예제 #1
0
int check_for_free_memory_corruption(const char * const title) {
  SERIAL_ECHO(title);

  char *ptr = END_OF_HEAP(), *sp = top_of_stack();
  int n = sp - ptr;

  SERIAL_ECHOPAIR("\nfmc() n=", n);
  SERIAL_ECHOPAIR("\n&__brkval: ", hex_address(&__brkval));
  SERIAL_ECHOPAIR("=",             hex_address(__brkval));
  SERIAL_ECHOPAIR("\n__bss_end: ", hex_address(&__bss_end));
  SERIAL_ECHOPAIR(" sp=",          hex_address(sp));

  if (sp < ptr)  {
    SERIAL_ECHOPGM(" sp < Heap ");
    // SET_INPUT_PULLUP(63);           // if the developer has a switch wired up to their controller board
    // safe_delay(5);                  // this code can be enabled to pause the display as soon as the
    // while ( READ(63))               // malfunction is detected.   It is currently defaulting to a switch
    //   idle();                       // being on pin-63 which is unassigend and available on most controller
    // safe_delay(20);                 // boards.
    // while ( !READ(63))
    //   idle();
    safe_delay(20);
    #ifdef M100_FREE_MEMORY_DUMPER
      M100_dump_routine("   Memory corruption detected with sp<Heap\n", (char*)0x1B80, (char*)0x21FF);
    #endif
  }

  // Scan through the range looking for the biggest block of 0xE5's we can find
  int block_cnt = 0;
  for (int i = 0; i < n; i++) {
    if (ptr[i] == TEST_BYTE) {
      int16_t j = count_test_bytes(ptr + i);
      if (j > 8) {
        // SERIAL_ECHOPAIR("Found ", j);
        // SERIAL_ECHOLNPAIR(" bytes free at ", hex_address(ptr + i));
        i += j;
        block_cnt++;
        SERIAL_ECHOPAIR(" (", block_cnt);
        SERIAL_ECHOPAIR(") found=", j);
        SERIAL_ECHOPGM("   ");
      }
    }
  }
  SERIAL_ECHOPAIR("  block_found=", block_cnt);

  if (block_cnt != 1 || __brkval != 0x0000)
    SERIAL_ECHOLNPGM("\nMemory Corruption detected in free memory area.");

  if (block_cnt == 0)       // Make sure the special case of no free blocks shows up as an
    block_cnt = -1;         // error to the calling code!

  SERIAL_ECHOPGM(" return=");
  if (block_cnt == 1) {
    SERIAL_CHAR('0');       // if the block_cnt is 1, nothing has broken up the free memory
    SERIAL_EOL();             // area and it is appropriate to say 'no corruption'.
    return 0;
  }
  SERIAL_ECHOLNPGM("true");
  return block_cnt;
}
예제 #2
0
/**
 * M100: Free Memory Check
 */
void gcode_M100() {
  SERIAL_ECHOPAIR("\n__brkval : ", hex_address(__brkval));
  SERIAL_ECHOPAIR("\n__bss_end : ", hex_address(&__bss_end));

  char *ptr = END_OF_HEAP(), *sp = top_of_stack();

  SERIAL_ECHOPAIR("\nstart of free space : ", hex_address(ptr));
  SERIAL_ECHOLNPAIR("\nStack Pointer : ", hex_address(sp));

  // Always init on the first invocation of M100
  static bool m100_not_initialized = true;
  if (m100_not_initialized || parser.seen('I')) {
    m100_not_initialized = false;
    init_free_memory(ptr, sp - ptr);
  }

  #if ENABLED(M100_FREE_MEMORY_DUMPER)
    if (parser.seen('D'))
      return dump_free_memory(ptr, sp);
  #endif

  if (parser.seen('F'))
    return free_memory_pool_report(ptr, sp - ptr);

  #if ENABLED(M100_FREE_MEMORY_CORRUPTOR)

    if (parser.seen('C'))
      return corrupt_free_memory(ptr, parser.value_int());

