예제 #1
0
void Backpropagation::trainOnlineCV(Mlp& network, 
	MATRIX& trainingInputs, 
	VECTOR& trainingTargets,
	MATRIX& testInputs,
	VECTOR& testTargets)
{
	VECTOR trainingOutputs(trainingTargets.size(), 0.0);
	VECTOR testOutputs(testTargets.size(), 0.0);
	
	while(error > tolerance && testCount < maxTestCount)
	{
		VECTOR::iterator output = trainingOutputs.begin();
		VECTOR::iterator target = trainingTargets.begin();
		for(MATRIX::iterator input = trainingInputs.begin(); 
			input != trainingInputs.end(); 
			++input, ++target, ++output)
		{
			*output = network(*input);
			double err = *output - *target;
			
			getWeightUpdates(network, *input, err);
			
			applyWeightUpdates(network);
			
			++iteration;
			
			if(iteration >= maxIterations)
				break;
		}
		
		++epoch;
		
		error = mse(trainingTargets, trainingOutputs);
		
		// Early-stopping using test (cross-validation) error
		testOutputs = network(testInputs);
		testError = mse(testTargets, testOutputs);
		if(testError < minTestError)
		{
			// Preserve test error and network weights
			minTestError = testError;
			W = network.W;			
			V = network.V;
			biasW = network.biasW;
			biasV = network.biasV;
			testCount = 0;
		}
		else
		{
			++testCount;
		}
	}
	
	network.W = W;
	network.V = V;
	network.biasW = biasW;
	network.biasV = biasV;
	testError = minTestError;
}
void AutoSubClassingClassifier::train(
        const vector<Mat>& segmentedHands, 
        const vector<int>& expectedClass) {
    assert(segmentedHands.size() == expectedClass.size());
    this->subclassesOfTrainingBase.clear();
    int numberOfClasses = *max_element(expectedClass.begin(), expectedClass.end()) + 1;
    vector<Mat> samplesPerClass(numberOfClasses);
    for (int i = 0; i < segmentedHands.size(); i++) {
        Mat currentCaracteristicVector = this->caracteristicVector(segmentedHands[i]);
        
        if (samplesPerClass[expectedClass[i]].empty()) {
            samplesPerClass[expectedClass[i]] = currentCaracteristicVector;
        } else {
            vconcat(samplesPerClass[expectedClass[i]], currentCaracteristicVector, samplesPerClass[expectedClass[i]]);
        }
    }
    int accumulatedNumberOfClasses = 0;
    for (int i = 0; i < samplesPerClass.size(); i++) {
        Mat labels;
        int clusterCount = this->numberOfSubclasses[i];
        kmeans(samplesPerClass[i], clusterCount, labels, TermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS, 0.0001, 10000), 5, KMEANS_RANDOM_CENTERS);
        this->subclassesOfTrainingBase.push_back(labels + (Mat::ones(samplesPerClass[i].rows, 1, CV_32S) * accumulatedNumberOfClasses));
        accumulatedNumberOfClasses += this->numberOfSubclasses[i];
    }
    Mat trainingInputs(segmentedHands.size(), this->caracteristicVectorLength(), CV_32F);
    Mat trainingOutputs(segmentedHands.size(), 1, CV_32F);
    int firstIndex = 0;
    for (int i = 0; i < samplesPerClass.size(); i++) {
        int lastIndex = firstIndex + samplesPerClass[i].rows;
        Mat samples = samplesPerClass[i];
        Mat range = trainingInputs.rowRange(firstIndex, lastIndex);
        samples.copyTo(range);
        Mat outputs = this->subclassesOfTrainingBase[i];
        outputs.copyTo(trainingOutputs.rowRange(firstIndex, lastIndex));
        firstIndex = lastIndex;
    }
    this->statisticalModel->train(trainingInputs, trainingOutputs);
}