate translation offset for the column.
    const RenderMultiColumnSet* columnSet = toRenderMultiColumnSet(renderRegion);
    LayoutPoint translationOffset = columnSet->columnTranslationForOffset(logicalOffset);

    // Now we know how we want the rect to be translated into the region. At this point we're converting
    // back to physical coordinates.
    if (style().isFlippedBlocksWritingMode()) {
        LayoutRect portionRect(columnSet->flowThreadPortionRect());
        LayoutRect columnRect = columnSet->columnRectAt(0);
        LayoutUnit physicalDeltaFromPortionBottom = logicalHeight() - columnSet->logicalBottomInFlowThread();
        if (isHorizontalWritingMode())
            columnRect.setHeight(portionRect.height());
        else
            columnRect.setWidth(portionRect.width());
        columnSet->flipForWritingMode(columnRect);
        if (isHorizontalWritingMode())
            translationOffset.move(0, columnRect.y() - portionRect.y() - physicalDeltaFromPortionBottom);
        else
            translationOffset.move(columnRect.x() - portionRect.x() - physicalDeltaFromPortionBottom, 0);
    }

    return LayoutSize(translationOffset.x(), translationOffset.y());
}
예제 #2
0
RenderObject* RenderMultiColumnBlock::layoutSpecialExcludedChild(bool relayoutChildren)
{
    if (!m_flowThread)
        return 0;
    
    // Update the dimensions of our regions before we lay out the flow thread.
    // FIXME: Eventually this is going to get way more complicated, and we will be destroying regions
    // instead of trying to keep them around.
    bool shouldInvalidateRegions = false;
    for (RenderBox* childBox = firstChildBox(); childBox; childBox = childBox->nextSiblingBox()) {
        if (childBox == m_flowThread)
            continue;

        if (relayoutChildren || childBox->needsLayout()) {
            if (!m_inBalancingPass && childBox->isRenderMultiColumnSet())
                toRenderMultiColumnSet(childBox)->prepareForLayout();
            shouldInvalidateRegions = true;
        }
    }
    
    if (shouldInvalidateRegions)
        m_flowThread->invalidateRegions();

    if (relayoutChildren)
        m_flowThread->setChildNeedsLayout(MarkOnlyThis);
    
    setLogicalTopForChild(*m_flowThread, borderAndPaddingBefore());
    m_flowThread->layoutIfNeeded();
    determineLogicalLeftPositionForChild(*m_flowThread);
    
    return m_flowThread;
}
void RenderMultiColumnFlowThread::autoGenerateRegionsToBlockOffset(LayoutUnit offset)
{
    // This function ensures we have the correct column set information at all times.
    // For a simple multi-column layout in continuous media, only one column set child is required.
    // Once a column is nested inside an enclosing pagination context, the number of column sets
    // required becomes 2n-1, where n is the total number of nested pagination contexts. For example:
    //
    // Column layout with no enclosing pagination model = 2 * 1 - 1 = 1 column set.
    // Columns inside pages = 2 * 2 - 1 = 3 column sets (bottom of first page, all the subsequent pages, then the last page).
    // Columns inside columns inside pages = 2 * 3 - 1 = 5 column sets.
    //
    // In addition, column spans will force a column set to "split" into before/after sets around the spanning element.
    //
    // Finally, we will need to deal with columns inside regions. If regions have variable widths, then there will need
    // to be unique column sets created inside any region whose width is different from its surrounding regions. This is
    // actually pretty similar to the spanning case, in that we break up the column sets whenever the width varies.
    //
    // FIXME: Parent fragmentation contexts might require us to insert additional column sets here,
    // but we don't worry about it for now. This matches the old multi-column code. Right now our
    // goal is just feature parity with the old multi-column code so that we can switch over to the
    // new code as soon as possible. The one column set that we need has already been made during
    // render tree creation, so there's nothing to do here, for the time being.

