예제 #1
0
파일: group.c 프로젝트: nickg/nvc
static int group_net_to_field(type_t type, netid_t nid)
{
   int count = 0;
   if (type_is_record(type)) {
      const int nfields = type_fields(type);
      netid_t first = 0;
      for (int i = 0; i < nfields; i++) {
         tree_t field = type_field(type, i);
         type_t ftype = tree_type(field);
         const netid_t next = first + type_width(tree_type(field));
         if (nid >= first && nid < next) {
            if (type_is_array(ftype) || type_is_record(ftype))
               return count + group_net_to_field(ftype, nid - first);
            else
               return count;
         }
         first = next;
         count += type_width(ftype);
      }
      fatal_trace("group_net_to_field failed to find field for nid=%d type=%s",
                  nid, type_pp(type));
   }
   else if (type_is_array(type)) {
      type_t elem = type_elem(type);
      const int width = type_width(elem);
      if (type_is_record(elem))
         return (nid / width) * width + group_net_to_field(elem, nid % width);
      else
         return group_net_to_field(elem, nid % width);
   }
   else
      return 0;
}
예제 #2
0
파일: module.c 프로젝트: tomtix/uuc
static void check_main_prototype(struct symbol *main)
{
    int argc = type_function_argc(main->type);
    if (argc != 0 && argc != 2 && argc != 3) {
        display_main_proto();
        return;
    }


    const struct type *returnv = type_function_return(main->type);
    if (returnv != type_void && returnv != type_int) {
        display_main_proto();
        return;
    }

    const struct list *l = type_function_argv(main->type);
    const struct type *t1, *t2, *t3;
    switch (argc) {

    case 2:
        t1 = ((struct symbol*)list_get(l, 1))->type;
        t2 = ((struct symbol*)list_get(l, 2))->type;
        if (t1 != type_int) {
            display_main_proto();
            return;
        }
        if (!type_is_array(t2) || type_array_values(t2) != type_string) {
            display_main_proto();
            return;
        }


        break;

    case 3:
        t1 = ((struct symbol*)list_get(l, 1))->type;
        t2 = ((struct symbol*)list_get(l, 2))->type;
        t3 = ((struct symbol*)list_get(l, 2))->type;
        if (t1 != type_int) {
            display_main_proto();
            return;
        }
        if (!type_is_array(t3) || type_array_values(t3) != type_string) {
            display_main_proto();
            return;
        }
        if (!type_is_array(t3) || type_array_values(t3) != type_string) {
            display_main_proto();
            return;
        }
        break;

    default:
        break;
    }
}
예제 #3
0
파일: type.c 프로젝트: manasdas17/nvc
bool type_is_array(type_t t)
{
   assert(t != NULL);
   if (t->kind == T_SUBTYPE)
      return type_is_array(type_base(t));
   else
      return (t->kind == T_CARRAY || t->kind == T_UARRAY);
}
예제 #4
0
파일: group.c 프로젝트: nickg/nvc
static bool group_contains_record(type_t type)
{
   if (type_is_record(type))
      return true;
   else if (type_is_array(type))
      return group_contains_record(type_elem(type));
   else
      return false;
}
예제 #5
0
파일: shell.c 프로젝트: a4a881d4/nvc
static int shell_cmd_watch(ClientData cd, Tcl_Interp *interp,
                           int objc, Tcl_Obj *const objv[])
{
   const char *help =
      "watch - Trace changes to a signal\n"
      "\n"
      "Usage: watch SIGNALS...\n"
      "\n"
      "Prints a message every time an update occurs to a signal listed."
      "\n"
      "Examples:\n"
      "  watch [signals {clk}]  Trace updates to all signals named clk\n";

   if (show_help(objc, objv, help))
      return TCL_OK;

   if (objc == 1) {
      warnf("nothing to watch (try -help for usage)");
      return TCL_OK;
   }

   hash_t *decl_hash = (hash_t *)cd;

   for (int i = 1; i < objc; i++) {
      int length;
      if (Tcl_ListObjLength(interp, objv[i], &length) != TCL_OK)
         return TCL_ERROR;

      for (int j = 0; j < length; j++) {
         Tcl_Obj *obj;
         if (Tcl_ListObjIndex(interp, objv[i], j, &obj) != TCL_OK)
            return TCL_ERROR;

         const char *str = Tcl_GetString(obj);

         tree_t t = hash_get(decl_hash, ident_new(str));
         if (t == NULL)
            return tcl_error(interp, "object not found: %s", str);

         if (t == NULL)
            return tcl_error(interp, "object not found: %s", str);
         else if (tree_kind(t) != T_SIGNAL_DECL)
            return tcl_error(interp, "not a signal: %s", str);
         else if (type_is_array(tree_type(t)))
            return tcl_error(interp, "only scalar signals may be watched");
         // TODO: make this work for arrays

         slave_watch_msg_t msg = {
            .index = tree_index(t)
         };
         slave_post_msg(SLAVE_WATCH, &msg, sizeof(msg));
      }
   }

   return TCL_OK;
}
예제 #6
0
/**
 * Convert postgres Datum into a ConcreteValue object.
 */
AbstractValueSPtr AbstractPGValue::DatumToValue(bool inMemoryIsWritable,
    Oid inTypeID, Datum inDatum) const {
        
