예제 #1
0
/*
 * xfs_file_dio_aio_write - handle direct IO writes
 *
 * Lock the inode appropriately to prepare for and issue a direct IO write.
 * By separating it from the buffered write path we remove all the tricky to
 * follow locking changes and looping.
 *
 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 * pages are flushed out.
 *
 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 * allowing them to be done in parallel with reads and other direct IO writes.
 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 * needs to do sub-block zeroing and that requires serialisation against other
 * direct IOs to the same block. In this case we need to serialise the
 * submission of the unaligned IOs so that we don't get racing block zeroing in
 * the dio layer.  To avoid the problem with aio, we also need to wait for
 * outstanding IOs to complete so that unwritten extent conversion is completed
 * before we try to map the overlapping block. This is currently implemented by
 * hitting it with a big hammer (i.e. inode_dio_wait()).
 *
 * Returns with locks held indicated by @iolock and errors indicated by
 * negative return values.
 */
STATIC ssize_t
xfs_file_dio_aio_write(
	struct kiocb		*iocb,
	const struct iovec	*iovp,
	unsigned long		nr_segs,
	loff_t			pos,
	size_t			ocount)
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	ssize_t			ret = 0;
	size_t			count = ocount;
	int			unaligned_io = 0;
	int			iolock;
	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
					mp->m_rtdev_targp : mp->m_ddev_targp;

	if ((pos & target->bt_smask) || (count & target->bt_smask))
		return -XFS_ERROR(EINVAL);

	if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
		unaligned_io = 1;

	/*
	 * We don't need to take an exclusive lock unless there page cache needs
	 * to be invalidated or unaligned IO is being executed. We don't need to
	 * consider the EOF extension case here because
	 * xfs_file_aio_write_checks() will relock the inode as necessary for
	 * EOF zeroing cases and fill out the new inode size as appropriate.
	 */
	if (unaligned_io || mapping->nrpages)
		iolock = XFS_IOLOCK_EXCL;
	else
		iolock = XFS_IOLOCK_SHARED;
	xfs_rw_ilock(ip, iolock);

	/*
	 * Recheck if there are cached pages that need invalidate after we got
	 * the iolock to protect against other threads adding new pages while
	 * we were waiting for the iolock.
	 */
	if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
		xfs_rw_iunlock(ip, iolock);
		iolock = XFS_IOLOCK_EXCL;
		xfs_rw_ilock(ip, iolock);
	}

	ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
	if (ret)
		goto out;

	if (mapping->nrpages) {
		ret = -xfs_flushinval_pages(ip, (pos & PAGE_CACHE_MASK), -1,
							FI_REMAPF_LOCKED);
		if (ret)
			goto out;
	}

	/*
	 * If we are doing unaligned IO, wait for all other IO to drain,
	 * otherwise demote the lock if we had to flush cached pages
	 */
	if (unaligned_io)
		inode_dio_wait(inode);
	else if (iolock == XFS_IOLOCK_EXCL) {
		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
		iolock = XFS_IOLOCK_SHARED;
	}

	trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
	ret = generic_file_direct_write(iocb, iovp,
			&nr_segs, pos, &iocb->ki_pos, count, ocount);

out:
	xfs_rw_iunlock(ip, iolock);

	/* No fallback to buffered IO on errors for XFS. */
	ASSERT(ret < 0 || ret == count);
	return ret;
}
예제 #2
0
/*
 * xfs_file_dio_aio_write - handle direct IO writes
 *
 * Lock the inode appropriately to prepare for and issue a direct IO write.
 * By separating it from the buffered write path we remove all the tricky to
 * follow locking changes and looping.
 *
 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 * pages are flushed out.
 *
 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 * allowing them to be done in parallel with reads and other direct IO writes.
 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 * needs to do sub-block zeroing and that requires serialisation against other
 * direct IOs to the same block. In this case we need to serialise the
 * submission of the unaligned IOs so that we don't get racing block zeroing in
 * the dio layer.  To avoid the problem with aio, we also need to wait for
 * outstanding IOs to complete so that unwritten extent conversion is completed
 * before we try to map the overlapping block. This is currently implemented by
 * hitting it with a big hammer (i.e. inode_dio_wait()).
 *
 * Returns with locks held indicated by @iolock and errors indicated by
 * negative return values.
 */
STATIC ssize_t
xfs_file_dio_aio_write(
	struct kiocb		*iocb,
	struct iov_iter		*from)
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	ssize_t			ret = 0;
	int			unaligned_io = 0;
	int			iolock;
	size_t			count = iov_iter_count(from);
	struct xfs_buftarg      *target = XFS_IS_REALTIME_INODE(ip) ?
					mp->m_rtdev_targp : mp->m_ddev_targp;