    (void)offset; // hide warning
    ASSERT(toRenderMultiColumnSet(regionAtBlockOffset(0, offset, true, DisallowRegionAutoGeneration)));
}
예제 #4
0
void RenderMultiColumnBlock::ensureColumnSets()
{
    // This function ensures we have the correct column set information before we get into layout.
    // For a simple multi-column layout in continuous media, only one column set child is required.
    // Once a column is nested inside an enclosing pagination context, the number of column sets
    // required becomes 2n-1, where n is the total number of nested pagination contexts. For example:
    //
    // Column layout with no enclosing pagination model = 2 * 1 - 1 = 1 column set.
    // Columns inside pages = 2 * 2 - 1 = 3 column sets (bottom of first page, all the subsequent pages, then the last page).
    // Columns inside columns inside pages = 2 * 3 - 1 = 5 column sets.
    //
    // In addition, column spans will force a column set to "split" into before/after sets around the spanning region.
    //
    // Finally, we will need to deal with columns inside regions. If regions have variable widths, then there will need
    // to be unique column sets created inside any region whose width is different from its surrounding regions. This is
    // actually pretty similar to the spanning case, in that we break up the column sets whenever the width varies.
    //
    // FIXME: For now just make one column set. This matches the old multi-column code.
    // Right now our goal is just feature parity with the old multi-column code so that we can switch over to the
    // new code as soon as possible.
    if (!flowThread())
        return;

    RenderMultiColumnSet* columnSet = firstChild()->isRenderMultiColumnSet() ? toRenderMultiColumnSet(firstChild()) : 0;
    if (!columnSet) {
        columnSet = RenderMultiColumnSet::createAnonymous(flowThread());
        columnSet->setStyle(RenderStyle::createAnonymousStyleWithDisplay(style(), BLOCK));
        RenderBlock::addChild(columnSet, firstChild());
    }
    columnSet->setRequiresBalancing(requiresBalancing());
}
예제 #5
0
RenderMultiColumnSet* RenderMultiColumnSet::previousSiblingMultiColumnSet() const
{
    for (RenderObject* sibling = previousSibling(); sibling; sibling = sibling->previousSibling()) {
        if (sibling->isRenderMultiColumnSet())
            return toRenderMultiColumnSet(sibling);
    }
    return 0;
}
RenderMultiColumnSet* RenderMultiColumnFlowThread::lastMultiColumnSet() const
{
    for (RenderObject* sibling = multiColumnBlockFlow()->lastChild(); sibling; sibling = sibling->previousSibling()) {
        if (sibling->isRenderMultiColumnSet())
            return toRenderMultiColumnSet(sibling);
    }
    return nullptr;
}
RenderMultiColumnSet* RenderMultiColumnFlowThread::firstMultiColumnSet() const
{
    for (RenderObject* sibling = nextSibling(); sibling; sibling = sibling->nextSibling()) {
        if (sibling->isRenderMultiColumnSet())
            return toRenderMultiColumnSet(sibling);
    }
    return nullptr;
}
void RenderMultiColumnFlowThread::setRegionRangeForBox(const RenderBox* box, RenderRegion* startRegion, RenderRegion* endRegion)
{
    // Some column sets may have zero height, which means that two or more sets may start at the
    // exact same flow thread position, which means that some parts of the code may believe that a
    // given box lives in sets that it doesn't really live in. Make some adjustments here and
    // include such sets if they are adjacent to the start and/or end regions.
    for (RenderMultiColumnSet* columnSet = toRenderMultiColumnSet(startRegion)->previousSiblingMultiColumnSet(); columnSet; columnSet = columnSet->previousSiblingMultiColumnSet()) {
        if (columnSet->logicalHeightInFlowThread())
            break;
        startRegion = columnSet;
    }
    for (RenderMultiColumnSet* columnSet = toRenderMultiColumnSet(startRegion)->nextSiblingMultiColumnSet(); columnSet; columnSet = columnSet->nextSiblingMultiColumnSet()) {
        if (columnSet->logicalHeightInFlowThread())
            break;
        endRegion = columnSet;
    }