    // First check if datum is rowtype
    if (type_is_rowtype(inTypeID)) {
        HeapTupleHeader pgTuple = DatumGetHeapTupleHeader(inDatum);
        return AbstractValueSPtr(new PGValue<HeapTupleHeader>(pgTuple));
    } else if (type_is_array(inTypeID)) {
        ArrayType *pgArray = DatumGetArrayTypeP(inDatum);
        
        if (ARR_NDIM(pgArray) != 1)
            throw std::invalid_argument("Multidimensional arrays not yet supported");
        
        if (ARR_HASNULL(pgArray))
            throw std::invalid_argument("Arrays with NULLs not yet supported");
        
        switch (ARR_ELEMTYPE(pgArray)) {
            case FLOAT8OID: {
                MemHandleSPtr memoryHandle(new PGArrayHandle(pgArray));
                
                if (inMemoryIsWritable) {
                    return AbstractValueSPtr(
                        new ConcreteValue<Array<double> >(
                            Array<double>(memoryHandle,
                                boost::extents[ ARR_DIMS(pgArray)[0] ])
                            )
                        );
                } else {
                    return AbstractValueSPtr(
                        new ConcreteValue<Array_const<double> >(
                            Array_const<double>(memoryHandle,
                                boost::extents[ ARR_DIMS(pgArray)[0] ])
                            )
                        );
                }
            }
        }
    }

    switch (inTypeID) {
        case BOOLOID: return AbstractValueSPtr(
            new ConcreteValue<bool>( DatumGetBool(inDatum) ));
        case INT2OID: return AbstractValueSPtr(
            new ConcreteValue<int16_t>( DatumGetInt16(inDatum) ));
        case INT4OID: return AbstractValueSPtr(
            new ConcreteValue<int32_t>( DatumGetInt32(inDatum) ));
        case INT8OID: return AbstractValueSPtr(
            new ConcreteValue<int64_t>( DatumGetInt64(inDatum) ));
        case FLOAT4OID: return AbstractValueSPtr(
            new ConcreteValue<float>( DatumGetFloat4(inDatum) ));
        case FLOAT8OID: return AbstractValueSPtr(
            new ConcreteValue<double>( DatumGetFloat8(inDatum) ));
    }
    
    return AbstractValueSPtr();
}
예제 #7
0
int expr_must_lvalue(expr *e, const char *desc)
{
	int lval = (expr_is_lval(e) == LVALUE_USER_ASSIGNABLE);

	if(!lval || type_is_array(e->tree_type)){
		fold_had_error = 1;
		warn_at_print_error(&e->where, "%s to %s - %s",
				desc, type_to_str(e->tree_type),
				lval ? "arrays not assignable" : "not an lvalue");

		return 0;
	}

	return 1;
}
예제 #8
0
파일: type.c 프로젝트: tomtix/uuc
/* build an array in reverse order
   i.e: given
   values = array< 10, array< 3, int > >
   and size  = 42 (42 must be wrapped inside an expression)

   return
   array< 10, array< 3, array< 42, int > > >

   --> it nest the newly created array inside the one it is given
   keeping the same basic type
*/
const struct type *
type_new_array_type_reversed(const struct type *values,
			     const struct expression *array_size)
{
    struct type *ty = type_new(TYPE_ARRAY);

    if (!type_is_array(values)) {
	ty->array_type.values = values;
	ty->array_type.array_size = array_size;
	return ty;
    }

    ty->array_type.array_size = type_array_size(values);
    ty->array_type.values = type_new_array_type(type_array_values(values),
						array_size);
    return ty;
}
예제 #9
0
int expr_is_lval(expr *e)
{
	if(!e->f_lea)
		return 0;

	/* special case:
	 * (a = b) = c
	 * ^~~~~~~ not an lvalue, but internally we handle it as one
	 */
	if(expr_kind(e, assign) && type_is_s_or_u(e->tree_type))
		return 0;

	if(type_is_array(e->tree_type))
		return 0;

	return 1;
}
예제 #10
0
파일: type.c 프로젝트: 8l/ucc-c-compiler
enum type_str_type
type_str_type(type *r)
{
	type *t = type_is_array(r);
	if(!t)
		t = type_is_ptr(r);
	t = type_is_primitive(t, type_unknown);
	switch(t ? t->bits.type->primitive : type_unknown){
		case type_schar:
		case type_nchar:
		case type_uchar:
			return type_str_char;

		case type_int:
			return type_str_wchar;

		default:
			return type_str_no;
	}
}
예제 #11
0
파일: type.c 프로젝트: manasdas17/nvc
unsigned type_width(type_t type)
{
   if (type_is_array(type)) {
      const unsigned elem_w = type_width(type_elem(type));
      unsigned w = 1;
      const int ndims = type_dims(type);
      for (int i = 0; i < ndims; i++) {
         int64_t low, high;
         range_bounds(type_dim(type, i), &low, &high);
         w *= MAX(high - low + 1, 0) * elem_w;
      }
      return w;
   }
   else if (type_is_record(type)) {
      type_t base = type_base_recur(type);
      unsigned w = 0;
      const int nfields = type_fields(base);
      for (int i = 0; i < nfields; i++)
         w += type_width(tree_type(type_field(base, i)));
      return w;
   }
   else
      return 1;
}
예제 #12
0
파일: vcd.c 프로젝트: SnookEE/nvc
static void vcd_process_signal(tree_t d, int *next_key)
{
   type_t type = tree_type(d);
   type_t base = type_base_recur(type);