	/* DIO must be aligned to device logical sector size */
	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
		return -EINVAL;

	/*
	 * Don't take the exclusive iolock here unless the I/O is unaligned to
	 * the file system block size.  We don't need to consider the EOF
	 * extension case here because xfs_file_aio_write_checks() will relock
	 * the inode as necessary for EOF zeroing cases and fill out the new
	 * inode size as appropriate.
	 */
	if ((iocb->ki_pos & mp->m_blockmask) ||
	    ((iocb->ki_pos + count) & mp->m_blockmask)) {
		unaligned_io = 1;

		/*
		 * We can't properly handle unaligned direct I/O to reflink
		 * files yet, as we can't unshare a partial block.
		 */
		if (xfs_is_reflink_inode(ip)) {
			trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
			return -EREMCHG;
		}
		iolock = XFS_IOLOCK_EXCL;
	} else {
		iolock = XFS_IOLOCK_SHARED;
	}

	if (iocb->ki_flags & IOCB_NOWAIT) {
		if (!xfs_ilock_nowait(ip, iolock))
			return -EAGAIN;
	} else {
		xfs_ilock(ip, iolock);
	}

	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
	if (ret)
		goto out;
	count = iov_iter_count(from);

	/*
	 * If we are doing unaligned IO, wait for all other IO to drain,
	 * otherwise demote the lock if we had to take the exclusive lock
	 * for other reasons in xfs_file_aio_write_checks.
	 */
	if (unaligned_io) {
		/* If we are going to wait for other DIO to finish, bail */
		if (iocb->ki_flags & IOCB_NOWAIT) {
			if (atomic_read(&inode->i_dio_count))
				return -EAGAIN;
		} else {
			inode_dio_wait(inode);
		}
	} else if (iolock == XFS_IOLOCK_EXCL) {
		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
		iolock = XFS_IOLOCK_SHARED;
	}

	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
	ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io);
out:
	xfs_iunlock(ip, iolock);

	/*
	 * No fallback to buffered IO on errors for XFS, direct IO will either
	 * complete fully or fail.
	 */
	ASSERT(ret < 0 || ret == count);
	return ret;
}
예제 #3
0
STATIC ssize_t
xfs_file_aio_write(
	struct kiocb		*iocb,
	const struct iovec	*iovp,
	unsigned long		nr_segs,
	loff_t			pos)
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	ssize_t			ret = 0, error = 0;
	int			ioflags = 0;
	xfs_fsize_t		isize, new_size;
	int			iolock;
	int			eventsent = 0;
	size_t			ocount = 0, count;
	int			need_i_mutex;

	XFS_STATS_INC(xs_write_calls);

	BUG_ON(iocb->ki_pos != pos);

	if (unlikely(file->f_flags & O_DIRECT))
		ioflags |= IO_ISDIRECT;
	if (file->f_mode & FMODE_NOCMTIME)
		ioflags |= IO_INVIS;

	error = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
	if (error)
		return error;

	count = ocount;
	if (count == 0)
		return 0;

	xfs_wait_for_freeze(mp, SB_FREEZE_WRITE);

	if (XFS_FORCED_SHUTDOWN(mp))
		return -EIO;

relock:
	if (ioflags & IO_ISDIRECT) {
		iolock = XFS_IOLOCK_SHARED;
		need_i_mutex = 0;
	} else {
		iolock = XFS_IOLOCK_EXCL;
		need_i_mutex = 1;
		mutex_lock(&inode->i_mutex);
	}

	xfs_ilock(ip, XFS_ILOCK_EXCL|iolock);

start:
	error = -generic_write_checks(file, &pos, &count,
					S_ISBLK(inode->i_mode));
	if (error) {
		xfs_iunlock(ip, XFS_ILOCK_EXCL|iolock);
		goto out_unlock_mutex;
	}