  #endif
}
예제 #3
0
  /**
   * M100 C<num>
   *  Corrupt <num> locations in the free memory pool and report the corrupt addresses.
   *  This is useful to check the correctness of the M100 D and the M100 F commands.
   */
  void corrupt_free_memory(char *ptr, const uint16_t size) {
    ptr += 8;
    const uint16_t near_top = top_of_stack() - ptr - 250, // -250 to avoid interrupt activity that's altered the stack.
                   j = near_top / (size + 1);

    SERIAL_ECHOLNPGM("Corrupting free memory block.\n");
    for (uint16_t i = 1; i <= size; i++) {
      char * const addr = ptr + i * j;
      *addr = i;
      SERIAL_ECHOPAIR("\nCorrupting address: ", hex_address(addr));
    }
    SERIAL_EOL();
  }
예제 #4
0
void gcode_M100() {
  static int m100_not_initialized = 1;
  unsigned char* sp, *ptr;
  int i, j, n;
  //
  // M100 D dumps the free memory block from __brkval to the stack pointer.
  // malloc() eats memory from the start of the block and the stack grows
  // up from the bottom of the block.    Solid 0xE5's indicate nothing has
  // used that memory yet.   There should not be anything but 0xE5's within
  // the block of 0xE5's.  If there is, that would indicate memory corruption
  // probably caused by bad pointers.  Any unexpected values will be flagged in
  // the right hand column to help spotting them.
  //
#if ENABLED(M100_FREE_MEMORY_DUMPER) // Disable to remove Dump sub-command
  if (code_seen('D')) {
    ptr = (unsigned char*) __brkval;
    //
    // We want to start and end the dump on a nice 16 byte boundry even though
    // the values we are using are not 16 byte aligned.
    //
    SERIAL_ECHOPGM("\n__brkval : ");
    prt_hex_word((unsigned int) ptr);
    ptr = (unsigned char*)((unsigned long) ptr & 0xfff0);
    sp = top_of_stack();
    SERIAL_ECHOPGM("\nStack Pointer : ");
    prt_hex_word((unsigned int) sp);
    SERIAL_ECHOPGM("\n");
    sp = (unsigned char*)((unsigned long) sp | 0x000f);
    n = sp - ptr;
    //
    // This is the main loop of the Dump command.
    //
    while (ptr < sp) {
      prt_hex_word((unsigned int) ptr); // Print the address
      SERIAL_ECHOPGM(":");
      for (i = 0; i < 16; i++) {      // and 16 data bytes
        prt_hex_byte(*(ptr + i));
        SERIAL_ECHOPGM(" ");
        delay(2);
      }
      SERIAL_ECHO("|");         // now show where non 0xE5's are
      for (i = 0; i < 16; i++) {
        delay(2);
        if (*(ptr + i) == 0xe5)
          SERIAL_ECHOPGM(" ");
        else
          SERIAL_ECHOPGM("?");
      }
      SERIAL_ECHO("\n");
      ptr += 16;
      delay(2);
    }
    SERIAL_ECHOLNPGM("Done.\n");
    return;
  }
#endif
  //
  // M100 F   requests the code to return the number of free bytes in the memory pool along with
  // other vital statistics that define the memory pool.
  //
  if (code_seen('F')) {
    int max_addr = (int) __brkval;
    int max_cnt = 0;
    int block_cnt = 0;
    ptr = (unsigned char*) __brkval;
    sp = top_of_stack();
    n = sp - ptr;
    // Scan through the range looking for the biggest block of 0xE5's we can find
    for (i = 0; i < n; i++) {
      if (*(ptr + i) == (unsigned char) 0xe5) {
        j = how_many_E5s_are_here((unsigned char*) ptr + i);
        if (j > 8) {
          SERIAL_ECHOPAIR("Found ", j);
          SERIAL_ECHOPGM(" bytes free at 0x");
          prt_hex_word((int) ptr + i);
          SERIAL_ECHOPGM("\n");
          i += j;
          block_cnt++;
        }
        if (j > max_cnt) {      // We don't do anything with this information yet
          max_cnt  = j;     // but we do know where the biggest free memory block is.