   vcd_data_t *data = xmalloc(sizeof(vcd_data_t));
   memset(data, '\0', sizeof(vcd_data_t));

   int msb = 0, lsb = 0;

   if (type_is_array(type)) {
      if (type_dims(type) > 1) {
         warn_at(tree_loc(d), "cannot represent multidimensional arrays "
                 "in VCD format");
         free(data);
         return;
      }

      range_t r = type_dim(type, 0);

      int64_t low, high;
      range_bounds(r, &low, &high);

      data->dir  = r.kind;
      data->size = high - low + 1;

      msb = assume_int(r.left);
      lsb = assume_int(r.right);

      type_t elem = type_elem(type);
      if (!vcd_can_fmt_chars(elem, data)) {
         warn_at(tree_loc(d), "cannot represent arrays of type %s "
                 "in VCD format", type_pp(elem));
         free(data);
         return;
      }
   }
   else {
      switch (type_kind(base)) {
      case T_INTEGER:
         {
            int64_t low, high;
            range_bounds(type_dim(type, 0), &low, &high);

            data->size = ilog2(high - low + 1);
            data->fmt  = vcd_fmt_int;
         }
         break;

      case T_ENUM:
         if (vcd_can_fmt_chars(type, data)) {
            data->size = 1;
            break;
         }
         // Fall-through

      default:
         warn_at(tree_loc(d), "cannot represent type %s in VCD format",
                 type_pp(type));
         free(data);
         return;
      }
   }

   const char *name_base = strrchr(istr(tree_ident(d)), ':') + 1;
   const size_t base_len = strlen(name_base);
   char name[base_len + 64];
   strncpy(name, name_base, base_len + 64);
   if (type_is_array(type))
      snprintf(name + base_len, 64, "[%d:%d]\n", msb, lsb);

   tree_add_attr_ptr(d, vcd_data_i, data);

   data->watch = rt_set_event_cb(d, vcd_event_cb, data, true);

   vcd_key_fmt(*next_key, data->key);

   fprintf(vcd_file, "$var reg %d %s %s $end\n",
           (int)data->size, data->key, name);

   ++(*next_key);
}
예제 #13
0
파일: lxt.c 프로젝트: SnookEE/nvc
void lxt_restart(void)
{
   if (trace == NULL)
      return;

   lt_set_timescale(trace, -15);
   lt_symbol_bracket_stripping(trace, 0);
   lt_set_clock_compress(trace);

   const int ndecls = tree_decls(lxt_top);
   for (int i = 0; i < ndecls; i++) {
      tree_t d = tree_decl(lxt_top, i);
      if (tree_kind(d) != T_SIGNAL_DECL)
         continue;
      else if (!wave_should_dump(d))
         continue;

      type_t type = tree_type(d);

      int rows, msb, lsb;
      if (type_is_array(type)) {
         rows = type_dims(type) - 1;
         if ((rows > 0) || type_is_array(type_elem(type))) {
            warn_at(tree_loc(d), "cannot emit arrays of greater than one "
                    "dimension or arrays of arrays in LXT yet");
            continue;
         }

         range_t r = type_dim(type, 0);
         msb = assume_int(r.left);
         lsb = assume_int(r.right);
      }
      else {
         rows = 0;
         msb = lsb = -1;
      }

      lxt_data_t *data = xmalloc(sizeof(lxt_data_t));
      memset(data, '\0', sizeof(lxt_data_t));

      int flags = 0;

      if (type_is_array(type)) {
         // Only arrays of CHARACTER, BIT, STD_ULOGIC are supported
         type_t elem = type_base_recur(type_elem(type));
         if ((type_kind(elem) != T_ENUM)
             || !lxt_can_fmt_enum_chars(elem, data, &flags)) {
            warn_at(tree_loc(d), "cannot represent arrays of type %s "
                    "in LXT format", type_pp(elem));
            free(data);
            continue;
         }

         data->dir = type_dim(type, 0).kind;
      }
      else {
         type_t base = type_base_recur(type);
         switch (type_kind(base)) {
         case T_INTEGER:
            data->fmt = lxt_fmt_int;
            flags = LT_SYM_F_INTEGER;
            break;

         case T_ENUM:
            if (!lxt_can_fmt_enum_chars(base, data, &flags)) {
               data->fmt = lxt_fmt_enum;
               flags = LT_SYM_F_STRING;
            }
            break;

         default:
            warn_at(tree_loc(d), "cannot represent type %s in LXT format",
                    type_pp(type));
            free(data);
            continue;
         }
      }

      char *name = lxt_fmt_name(d);
      data->sym = lt_symbol_add(trace, name, rows, msb, lsb, flags);
      free(name);

      tree_add_attr_ptr(d, lxt_data_i, data);

      watch_t *w = rt_set_event_cb(d, lxt_event_cb, data, true);