	if ((DM_EVENT_ENABLED(ip, DM_EVENT_WRITE) &&
	    !(ioflags & IO_INVIS) && !eventsent)) {
		int		dmflags = FILP_DELAY_FLAG(file);

		if (need_i_mutex)
			dmflags |= DM_FLAGS_IMUX;

		xfs_iunlock(ip, XFS_ILOCK_EXCL);
		error = XFS_SEND_DATA(ip->i_mount, DM_EVENT_WRITE, ip,
				      pos, count, dmflags, &iolock);
		if (error) {
			goto out_unlock_internal;
		}
		xfs_ilock(ip, XFS_ILOCK_EXCL);
		eventsent = 1;

		/*
		 * The iolock was dropped and reacquired in XFS_SEND_DATA
		 * so we have to recheck the size when appending.
		 * We will only "goto start;" once, since having sent the
		 * event prevents another call to XFS_SEND_DATA, which is
		 * what allows the size to change in the first place.
		 */
		if ((file->f_flags & O_APPEND) && pos != ip->i_size)
			goto start;
	}

	if (ioflags & IO_ISDIRECT) {
		xfs_buftarg_t	*target =
			XFS_IS_REALTIME_INODE(ip) ?
				mp->m_rtdev_targp : mp->m_ddev_targp;

		if ((pos & target->bt_smask) || (count & target->bt_smask)) {
			xfs_iunlock(ip, XFS_ILOCK_EXCL|iolock);
			return XFS_ERROR(-EINVAL);
		}

		if (!need_i_mutex && (mapping->nrpages || pos > ip->i_size)) {
			xfs_iunlock(ip, XFS_ILOCK_EXCL|iolock);
			iolock = XFS_IOLOCK_EXCL;
			need_i_mutex = 1;
			mutex_lock(&inode->i_mutex);
			xfs_ilock(ip, XFS_ILOCK_EXCL|iolock);
			goto start;
		}
	}

	new_size = pos + count;
	if (new_size > ip->i_size)
		ip->i_new_size = new_size;

	if (likely(!(ioflags & IO_INVIS)))
		file_update_time(file);

	/*
	 * If the offset is beyond the size of the file, we have a couple
	 * of things to do. First, if there is already space allocated
	 * we need to either create holes or zero the disk or ...
	 *
	 * If there is a page where the previous size lands, we need
	 * to zero it out up to the new size.
	 */

	if (pos > ip->i_size) {
		error = xfs_zero_eof(ip, pos, ip->i_size);
		if (error) {
			xfs_iunlock(ip, XFS_ILOCK_EXCL);
			goto out_unlock_internal;
		}
	}
	xfs_iunlock(ip, XFS_ILOCK_EXCL);

	/*
	 * If we're writing the file then make sure to clear the
	 * setuid and setgid bits if the process is not being run
	 * by root.  This keeps people from modifying setuid and
	 * setgid binaries.
	 */
	error = -file_remove_suid(file);
	if (unlikely(error))
		goto out_unlock_internal;

	/* We can write back this queue in page reclaim */
	current->backing_dev_info = mapping->backing_dev_info;

	if ((ioflags & IO_ISDIRECT)) {
		if (mapping->nrpages) {
			WARN_ON(need_i_mutex == 0);
			error = xfs_flushinval_pages(ip,
					(pos & PAGE_CACHE_MASK),
					-1, FI_REMAPF_LOCKED);
			if (error)
				goto out_unlock_internal;
		}

		if (need_i_mutex) {
			/* demote the lock now the cached pages are gone */
			xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
			mutex_unlock(&inode->i_mutex);

			iolock = XFS_IOLOCK_SHARED;
			need_i_mutex = 0;
		}

		trace_xfs_file_direct_write(ip, count, iocb->ki_pos, ioflags);
		ret = generic_file_direct_write(iocb, iovp,
				&nr_segs, pos, &iocb->ki_pos, count, ocount);