    RenderFlowThread::setRegionRangeForBox(box, startRegion, endRegion);
}
bool RenderMultiColumnFlowThread::addForcedRegionBreak(const RenderBlock* block, LayoutUnit offset, RenderBox* /*breakChild*/, bool /*isBefore*/, LayoutUnit* offsetBreakAdjustment)
{
    if (RenderMultiColumnSet* multicolSet = toRenderMultiColumnSet(regionAtBlockOffset(block, offset))) {
        multicolSet->addForcedBreak(offset);
        if (offsetBreakAdjustment)
            *offsetBreakAdjustment = pageLogicalHeightForOffset(offset) ? pageRemainingLogicalHeightForOffset(offset, IncludePageBoundary) : LayoutUnit::fromPixel(0);
        return true;
    }
    return false;
}
void RenderMultiColumnFlowThread::addRegionToThread(RenderRegion* renderRegion)
{
    RenderMultiColumnSet* columnSet = toRenderMultiColumnSet(renderRegion);
    if (RenderMultiColumnSet* nextSet = columnSet->nextSiblingMultiColumnSet()) {
        RenderRegionList::iterator it = m_regionList.find(nextSet);
        ASSERT(it != m_regionList.end());
        m_regionList.insertBefore(it, columnSet);
    } else
        m_regionList.add(columnSet);
    renderRegion->setIsValid(true);
}
void RenderMultiColumnFlowThread::flowThreadDescendantBoxLaidOut(RenderBox* descendant)
{
    if (!descendant->isRenderMultiColumnSpannerPlaceholder())
        return;
    RenderMultiColumnSpannerPlaceholder* placeholder = toRenderMultiColumnSpannerPlaceholder(descendant);
    RenderBlock* container = placeholder->containingBlock();

    for (RenderBox* prev = previousColumnSetOrSpannerSiblingOf(placeholder->spanner()); prev; prev = previousColumnSetOrSpannerSiblingOf(prev)) {
        if (prev->isRenderMultiColumnSet()) {
            toRenderMultiColumnSet(prev)->endFlow(container, placeholder->logicalTop());
            break;
        }
    }

    for (RenderBox* next = nextColumnSetOrSpannerSiblingOf(placeholder->spanner()); next; next = nextColumnSetOrSpannerSiblingOf(next)) {
        if (next->isRenderMultiColumnSet()) {
            m_lastSetWorkedOn = toRenderMultiColumnSet(next);
            m_lastSetWorkedOn->beginFlow(container);
            break;
        }
    }
}
void RenderMultiColumnFlowThread::layout()
{
    ASSERT(!m_inLayout);
    m_inLayout = true;
    m_lastSetWorkedOn = nullptr;
    if (RenderBox* first = firstColumnSetOrSpanner()) {
        if (first->isRenderMultiColumnSet()) {
            m_lastSetWorkedOn = toRenderMultiColumnSet(first);
            m_lastSetWorkedOn->beginFlow(this);
        }
    }
    RenderFlowThread::layout();
    if (RenderMultiColumnSet* lastSet = lastMultiColumnSet()) {
        if (!nextColumnSetOrSpannerSiblingOf(lastSet))
            lastSet->endFlow(this, logicalHeight());
        lastSet->expandToEncompassFlowThreadContentsIfNeeded();
    }
    m_inLayout = false;
    m_lastSetWorkedOn = nullptr;
}
예제 #13
0
bool RenderMultiColumnBlock::relayoutForPagination(bool, LayoutUnit, LayoutStateMaintainer& statePusher)
{
    if (m_inBalancingPass || !requiresBalancing())
        return false;
    m_inBalancingPass = true; // Prevent re-entering this method (and recursion into layout).

    bool needsRelayout;
    bool neededRelayout = false;
    bool firstPass = true;
    do {
        // Column heights may change here because of balancing. We may have to do multiple layout
        // passes, depending on how the contents is fitted to the changed column heights. In most
        // cases, laying out again twice or even just once will suffice. Sometimes we need more
        // passes than that, though, but the number of retries should not exceed the number of
        // columns, unless we have a bug.
        needsRelayout = false;
        for (RenderBox* childBox = firstChildBox(); childBox; childBox = childBox->nextSiblingBox())
            if (childBox != m_flowThread && childBox->isRenderMultiColumnSet()) {
                RenderMultiColumnSet* multicolSet = toRenderMultiColumnSet(childBox);
                if (multicolSet->calculateBalancedHeight(firstPass)) {
                    multicolSet->setChildNeedsLayout(MarkOnlyThis);
                    needsRelayout = true;
                }
            }