      (*data->fmt)(d, w, data);
   }

   last_time = (lxttime_t)-1;
}
예제 #14
0
파일: funcapi.c 프로젝트: mjw56/postgres
/*
 * Given the result tuple descriptor for a function with OUT parameters,
 * replace any polymorphic columns (ANYELEMENT etc) with correct data types
 * deduced from the input arguments. Returns TRUE if able to deduce all types,
 * FALSE if not.
 */
static bool
resolve_polymorphic_tupdesc(TupleDesc tupdesc, oidvector *declared_args,
							Node *call_expr)
{
	int			natts = tupdesc->natts;
	int			nargs = declared_args->dim1;
	bool		have_anyelement_result = false;
	bool		have_anyarray_result = false;
	bool		have_anynonarray = false;
	bool		have_anyenum = false;
	Oid			anyelement_type = InvalidOid;
	Oid			anyarray_type = InvalidOid;
	Oid			anycollation;
	int			i;

	/* See if there are any polymorphic outputs; quick out if not */
	for (i = 0; i < natts; i++)
	{
		switch (tupdesc->attrs[i]->atttypid)
		{
			case ANYELEMENTOID:
				have_anyelement_result = true;
				break;
			case ANYARRAYOID:
				have_anyarray_result = true;
				break;
			case ANYNONARRAYOID:
				have_anyelement_result = true;
				have_anynonarray = true;
				break;
			case ANYENUMOID:
				have_anyelement_result = true;
				have_anyenum = true;
				break;
			default:
				break;
		}
	}
	if (!have_anyelement_result && !have_anyarray_result)
		return true;

	/*
	 * Otherwise, extract actual datatype(s) from input arguments.	(We assume
	 * the parser already validated consistency of the arguments.)
	 */
	if (!call_expr)
		return false;			/* no hope */

	for (i = 0; i < nargs; i++)
	{
		switch (declared_args->values[i])
		{
			case ANYELEMENTOID:
			case ANYNONARRAYOID:
			case ANYENUMOID:
				if (!OidIsValid(anyelement_type))
					anyelement_type = get_call_expr_argtype(call_expr, i);
				break;
			case ANYARRAYOID:
				if (!OidIsValid(anyarray_type))
					anyarray_type = get_call_expr_argtype(call_expr, i);
				break;
			default:
				break;
		}
	}

	/* If nothing found, parser messed up */
	if (!OidIsValid(anyelement_type) && !OidIsValid(anyarray_type))
		return false;

	/* If needed, deduce one polymorphic type from the other */
	if (have_anyelement_result && !OidIsValid(anyelement_type))
		anyelement_type = resolve_generic_type(ANYELEMENTOID,
											   anyarray_type,
											   ANYARRAYOID);
	if (have_anyarray_result && !OidIsValid(anyarray_type))
		anyarray_type = resolve_generic_type(ANYARRAYOID,
											 anyelement_type,
											 ANYELEMENTOID);

	/* Enforce ANYNONARRAY if needed */
	if (have_anynonarray && type_is_array(anyelement_type))
		return false;

	/* Enforce ANYENUM if needed */
	if (have_anyenum && !type_is_enum(anyelement_type))
		return false;

	/*
	 * Identify the collation to use for polymorphic OUT parameters. (It'll
	 * necessarily be the same for both anyelement and anyarray.)
	 */
	anycollation = get_typcollation(OidIsValid(anyelement_type) ? anyelement_type : anyarray_type);
	if (OidIsValid(anycollation))
	{
		/*
		 * The types are collatable, so consider whether to use a nondefault
		 * collation.  We do so if we can identify the input collation used
		 * for the function.
		 */
		Oid			inputcollation = exprInputCollation(call_expr);

		if (OidIsValid(inputcollation))
			anycollation = inputcollation;
	}

	/* And finally replace the tuple column types as needed */
	for (i = 0; i < natts; i++)
	{
		switch (tupdesc->attrs[i]->atttypid)
		{
			case ANYELEMENTOID:
			case ANYNONARRAYOID:
			case ANYENUMOID:
				TupleDescInitEntry(tupdesc, i + 1,
								   NameStr(tupdesc->attrs[i]->attname),
								   anyelement_type,
								   -1,
								   0);
				TupleDescInitEntryCollation(tupdesc, i + 1, anycollation);
				break;
			case ANYARRAYOID:
				TupleDescInitEntry(tupdesc, i + 1,
								   NameStr(tupdesc->attrs[i]->attname),
								   anyarray_type,
								   -1,
								   0);
				TupleDescInitEntryCollation(tupdesc, i + 1, anycollation);
				break;
			default:
				break;
		}
	}

	return true;
}
예제 #15
0
파일: funcapi.c 프로젝트: CraigHarris/gpdb
/*
 * Given the result tuple descriptor for a function with OUT parameters,
 * replace any polymorphic columns (ANYELEMENT etc) with correct data types
 * deduced from the input arguments. Returns TRUE if able to deduce all types,
 * FALSE if not.
 */
static bool
resolve_polymorphic_tupdesc(TupleDesc tupdesc, oidvector *declared_args,
							Node *call_expr)
{
	int			natts = tupdesc->natts;
	int			nargs = declared_args->dim1;
	bool		have_anyelement_result = false;
	bool		have_anyarray_result = false;
	bool		have_anynonarray = false;
	bool		have_anyenum = false;
	Oid			anyelement_type = InvalidOid;
	Oid			anyarray_type = InvalidOid;
	int			i;

