예제 #1
0
/*******************************************************************************
 * This cpu is being turned off. Allow the TSPD/TSP to perform any actions
 * needed
 ******************************************************************************/
static int32_t tspd_cpu_off_handler(uint64_t unused)
{
	int32_t rc = 0;
	uint32_t linear_id = plat_my_core_pos();
	tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id];

	assert(tsp_vectors);
	assert(get_tsp_pstate(tsp_ctx->state) == TSP_PSTATE_ON);

	/* Program the entry point and enter the TSP */
	cm_set_elr_el3(SECURE, (uint64_t) &tsp_vectors->cpu_off_entry);
	rc = tspd_synchronous_sp_entry(tsp_ctx);

	/*
	 * Read the response from the TSP. A non-zero return means that
	 * something went wrong while communicating with the TSP.
	 */
	if (rc != 0)
		panic();

	/*
	 * Reset TSP's context for a fresh start when this cpu is turned on
	 * subsequently.
	 */
	set_tsp_pstate(tsp_ctx->state, TSP_PSTATE_OFF);

	 return 0;
}
예제 #2
0
/*******************************************************************************
 * This function passes control to the Secure Payload image (BL32) for the first
 * time on the primary cpu after a cold boot. It assumes that a valid secure
 * context has already been created by tspd_setup() which can be directly used.
 * It also assumes that a valid non-secure context has been initialised by PSCI
 * so it does not need to save and restore any non-secure state. This function
 * performs a synchronous entry into the Secure payload. The SP passes control
 * back to this routine through a SMC.
 ******************************************************************************/
int32_t tspd_init(void)
{
	uint32_t linear_id = plat_my_core_pos();
	tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id];
	entry_point_info_t *tsp_entry_point;
	uint64_t rc;

	/*
	 * Get information about the Secure Payload (BL32) image. Its
	 * absence is a critical failure.
	 */
	tsp_entry_point = bl31_plat_get_next_image_ep_info(SECURE);
	assert(tsp_entry_point);

	cm_init_my_context(tsp_entry_point);

	/*
	 * Arrange for an entry into the test secure payload. It will be
	 * returned via TSP_ENTRY_DONE case
	 */
	rc = tspd_synchronous_sp_entry(tsp_ctx);
	assert(rc != 0);

	return rc;
}
예제 #3
0
/*******************************************************************************
 * This cpu has resumed from suspend. The SPD saved the TSP context when it
 * completed the preceding suspend call. Use that context to program an entry
 * into the TSP to allow it to do any remaining book keeping
 ******************************************************************************/
static void tspd_cpu_suspend_finish_handler(uint64_t max_off_pwrlvl)
{
	int32_t rc = 0;
	uint32_t linear_id = plat_my_core_pos();
	tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id];

	assert(tsp_vectors);
	assert(get_tsp_pstate(tsp_ctx->state) == TSP_PSTATE_SUSPEND);

	/* Program the entry point, max_off_pwrlvl and enter the SP */
	write_ctx_reg(get_gpregs_ctx(&tsp_ctx->cpu_ctx),
		      CTX_GPREG_X0,
		      max_off_pwrlvl);
	cm_set_elr_el3(SECURE, (uint64_t) &tsp_vectors->cpu_resume_entry);
	rc = tspd_synchronous_sp_entry(tsp_ctx);

	/*
	 * Read the response from the TSP. A non-zero return means that
	 * something went wrong while communicating with the TSP.
	 */
	if (rc != 0)
		panic();

	/* Update its context to reflect the state the SP is in */
	set_tsp_pstate(tsp_ctx->state, TSP_PSTATE_ON);
}
예제 #4
0
/*******************************************************************************
 * This cpu is being suspended. S-EL1 state must have been saved in the
 * resident cpu (mpidr format) if it is a UP/UP migratable TSP.
 ******************************************************************************/
static void tspd_cpu_suspend_handler(uint64_t power_state)
{
	int32_t rc = 0;
	uint64_t mpidr = read_mpidr();
	uint32_t linear_id = platform_get_core_pos(mpidr);
	tsp_context *tsp_ctx = &tspd_sp_context[linear_id];

	assert(tsp_entry_info);
	assert(tsp_ctx->state == TSP_STATE_ON);

	/* Program the entry point, power_state parameter and enter the TSP */
	write_ctx_reg(get_gpregs_ctx(&tsp_ctx->cpu_ctx),
		      CTX_GPREG_X0,
		      power_state);
	cm_set_el3_elr(SECURE, (uint64_t) tsp_entry_info->cpu_suspend_entry);
	rc = tspd_synchronous_sp_entry(tsp_ctx);

	/*
	 * Read the response from the TSP. A non-zero return means that
	 * something went wrong while communicating with the TSP.
	 */
	if (rc != 0)
		panic();

	/* Update its context to reflect the state the TSP is in */
	tsp_ctx->state = TSP_STATE_SUSPEND;
}
예제 #5
0
/*******************************************************************************
 * This cpu is being turned off. Allow the TSPD/TSP to perform any actions
 * needed
 ******************************************************************************/
static int32_t tspd_cpu_off_handler(uint64_t cookie)
{
	int32_t rc = 0;
	uint64_t mpidr = read_mpidr();
	uint32_t linear_id = platform_get_core_pos(mpidr);
	tsp_context *tsp_ctx = &tspd_sp_context[linear_id];

	assert(tsp_entry_info);
	assert(tsp_ctx->state == TSP_STATE_ON);