        if (needsRelayout) {
            // Layout again. Column balancing resulted in a new height.
            neededRelayout = true;
            m_flowThread->setChildNeedsLayout(MarkOnlyThis);
            setChildNeedsLayout(MarkOnlyThis);
            if (firstPass)
                statePusher.pop();
            layoutBlock(false);
        }
        firstPass = false;
    } while (needsRelayout);
    m_inBalancingPass = false;
    return neededRelayout;
}
void RenderMultiColumnFlowThread::autoGenerateRegionsToBlockOffset(LayoutUnit /*offset*/)
{
    // This function ensures we have the correct column set information at all times.
    // For a simple multi-column layout in continuous media, only one column set child is required.
    // Once a column is nested inside an enclosing pagination context, the number of column sets
    // required becomes 2n-1, where n is the total number of nested pagination contexts. For example:
    //
    // Column layout with no enclosing pagination model = 2 * 1 - 1 = 1 column set.
    // Columns inside pages = 2 * 2 - 1 = 3 column sets (bottom of first page, all the subsequent pages, then the last page).
    // Columns inside columns inside pages = 2 * 3 - 1 = 5 column sets.
    //
    // In addition, column spans will force a column set to "split" into before/after sets around the spanning element.
    //
    // Finally, we will need to deal with columns inside regions. If regions have variable widths, then there will need
    // to be unique column sets created inside any region whose width is different from its surrounding regions. This is
    // actually pretty similar to the spanning case, in that we break up the column sets whenever the width varies.
    //
    // FIXME: For now just make one column set. This matches the old multi-column code.
    // Right now our goal is just feature parity with the old multi-column code so that we can switch over to the
    // new code as soon as possible.
    RenderMultiColumnSet* firstSet = toRenderMultiColumnSet(firstRegion());
    if (firstSet)
        return;
    
    invalidateRegions();

    RenderBlockFlow* parentBlock = toRenderBlockFlow(parent());
    firstSet = new RenderMultiColumnSet(*this, RenderStyle::createAnonymousStyleWithDisplay(&parentBlock->style(), BLOCK));
    firstSet->initializeStyle();
    parentBlock->RenderBlock::addChild(firstSet);

    // Even though we aren't placed yet, we can go ahead and set up our size. At this point we're
    // typically in the middle of laying out the thread, attempting to paginate, and we need to do
    // some rudimentary "layout" of the set now, so that pagination will work.
    firstSet->prepareForLayout();

    validateRegions();
}
RenderRegion* RenderMultiColumnFlowThread::mapFromFlowToRegion(TransformState& transformState) const
{
    if (!hasValidRegionInfo())
        return nullptr;

    // Get back into our local flow thread space.
    LayoutRect boxRect = transformState.mappedQuad().enclosingBoundingBox();
    flipForWritingMode(boxRect);

    // FIXME: We need to refactor RenderObject::absoluteQuads to be able to split the quads across regions,
    // for now we just take the center of the mapped enclosing box and map it to a column.
    LayoutPoint center = boxRect.center();
    LayoutUnit centerOffset = isHorizontalWritingMode() ? center.y() : center.x();
    RenderRegion* renderRegion = const_cast<RenderMultiColumnFlowThread*>(this)->regionAtBlockOffset(this, centerOffset, true, DisallowRegionAutoGeneration);
    if (!renderRegion)
        return nullptr;

    // Now that we know which multicolumn set we hit, we need to get the appropriate translation offset for the column.
    RenderMultiColumnSet* columnSet = toRenderMultiColumnSet(renderRegion);
    LayoutPoint translationOffset = columnSet->columnTranslationForOffset(centerOffset);
    
    // Now we know how we want the rect to be translated into the region.
    LayoutRect flippedRegionRect(renderRegion->flowThreadPortionRect());
    if (isHorizontalWritingMode())
        flippedRegionRect.setHeight(columnSet->computedColumnHeight());
    else
        flippedRegionRect.setWidth(columnSet->computedColumnHeight());
    flipForWritingMode(flippedRegionRect);
    
    flippedRegionRect.moveBy(-translationOffset);
    
    // There is an additional offset to apply, which is the offset of the region within the multi-column space.
    transformState.move(renderRegion->contentBoxRect().location() - flippedRegionRect.location());

    return renderRegion;
}
void RenderMultiColumnFlowThread::setPageBreak(const RenderBlock* block, LayoutUnit offset, LayoutUnit spaceShortage)
{
    if (RenderMultiColumnSet* multicolSet = toRenderMultiColumnSet(regionAtBlockOffset(block, offset)))
        multicolSet->recordSpaceShortage(spaceShortage);
}
void RenderMultiColumnFlowThread::updateMinimumPageHeight(const RenderBlock* block, LayoutUnit offset, LayoutUnit minHeight)
{
    if (RenderMultiColumnSet* multicolSet = toRenderMultiColumnSet(regionAtBlockOffset(block, offset)))
        multicolSet->updateMinimumColumnHeight(minHeight);
}