	/* See if there are any polymorphic outputs; quick out if not */
	for (i = 0; i < natts; i++)
	{
		switch (tupdesc->attrs[i]->atttypid)
		{
			case ANYELEMENTOID:
				have_anyelement_result = true;
				break;
			case ANYARRAYOID:
				have_anyarray_result = true;
				break;
			case ANYNONARRAYOID:
				have_anyelement_result = true;
				have_anynonarray = true;
				break;
			case ANYENUMOID:
				have_anyelement_result = true;
				have_anyenum = true;
				break;
			default:
				break;
		}
	}
	if (!have_anyelement_result && !have_anyarray_result)
		return true;

	/*
	 * Otherwise, extract actual datatype(s) from input arguments.	(We assume
	 * the parser already validated consistency of the arguments.)
	 */
	if (!call_expr)
		return false;			/* no hope */

	for (i = 0; i < nargs; i++)
	{
		switch (declared_args->values[i])
		{
			case ANYELEMENTOID:
			case ANYNONARRAYOID:
			case ANYENUMOID:
				if (!OidIsValid(anyelement_type))
					anyelement_type = get_call_expr_argtype(call_expr, i);
				break;
			case ANYARRAYOID:
				if (!OidIsValid(anyarray_type))
					anyarray_type = get_call_expr_argtype(call_expr, i);
				break;
			default:
				break;
		}
	}

	/* If nothing found, parser messed up */
	if (!OidIsValid(anyelement_type) && !OidIsValid(anyarray_type))
		return false;

	/* If needed, deduce one polymorphic type from the other */
	if (have_anyelement_result && !OidIsValid(anyelement_type))
		anyelement_type = resolve_generic_type(ANYELEMENTOID,
											   anyarray_type,
											   ANYARRAYOID);
	if (have_anyarray_result && !OidIsValid(anyarray_type))
		anyarray_type = resolve_generic_type(ANYARRAYOID,
											 anyelement_type,
											 ANYELEMENTOID);

	/* Enforce ANYNONARRAY if needed */
	if (have_anynonarray && type_is_array(anyelement_type))
		return false;

	/* Enforce ANYENUM if needed */
	if (have_anyenum && !type_is_enum(anyelement_type))
		return false;

	/* And finally replace the tuple column types as needed */
	for (i = 0; i < natts; i++)
	{
		switch (tupdesc->attrs[i]->atttypid)
		{
			case ANYELEMENTOID:
			case ANYNONARRAYOID:
			case ANYENUMOID:
				TupleDescInitEntry(tupdesc, i + 1,
								   NameStr(tupdesc->attrs[i]->attname),
								   anyelement_type,
								   -1,
								   0);
				break;
			case ANYARRAYOID:
				TupleDescInitEntry(tupdesc, i + 1,
								   NameStr(tupdesc->attrs[i]->attname),
								   anyarray_type,
								   -1,
								   0);
				break;
			default:
				break;
		}
	}

	return true;
}
예제 #16
0
파일: fst.c 프로젝트: SnookEE/nvc
static void fst_process_signal(tree_t d)
{
   type_t type = tree_type(d);
   type_t base = type_base_recur(type);

   fst_data_t *data = xmalloc(sizeof(fst_data_t));
   memset(data, '\0', sizeof(fst_data_t));

   int msb = 0, lsb = 0;

   enum fstVarType vt;
   enum fstSupplementalDataType sdt;
   if (type_is_array(type)) {
      if (type_dims(type) > 1) {
         warn_at(tree_loc(d), "cannot represent multidimensional arrays "
                 "in FST format");
         free(data);
         return;
      }

      range_t r = type_dim(type, 0);

      int64_t low, high;
      range_bounds(r, &low, &high);

      data->dir  = r.kind;
      data->size = high - low + 1;

      msb = assume_int(r.left);
      lsb = assume_int(r.right);

      type_t elem = type_elem(type);
      if (!fst_can_fmt_chars(elem, data, &vt, &sdt)) {
         warn_at(tree_loc(d), "cannot represent arrays of type %s "
                 "in FST format", type_pp(elem));
         free(data);
         return;
      }
      else {
         ident_t ident = type_ident(base);
         if (ident == unsigned_i)
            sdt = FST_SDT_VHDL_UNSIGNED;
         else if (ident == signed_i)
            sdt = FST_SDT_VHDL_SIGNED;
      }
   }
   else {
      switch (type_kind(base)) {
      case T_INTEGER:
         {
            ident_t ident = type_ident(type);
            if (ident == natural_i)
               sdt = FST_SDT_VHDL_NATURAL;
            else if (ident == positive_i)
               sdt = FST_SDT_VHDL_POSITIVE;
            else
               sdt = FST_SDT_VHDL_INTEGER;