          max_addr = (int) ptr + i;
        }
      }
    }
    if (block_cnt > 1)
      SERIAL_ECHOLNPGM("\nMemory Corruption detected in free memory area.\n");
    SERIAL_ECHO("\nDone.\n");
    return;
  }
  //
  // M100 C x  Corrupts x locations in the free memory pool and reports the locations of the corruption.
  // This is useful to check the correctness of the M100 D and the M100 F commands.
  //
#if ENABLED(M100_FREE_MEMORY_CORRUPTOR)
  if (code_seen('C')) {
    int x;      // x gets the # of locations to corrupt within the memory pool
    x = code_value();
    SERIAL_ECHOLNPGM("Corrupting free memory block.\n");
    ptr = (unsigned char*) __brkval;
    SERIAL_ECHOPAIR("\n__brkval : ", (long) ptr);
    ptr += 8;
    sp = top_of_stack();
    SERIAL_ECHOPAIR("\nStack Pointer : ", (long) sp);
    SERIAL_ECHOLNPGM("\n");
    n = sp - ptr - 64;    // -64 just to keep us from finding interrupt activity that
    // has altered the stack.
    j = n / (x + 1);
    for (i = 1; i <= x; i++) {
      *(ptr + (i * j)) = i;
      SERIAL_ECHO("\nCorrupting address: 0x");
      prt_hex_word((unsigned int)(ptr + (i * j)));
    }
    SERIAL_ECHOLNPGM("\n");
    return;
  }
#endif
  //
  // M100 I    Initializes the free memory pool so it can be watched and prints vital
  // statistics that define the free memory pool.
  //
  if (m100_not_initialized || code_seen('I')) {       // If no sub-command is specified, the first time
    SERIAL_ECHOLNPGM("Initializing free memory block.\n");    // this happens, it will Initialize.
    ptr = (unsigned char*) __brkval;        // Repeated M100 with no sub-command will not destroy the
    SERIAL_ECHOPAIR("\n__brkval : ", (long) ptr);     // state of the initialized free memory pool.
    ptr += 8;
    sp = top_of_stack();
    SERIAL_ECHOPAIR("\nStack Pointer : ", (long) sp);
    SERIAL_ECHOLNPGM("\n");
    n = sp - ptr - 64;    // -64 just to keep us from finding interrupt activity that
    // has altered the stack.
    SERIAL_ECHO(n);
    SERIAL_ECHOLNPGM(" bytes of memory initialized.\n");
    for (i = 0; i < n; i++)
      *(ptr + i) = (unsigned char) 0xe5;
    for (i = 0; i < n; i++) {
      if (*(ptr + i) != (unsigned char) 0xe5) {
        SERIAL_ECHOPAIR("? address : ", (unsigned long) ptr + i);
        SERIAL_ECHOPAIR("=", *(ptr + i));
        SERIAL_ECHOLNPGM("\n");
      }
    }
    m100_not_initialized = 0;
    SERIAL_ECHOLNPGM("Done.\n");
    return;
  }
  return;
}
예제 #5
0
  Assembler::Register register_for(int index) {
    GUARANTEE(0 < index && index <= top_of_stack(), "Index out of bounds");

    return register_at(top_of_stack() - index);
  }
 void assert_top_of_stack_is_expected_value(InputAndResultType const& expected)
 {
     InputAndResultType top_of_stack(0);
     OOLUA::pull(*m_lua, top_of_stack);
     CPPUNIT_ASSERT_EQUAL(expected, top_of_stack);
 }
예제 #7
0
 void pop(Assembler::Register reg) {
   GUARANTEE(register_at(top_of_stack()) == reg, "Can only pop register at top of stack");
   pop();
 }
예제 #8
0
  void pop() {
    GUARANTEE(top_of_stack() > 0, "FPU Register stack underflow");

    set_register_at(top_of_stack(), Assembler::no_reg);
    set_top_of_stack(top_of_stack() - 1);
  }
예제 #9
0
  void push(Assembler::Register reg) {
    GUARANTEE(top_of_stack() < Assembler::number_of_float_registers, "FPU Register stack overflow");

    set_top_of_stack(top_of_stack() + 1);
    set_register_at(top_of_stack(), reg);
  }
예제 #10
0
 Assembler::Register top_of_stack_register() { return register_at(top_of_stack()); }
예제 #11
0
 bool is_empty()                             { return top_of_stack() == 0;         }