		/*
		 * direct-io write to a hole: fall through to buffered I/O
		 * for completing the rest of the request.
		 */
		if (ret >= 0 && ret != count) {
			XFS_STATS_ADD(xs_write_bytes, ret);

			pos += ret;
			count -= ret;

			ioflags &= ~IO_ISDIRECT;
			xfs_iunlock(ip, iolock);
			goto relock;
		}
	} else {
		int enospc = 0;
		ssize_t ret2 = 0;

write_retry:
		trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, ioflags);
		ret2 = generic_file_buffered_write(iocb, iovp, nr_segs,
				pos, &iocb->ki_pos, count, ret);
		/*
		 * if we just got an ENOSPC, flush the inode now we
		 * aren't holding any page locks and retry *once*
		 */
		if (ret2 == -ENOSPC && !enospc) {
			error = xfs_flush_pages(ip, 0, -1, 0, FI_NONE);
			if (error)
				goto out_unlock_internal;
			enospc = 1;
			goto write_retry;
		}
		ret = ret2;
	}

	current->backing_dev_info = NULL;

	isize = i_size_read(inode);
	if (unlikely(ret < 0 && ret != -EFAULT && iocb->ki_pos > isize))
		iocb->ki_pos = isize;

	if (iocb->ki_pos > ip->i_size) {
		xfs_ilock(ip, XFS_ILOCK_EXCL);
		if (iocb->ki_pos > ip->i_size)
			ip->i_size = iocb->ki_pos;
		xfs_iunlock(ip, XFS_ILOCK_EXCL);
	}

	if (ret == -ENOSPC &&
	    DM_EVENT_ENABLED(ip, DM_EVENT_NOSPACE) && !(ioflags & IO_INVIS)) {
		xfs_iunlock(ip, iolock);
		if (need_i_mutex)
			mutex_unlock(&inode->i_mutex);
		error = XFS_SEND_NAMESP(ip->i_mount, DM_EVENT_NOSPACE, ip,
				DM_RIGHT_NULL, ip, DM_RIGHT_NULL, NULL, NULL,
				0, 0, 0); /* Delay flag intentionally  unused */
		if (need_i_mutex)
			mutex_lock(&inode->i_mutex);
		xfs_ilock(ip, iolock);
		if (error)
			goto out_unlock_internal;
		goto start;
	}

	error = -ret;
	if (ret <= 0)
		goto out_unlock_internal;

	XFS_STATS_ADD(xs_write_bytes, ret);

	/* Handle various SYNC-type writes */
	if ((file->f_flags & O_DSYNC) || IS_SYNC(inode)) {
		loff_t end = pos + ret - 1;
		int error2;

		xfs_iunlock(ip, iolock);
		if (need_i_mutex)
			mutex_unlock(&inode->i_mutex);

		error2 = filemap_write_and_wait_range(mapping, pos, end);
		if (!error)
			error = error2;
		if (need_i_mutex)
			mutex_lock(&inode->i_mutex);
		xfs_ilock(ip, iolock);

		error2 = -xfs_file_fsync(file, file->f_path.dentry,
					 (file->f_flags & __O_SYNC) ? 0 : 1);
		if (!error)
			error = error2;
	}

 out_unlock_internal:
	if (ip->i_new_size) {
		xfs_ilock(ip, XFS_ILOCK_EXCL);
		ip->i_new_size = 0;
		/*
		 * If this was a direct or synchronous I/O that failed (such
		 * as ENOSPC) then part of the I/O may have been written to
		 * disk before the error occured.  In this case the on-disk
		 * file size may have been adjusted beyond the in-memory file
		 * size and now needs to be truncated back.
		 */
		if (ip->i_d.di_size > ip->i_size)
			ip->i_d.di_size = ip->i_size;
		xfs_iunlock(ip, XFS_ILOCK_EXCL);
	}
	xfs_iunlock(ip, iolock);
 out_unlock_mutex:
	if (need_i_mutex)
		mutex_unlock(&inode->i_mutex);
	return -error;
}
예제 #4
0
/*
 * xfs_file_dio_aio_write - handle direct IO writes
 *
 * Lock the inode appropriately to prepare for and issue a direct IO write.
 * By separating it from the buffered write path we remove all the tricky to
 * follow locking changes and looping.
 *
 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 * pages are flushed out.
 *
 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 * allowing them to be done in parallel with reads and other direct IO writes.
 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 * needs to do sub-block zeroing and that requires serialisation against other
 * direct IOs to the same block. In this case we need to serialise the
 * submission of the unaligned IOs so that we don't get racing block zeroing in
 * the dio layer.  To avoid the problem with aio, we also need to wait for
 * outstanding IOs to complete so that unwritten extent conversion is completed
 * before we try to map the overlapping block. This is currently implemented by
 * hitting it with a big hammer (i.e. xfs_ioend_wait()).
 *
 * Returns with locks held indicated by @iolock and errors indicated by
 * negative return values.
 */
STATIC ssize_t
xfs_file_dio_aio_write(
	struct kiocb		*iocb,
	const struct iovec	*iovp,
	unsigned long		nr_segs,
	loff_t			pos,
	size_t			ocount,
	int			*iolock)
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	ssize_t			ret = 0;
	size_t			count = ocount;
	int			unaligned_io = 0;
	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
					mp->m_rtdev_targp : mp->m_ddev_targp;