            int64_t low, high;
            range_bounds(type_dim(type, 0), &low, &high);

            vt = FST_VT_VCD_INTEGER;
            data->size = ilog2(high - low + 1);
            data->fmt  = fst_fmt_int;
         }
         break;

      case T_ENUM:
         if (!fst_can_fmt_chars(type, data, &vt, &sdt)) {
            ident_t ident = type_ident(base);
            if (ident == std_bool_i)
               sdt = FST_SDT_VHDL_BOOLEAN;
            else if (ident == std_char_i)
               sdt = FST_SDT_VHDL_CHARACTER;
            else
               sdt = FST_SDT_NONE;

            vt = FST_VT_GEN_STRING;
            data->size = 0;
            data->fmt  = fst_fmt_enum;
         }
         else
            data->size = 1;
         break;

      case T_PHYSICAL:
         {
            sdt = FST_SDT_NONE;
            vt  = FST_VT_GEN_STRING;
            data->size = 0;
            data->type.units = fst_make_unit_map(type);
            data->fmt = fst_fmt_physical;
         }
         break;

      default:
         warn_at(tree_loc(d), "cannot represent type %s in FST format",
                 type_pp(type));
         free(data);
         return;
      }
   }

   enum fstVarDir dir = FST_VD_IMPLICIT;

   switch (tree_attr_int(d, fst_dir_i, -1)) {
   case PORT_IN: dir = FST_VD_INPUT; break;
   case PORT_OUT: dir = FST_VD_OUTPUT; break;
   case PORT_INOUT: dir = FST_VD_INOUT; break;
   case PORT_BUFFER: dir = FST_VD_BUFFER; break;
   }

   const char *name_base = strrchr(istr(tree_ident(d)), ':') + 1;
   const size_t base_len = strlen(name_base);
   char name[base_len + 64];
   strncpy(name, name_base, base_len + 64);
   if (type_is_array(type))
      snprintf(name + base_len, 64, "[%d:%d]\n", msb, lsb);

   data->handle = fstWriterCreateVar2(
      fst_ctx,
      vt,
      dir,
      data->size,
      name,
      0,
      type_pp(type),
      FST_SVT_VHDL_SIGNAL,
      sdt);

   tree_add_attr_ptr(d, fst_data_i, data);

   data->watch = rt_set_event_cb(d, fst_event_cb, data, true);
}
예제 #17
0
/**
 * @brief Convert postgres Datum into a ConcreteValue object.
 */
AbstractValueSPtr PGAbstractValue::DatumToValue(bool inMemoryIsWritable,
    Oid inTypeID, Datum inDatum) const {
    
    bool isTuple;
    bool isArray;
    HeapTupleHeader pgTuple;
    ArrayType *pgArray;
    bool errorOccurred = false;
    
    PG_TRY(); {
        isTuple = type_is_rowtype(inTypeID);
        isArray = type_is_array(inTypeID);
        
        if (isTuple)
            pgTuple = DatumGetHeapTupleHeader(inDatum);
        else if (isArray)
            pgArray = DatumGetArrayTypeP(inDatum);
    } PG_CATCH(); {
        errorOccurred = true;
    } PG_END_TRY();
    
    BOOST_ASSERT_MSG(errorOccurred == false, "An exception occurred while "
        "converting a PostgreSQL datum to DBAL object.");

    // First check if datum is rowtype
    if (isTuple) {
        return AbstractValueSPtr(new PGValue<HeapTupleHeader>(pgTuple));
    } else if (isArray) {
        if (ARR_NDIM(pgArray) != 1)
            throw std::invalid_argument("Multidimensional arrays not yet supported");
        
        if (ARR_HASNULL(pgArray))
            throw std::invalid_argument("Arrays with NULLs not yet supported");
        
        switch (ARR_ELEMTYPE(pgArray)) {
            case FLOAT8OID: {
                MemHandleSPtr memoryHandle(new PGArrayHandle(pgArray));
                
                if (inMemoryIsWritable) {
                    return AbstractValueSPtr(
                        new ConcreteValue<Array<double> >(
                            Array<double>(memoryHandle,
                                boost::extents[ ARR_DIMS(pgArray)[0] ])
                            )
                        );
                } else {
                    return AbstractValueSPtr(
                        new ConcreteValue<Array_const<double> >(
                            Array_const<double>(memoryHandle,
                                boost::extents[ ARR_DIMS(pgArray)[0] ])
                            )
                        );
                }
            }
            // FIXME: Default case
        }
    }

    switch (inTypeID) {
        case BOOLOID: return AbstractValueSPtr(
            new ConcreteValue<bool>( DatumGetBool(inDatum) ));
        case INT2OID: return AbstractValueSPtr(
            new ConcreteValue<int16_t>( DatumGetInt16(inDatum) ));
        case INT4OID: return AbstractValueSPtr(
            new ConcreteValue<int32_t>( DatumGetInt32(inDatum) ));
        case INT8OID: return AbstractValueSPtr(
            new ConcreteValue<int64_t>( DatumGetInt64(inDatum) ));
        case FLOAT4OID: return AbstractValueSPtr(
            new ConcreteValue<float>( DatumGetFloat4(inDatum) ));
        case FLOAT8OID: return AbstractValueSPtr(
            new ConcreteValue<double>( DatumGetFloat8(inDatum) ));
    }
    