	/* Program the entry point and enter the TSP */
	cm_set_el3_elr(SECURE, (uint64_t) tsp_entry_info->cpu_off_entry);
	rc = tspd_synchronous_sp_entry(tsp_ctx);

	/*
	 * Read the response from the TSP. A non-zero return means that
	 * something went wrong while communicating with the TSP.
	 */
	if (rc != 0)
		panic();

	/*
	 * Reset TSP's context for a fresh start when this cpu is turned on
	 * subsequently.
	 */
	 tsp_ctx->state = TSP_STATE_OFF;

	 return 0;
}
예제 #6
0
/*******************************************************************************
 * This cpu has been turned on. Enter the TSP to initialise S-EL1 and other bits
 * before passing control back to the Secure Monitor. Entry in S-El1 is done
 * after initialising minimal architectural state that guarantees safe
 * execution.
 ******************************************************************************/
static void tspd_cpu_on_finish_handler(uint64_t cookie)
{
	int32_t rc = 0;
	uint64_t mpidr = read_mpidr();
	uint32_t linear_id = platform_get_core_pos(mpidr);
	tsp_context *tsp_ctx = &tspd_sp_context[linear_id];

	assert(tsp_entry_info);
	assert(tsp_ctx->state == TSP_STATE_OFF);

	/* Initialise this cpu's secure context */
	tspd_init_secure_context((uint64_t) tsp_entry_info->cpu_on_entry,
				TSP_AARCH64,
				mpidr,
				tsp_ctx);

	/* Enter the TSP */
	rc = tspd_synchronous_sp_entry(tsp_ctx);

	/*
	 * Read the response from the TSP. A non-zero return means that
	 * something went wrong while communicating with the SP.
	 */
	if (rc != 0)
		panic();

	/* Update its context to reflect the state the SP is in */
	tsp_ctx->state = TSP_STATE_ON;
}
예제 #7
0
/*******************************************************************************
 * System is about to be reset. Allow the TSPD/TSP to perform
 * any actions needed.
 ******************************************************************************/
static void tspd_system_reset(void)
{
	uint32_t linear_id = plat_my_core_pos();
	tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id];

	assert(tsp_vectors);
	assert(get_tsp_pstate(tsp_ctx->state) == TSP_PSTATE_ON);

	/* Program the entry point */
	cm_set_elr_el3(SECURE, (uint64_t) &tsp_vectors->system_reset_entry);

	/* Enter the TSP. We do not care about the return value because we
	 * must continue the reset anyway */
	tspd_synchronous_sp_entry(tsp_ctx);
}
예제 #8
0
/*******************************************************************************
 * This function takes an SP context pointer and abort any preempted SMC
 * request.
 * Return 1 if there was a preempted SMC request, 0 otherwise.
 ******************************************************************************/
int tspd_abort_preempted_smc(tsp_context_t *tsp_ctx)
{
	if (!get_yield_smc_active_flag(tsp_ctx->state))
		return 0;

	/* Abort any preempted SMC request */
	clr_yield_smc_active_flag(tsp_ctx->state);

	/*
	 * Arrange for an entry into the test secure payload. It will
	 * be returned via TSP_ABORT_DONE case in tspd_smc_handler.
	 */
	cm_set_elr_el3(SECURE,
		       (uint64_t) &tsp_vectors->abort_yield_smc_entry);
	uint64_t rc = tspd_synchronous_sp_entry(tsp_ctx);

	if (rc != 0)
		panic();

	return 1;
}
예제 #9
0
/*******************************************************************************
 * This cpu has been turned on. Enter the TSP to initialise S-EL1 and other bits
 * before passing control back to the Secure Monitor. Entry in S-El1 is done
 * after initialising minimal architectural state that guarantees safe
 * execution.
 ******************************************************************************/
static void tspd_cpu_on_finish_handler(uint64_t unused)
{
	int32_t rc = 0;
	uint32_t linear_id = plat_my_core_pos();
	tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id];
	entry_point_info_t tsp_on_entrypoint;

	assert(tsp_vectors);
	assert(get_tsp_pstate(tsp_ctx->state) == TSP_PSTATE_OFF);

	tspd_init_tsp_ep_state(&tsp_on_entrypoint,
				TSP_AARCH64,
				(uint64_t) &tsp_vectors->cpu_on_entry,
				tsp_ctx);

	/* Initialise this cpu's secure context */
	cm_init_my_context(&tsp_on_entrypoint);

#if TSP_NS_INTR_ASYNC_PREEMPT
	/*
	 * Disable the NS interrupt locally since it will be enabled globally
	 * within cm_init_my_context.
	 */
	disable_intr_rm_local(INTR_TYPE_NS, SECURE);
#endif

	/* Enter the TSP */
	rc = tspd_synchronous_sp_entry(tsp_ctx);

	/*
	 * Read the response from the TSP. A non-zero return means that
	 * something went wrong while communicating with the SP.
	 */
	if (rc != 0)
		panic();

	/* Update its context to reflect the state the SP is in */
	set_tsp_pstate(tsp_ctx->state, TSP_PSTATE_ON);
}