	*iolock = 0;
	if ((pos & target->bt_smask) || (count & target->bt_smask))
		return -XFS_ERROR(EINVAL);

	if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
		unaligned_io = 1;

	if (unaligned_io || mapping->nrpages || pos > ip->i_size)
		*iolock = XFS_IOLOCK_EXCL;
	else
		*iolock = XFS_IOLOCK_SHARED;
	xfs_rw_ilock(ip, XFS_ILOCK_EXCL | *iolock);

	ret = xfs_file_aio_write_checks(file, &pos, &count, iolock);
	if (ret)
		return ret;

	if (mapping->nrpages) {
		WARN_ON(*iolock != XFS_IOLOCK_EXCL);
		ret = -xfs_flushinval_pages(ip, (pos & PAGE_CACHE_MASK), -1,
							FI_REMAPF_LOCKED);
		if (ret)
			return ret;
	}

	/*
	 * If we are doing unaligned IO, wait for all other IO to drain,
	 * otherwise demote the lock if we had to flush cached pages
	 */
	if (unaligned_io)
		xfs_ioend_wait(ip);
	else if (*iolock == XFS_IOLOCK_EXCL) {
		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
		*iolock = XFS_IOLOCK_SHARED;
	}

	trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
	ret = generic_file_direct_write(iocb, iovp,
			&nr_segs, pos, &iocb->ki_pos, count, ocount);

	/* No fallback to buffered IO on errors for XFS. */
	ASSERT(ret < 0 || ret == count);
	return ret;
}
/*
 * xfs_file_dio_aio_write - handle direct IO writes
 *
 * Lock the inode appropriately to prepare for and issue a direct IO write.
 * By separating it from the buffered write path we remove all the tricky to
 * follow locking changes and looping.
 *
 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 * pages are flushed out.
 *
 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 * allowing them to be done in parallel with reads and other direct IO writes.
 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 * needs to do sub-block zeroing and that requires serialisation against other
 * direct IOs to the same block. In this case we need to serialise the
 * submission of the unaligned IOs so that we don't get racing block zeroing in
 * the dio layer.  To avoid the problem with aio, we also need to wait for
 * outstanding IOs to complete so that unwritten extent conversion is completed
 * before we try to map the overlapping block. This is currently implemented by
 * hitting it with a big hammer (i.e. inode_dio_wait()).
 *
 * Returns with locks held indicated by @iolock and errors indicated by
 * negative return values.
 */
STATIC ssize_t
xfs_file_dio_aio_write(
    struct kiocb		*iocb,
    const struct iovec	*iovp,
    unsigned long		nr_segs,
    loff_t			pos,
    size_t			ocount)
{
    struct file		*file = iocb->ki_filp;
    struct address_space	*mapping = file->f_mapping;
    struct inode		*inode = mapping->host;
    struct xfs_inode	*ip = XFS_I(inode);
    struct xfs_mount	*mp = ip->i_mount;
    ssize_t			ret = 0;
    size_t			count = ocount;
    int			unaligned_io = 0;
    int			iolock;
    struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
                                  mp->m_rtdev_targp : mp->m_ddev_targp;

    if ((pos & target->bt_smask) || (count & target->bt_smask))
        return -XFS_ERROR(EINVAL);

    if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
        unaligned_io = 1;

    if (unaligned_io || mapping->nrpages)
        iolock = XFS_IOLOCK_EXCL;
    else
        iolock = XFS_IOLOCK_SHARED;
    xfs_rw_ilock(ip, iolock);

    if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
        xfs_rw_iunlock(ip, iolock);
        iolock = XFS_IOLOCK_EXCL;
        xfs_rw_ilock(ip, iolock);
    }

    ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
    if (ret)
        goto out;

    if (mapping->nrpages) {
        ret = -xfs_flushinval_pages(ip, (pos & PAGE_CACHE_MASK), -1,
                                    FI_REMAPF_LOCKED);
        if (ret)
            goto out;
    }

    if (unaligned_io)
        inode_dio_wait(inode);
    else if (iolock == XFS_IOLOCK_EXCL) {
        xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
        iolock = XFS_IOLOCK_SHARED;
    }

    trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
    ret = generic_file_direct_write(iocb, iovp,
                                    &nr_segs, pos, &iocb->ki_pos, count, ocount);

out:
    xfs_rw_iunlock(ip, iolock);


    ASSERT(ret < 0 || ret == count);
    return ret;
}
예제 #6
0
/*
 * xfs_file_dio_aio_write - handle direct IO writes
 *
 * Lock the inode appropriately to prepare for and issue a direct IO write.
 * By separating it from the buffered write path we remove all the tricky to
 * follow locking changes and looping.
 *
 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 * pages are flushed out.
 *
 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 * allowing them to be done in parallel with reads and other direct IO writes.
 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 * needs to do sub-block zeroing and that requires serialisation against other
 * direct IOs to the same block. In this case we need to serialise the
 * submission of the unaligned IOs so that we don't get racing block zeroing in
 * the dio layer.  To avoid the problem with aio, we also need to wait for
 * outstanding IOs to complete so that unwritten extent conversion is completed
 * before we try to map the overlapping block. This is currently implemented by
 * hitting it with a big hammer (i.e. inode_dio_wait()).
 *
 * Returns with locks held indicated by @iolock and errors indicated by
 * negative return values.
 */
STATIC ssize_t
xfs_file_dio_aio_write(
	struct kiocb		*iocb,
	struct iov_iter		*from)
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	ssize_t			ret = 0;
	int			unaligned_io = 0;
	int			iolock;
	size_t			count = iov_iter_count(from);
	loff_t			end;
	struct iov_iter		data;
	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
					mp->m_rtdev_targp : mp->m_ddev_targp;

	/* DIO must be aligned to device logical sector size */
	if (!IS_DAX(inode) &&
	    ((iocb->ki_pos | count) & target->bt_logical_sectormask))
		return -EINVAL;

	/* "unaligned" here means not aligned to a filesystem block */
	if ((iocb->ki_pos & mp->m_blockmask) ||
	    ((iocb->ki_pos + count) & mp->m_blockmask))
		unaligned_io = 1;

	/*
	 * We don't need to take an exclusive lock unless there page cache needs
	 * to be invalidated or unaligned IO is being executed. We don't need to
	 * consider the EOF extension case here because
	 * xfs_file_aio_write_checks() will relock the inode as necessary for
	 * EOF zeroing cases and fill out the new inode size as appropriate.
	 */
	if (unaligned_io || mapping->nrpages)
		iolock = XFS_IOLOCK_EXCL;
	else
		iolock = XFS_IOLOCK_SHARED;
	xfs_rw_ilock(ip, iolock);

	/*
	 * Recheck if there are cached pages that need invalidate after we got
	 * the iolock to protect against other threads adding new pages while
	 * we were waiting for the iolock.
	 */
	if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
		xfs_rw_iunlock(ip, iolock);
		iolock = XFS_IOLOCK_EXCL;
		xfs_rw_ilock(ip, iolock);
	}

	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
	if (ret)
		goto out;
	count = iov_iter_count(from);
	end = iocb->ki_pos + count - 1;

	/*
	 * See xfs_file_read_iter() for why we do a full-file flush here.
	 */
	if (mapping->nrpages) {
		ret = filemap_write_and_wait(VFS_I(ip)->i_mapping);
		if (ret)
			goto out;
		/*
		 * Invalidate whole pages. This can return an error if we fail
		 * to invalidate a page, but this should never happen on XFS.
		 * Warn if it does fail.
		 */
		ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping);
		WARN_ON_ONCE(ret);
		ret = 0;
	}