    return AbstractValueSPtr();
}
예제 #18
0
파일: shell.c 프로젝트: a4a881d4/nvc
static int shell_cmd_show(ClientData cd, Tcl_Interp *interp,
                          int objc, Tcl_Obj *const objv[])
{
   const char *help =
      "show - Display simulation objects\n"
      "\n"
      "Usage: show LIST...\n"
      "\n"
      "Prints a representation of each simulation object in LIST. Typically\n"
      "this will be a list of signal names and the output will show their\n"
      "current value.\n"
      "\n"
      "Examples:\n"
      "  show {:top:foo}      Print value of signal :top_foo\n"
      "  show [signals]       Print value of all signals\n";

   if (show_help(objc, objv, help))
      return TCL_OK;

   if (objc == 1) {
      warnf("nothing to show (try -help for usage)");
      return TCL_OK;
   }

   hash_t *decl_hash = (hash_t *)cd;

   for (int i = 1; i < objc; i++) {
      int length;
      if (Tcl_ListObjLength(interp, objv[i], &length) != TCL_OK)
         return TCL_ERROR;

      for (int j = 0; j < length; j++) {
         Tcl_Obj *obj;
         if (Tcl_ListObjIndex(interp, objv[i], j, &obj) != TCL_OK)
            return TCL_ERROR;

         const char *str = Tcl_GetString(obj);

         tree_t t = hash_get(decl_hash, ident_new(str));
         if (t == NULL)
            return tcl_error(interp, "object not found: %s", str);

         tree_kind_t kind = tree_kind(t);
         switch (kind) {
         case T_SIGNAL_DECL:
            {
               size_t len = 1;
               type_t type = tree_type(t);
               while (type_is_array(type)) {
                  int64_t low = 0, high = 0;
                  range_bounds(type_dim(type, 0), &low, &high);
                  len *= (high - low + 1);

                  type = type_elem(type);
               }

               slave_read_signal_msg_t msg = {
                  .index = tree_index(t),
                  .len   = len
               };
               slave_post_msg(SLAVE_READ_SIGNAL, &msg, sizeof(msg));

               const size_t rsz =
                  sizeof(reply_read_signal_msg_t)
                  + (msg.len * sizeof(uint64_t));
               reply_read_signal_msg_t *reply = xmalloc(rsz);
               slave_get_reply(REPLY_READ_SIGNAL, reply, rsz);

               const char *type_str = type_pp(type);
               const char *short_name = strrchr(type_str, '.');

               printf("%-30s%-20s%s\n",
                      str,
                      (short_name != NULL ? short_name + 1 : type_str),
                      pprint(t, reply->values, msg.len));

               free(reply);
            }
            break;

         default:
            return tcl_error(interp, "cannot show tree kind %s",
                             tree_kind_str(kind));
         }
      }
   }

   return TCL_OK;
}
예제 #19
0
Variant mono_object_to_variant(MonoObject *p_obj) {
	if (!p_obj)
		return Variant();

	GDMonoClass *tclass = GDMono::get_singleton()->get_class(mono_object_get_class(p_obj));
	ERR_FAIL_COND_V(!tclass, Variant());

	MonoType *raw_type = tclass->get_mono_type();

	ManagedType type;

	type.type_encoding = mono_type_get_type(raw_type);
	type.type_class = tclass;

	switch (type.type_encoding) {
		case MONO_TYPE_BOOLEAN:
			return (bool)unbox<MonoBoolean>(p_obj);

		case MONO_TYPE_I1:
			return unbox<int8_t>(p_obj);
		case MONO_TYPE_I2:
			return unbox<int16_t>(p_obj);
		case MONO_TYPE_I4:
			return unbox<int32_t>(p_obj);
		case MONO_TYPE_I8:
			return unbox<int64_t>(p_obj);

		case MONO_TYPE_U1:
			return unbox<uint8_t>(p_obj);
		case MONO_TYPE_U2:
			return unbox<uint16_t>(p_obj);
		case MONO_TYPE_U4:
			return unbox<uint32_t>(p_obj);
		case MONO_TYPE_U8:
			return unbox<uint64_t>(p_obj);

		case MONO_TYPE_R4:
			return unbox<float>(p_obj);
		case MONO_TYPE_R8:
			return unbox<double>(p_obj);

		case MONO_TYPE_STRING: {
			if (p_obj == NULL)
				return Variant(); // NIL
			return mono_string_to_godot_not_null((MonoString *)p_obj);
		} break;

		case MONO_TYPE_VALUETYPE: {
			GDMonoClass *tclass = type.type_class;

			if (tclass == CACHED_CLASS(Vector2))
				RETURN_UNBOXED_STRUCT(Vector2, p_obj);

			if (tclass == CACHED_CLASS(Rect2))
				RETURN_UNBOXED_STRUCT(Rect2, p_obj);