	/*
	 * If we are doing unaligned IO, wait for all other IO to drain,
	 * otherwise demote the lock if we had to flush cached pages
	 */
	if (unaligned_io)
		inode_dio_wait(inode);
	else if (iolock == XFS_IOLOCK_EXCL) {
		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
		iolock = XFS_IOLOCK_SHARED;
	}

	trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);

	data = *from;
	ret = mapping->a_ops->direct_IO(iocb, &data);

	/* see generic_file_direct_write() for why this is necessary */
	if (mapping->nrpages) {
		invalidate_inode_pages2_range(mapping,
					      iocb->ki_pos >> PAGE_SHIFT,
					      end >> PAGE_SHIFT);
	}
예제 #7
0
/*
 * xfs_file_dio_aio_write - handle direct IO writes
 *
 * Lock the inode appropriately to prepare for and issue a direct IO write.
 * By separating it from the buffered write path we remove all the tricky to
 * follow locking changes and looping.
 *
 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 * pages are flushed out.
 *
 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 * allowing them to be done in parallel with reads and other direct IO writes.
 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 * needs to do sub-block zeroing and that requires serialisation against other
 * direct IOs to the same block. In this case we need to serialise the
 * submission of the unaligned IOs so that we don't get racing block zeroing in
 * the dio layer.  To avoid the problem with aio, we also need to wait for
 * outstanding IOs to complete so that unwritten extent conversion is completed
 * before we try to map the overlapping block. This is currently implemented by
 * hitting it with a big hammer (i.e. inode_dio_wait()).
 *
 * Returns with locks held indicated by @iolock and errors indicated by
 * negative return values.
 */
STATIC ssize_t
xfs_file_dio_aio_write(
	struct kiocb		*iocb,
	struct iov_iter		*from)
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	ssize_t			ret = 0;
	int			unaligned_io = 0;
	int			iolock;
	size_t			count = iov_iter_count(from);
	loff_t			pos = iocb->ki_pos;
	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
					mp->m_rtdev_targp : mp->m_ddev_targp;

	/* DIO must be aligned to device logical sector size */
	if ((pos | count) & target->bt_logical_sectormask)
		return -EINVAL;

	/* "unaligned" here means not aligned to a filesystem block */
	if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
		unaligned_io = 1;

	/*
	 * We don't need to take an exclusive lock unless there page cache needs
	 * to be invalidated or unaligned IO is being executed. We don't need to
	 * consider the EOF extension case here because
	 * xfs_file_aio_write_checks() will relock the inode as necessary for
	 * EOF zeroing cases and fill out the new inode size as appropriate.
	 */
	if (unaligned_io || mapping->nrpages)
		iolock = XFS_IOLOCK_EXCL;
	else
		iolock = XFS_IOLOCK_SHARED;
	xfs_rw_ilock(ip, iolock);

	/*
	 * Recheck if there are cached pages that need invalidate after we got
	 * the iolock to protect against other threads adding new pages while
	 * we were waiting for the iolock.
	 */
	if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
		xfs_rw_iunlock(ip, iolock);
		iolock = XFS_IOLOCK_EXCL;
		xfs_rw_ilock(ip, iolock);
	}

	ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
	if (ret)
		goto out;
	iov_iter_truncate(from, count);

	if (mapping->nrpages) {
		ret = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
						    pos, -1);
		if (ret)
			goto out;
		truncate_pagecache_range(VFS_I(ip), pos, -1);
	}

	/*
	 * If we are doing unaligned IO, wait for all other IO to drain,
	 * otherwise demote the lock if we had to flush cached pages
	 */
	if (unaligned_io)
		inode_dio_wait(inode);
	else if (iolock == XFS_IOLOCK_EXCL) {
		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
		iolock = XFS_IOLOCK_SHARED;
	}

	trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
	ret = generic_file_direct_write(iocb, from, pos);

out:
	xfs_rw_iunlock(ip, iolock);

	/* No fallback to buffered IO on errors for XFS. */
	ASSERT(ret < 0 || ret == count);
	return ret;
}