			if (tclass == CACHED_CLASS(Transform2D))
				RETURN_UNBOXED_STRUCT(Transform2D, p_obj);

			if (tclass == CACHED_CLASS(Vector3))
				RETURN_UNBOXED_STRUCT(Vector3, p_obj);

			if (tclass == CACHED_CLASS(Basis))
				RETURN_UNBOXED_STRUCT(Basis, p_obj);

			if (tclass == CACHED_CLASS(Quat))
				RETURN_UNBOXED_STRUCT(Quat, p_obj);

			if (tclass == CACHED_CLASS(Transform))
				RETURN_UNBOXED_STRUCT(Transform, p_obj);

			if (tclass == CACHED_CLASS(AABB))
				RETURN_UNBOXED_STRUCT(AABB, p_obj);

			if (tclass == CACHED_CLASS(Color))
				RETURN_UNBOXED_STRUCT(Color, p_obj);

			if (tclass == CACHED_CLASS(Plane))
				RETURN_UNBOXED_STRUCT(Plane, p_obj);

			if (mono_class_is_enum(tclass->get_mono_ptr()))
				return unbox<int32_t>(p_obj);
		} break;

		case MONO_TYPE_ARRAY:
		case MONO_TYPE_SZARRAY: {
			MonoArrayType *array_type = mono_type_get_array_type(type.type_class->get_mono_type());

			if (array_type->eklass == CACHED_CLASS_RAW(MonoObject))
				return mono_array_to_Array((MonoArray *)p_obj);

			if (array_type->eklass == CACHED_CLASS_RAW(uint8_t))
				return mono_array_to_PoolByteArray((MonoArray *)p_obj);

			if (array_type->eklass == CACHED_CLASS_RAW(int32_t))
				return mono_array_to_PoolIntArray((MonoArray *)p_obj);

			if (array_type->eklass == REAL_T_MONOCLASS)
				return mono_array_to_PoolRealArray((MonoArray *)p_obj);

			if (array_type->eklass == CACHED_CLASS_RAW(String))
				return mono_array_to_PoolStringArray((MonoArray *)p_obj);

			if (array_type->eklass == CACHED_CLASS_RAW(Vector2))
				return mono_array_to_PoolVector2Array((MonoArray *)p_obj);

			if (array_type->eklass == CACHED_CLASS_RAW(Vector3))
				return mono_array_to_PoolVector3Array((MonoArray *)p_obj);

			if (array_type->eklass == CACHED_CLASS_RAW(Color))
				return mono_array_to_PoolColorArray((MonoArray *)p_obj);

			ERR_EXPLAIN(String() + "Attempted to convert a managed array of unmarshallable element type to Variant.");
			ERR_FAIL_V(Variant());
		} break;

		case MONO_TYPE_CLASS: {
			GDMonoClass *type_class = type.type_class;

			// GodotObject
			if (CACHED_CLASS(GodotObject)->is_assignable_from(type_class)) {
				Object *ptr = unbox<Object *>(CACHED_FIELD(GodotObject, ptr)->get_value(p_obj));
				return ptr ? Variant(ptr) : Variant();
			}

			if (CACHED_CLASS(NodePath) == type_class) {
				NodePath *ptr = unbox<NodePath *>(CACHED_FIELD(NodePath, ptr)->get_value(p_obj));
				return ptr ? Variant(*ptr) : Variant();
			}

			if (CACHED_CLASS(RID) == type_class) {
				RID *ptr = unbox<RID *>(CACHED_FIELD(RID, ptr)->get_value(p_obj));
				return ptr ? Variant(*ptr) : Variant();
			}

			if (CACHED_CLASS(Array) == type_class) {
				MonoException *exc = NULL;
				GDMonoUtils::Array_GetPtr get_ptr = CACHED_METHOD_THUNK(Array, GetPtr);
				Array *ptr = get_ptr(p_obj, (MonoObject **)&exc);
				UNLIKELY_UNHANDLED_EXCEPTION(exc);
				return ptr ? Variant(*ptr) : Variant();
			}

			if (CACHED_CLASS(Dictionary) == type_class) {
				MonoException *exc = NULL;
				GDMonoUtils::Dictionary_GetPtr get_ptr = CACHED_METHOD_THUNK(Dictionary, GetPtr);
				Dictionary *ptr = get_ptr(p_obj, (MonoObject **)&exc);
				UNLIKELY_UNHANDLED_EXCEPTION(exc);
				return ptr ? Variant(*ptr) : Variant();
			}
		} break;

		case MONO_TYPE_GENERICINST: {
			MonoReflectionType *reftype = mono_type_get_object(SCRIPTS_DOMAIN, type.type_class->get_mono_type());

			MonoException *exc = NULL;

			GDMonoUtils::IsDictionaryGenericType type_is_dict = CACHED_METHOD_THUNK(MarshalUtils, IsDictionaryGenericType);
			MonoBoolean is_dict = type_is_dict((MonoObject *)reftype, (MonoObject **)&exc);
			UNLIKELY_UNHANDLED_EXCEPTION(exc);

			if (is_dict) {
				MonoException *exc = NULL;
				MonoObject *ret = type.type_class->get_method("GetPtr")->invoke(p_obj, &exc);
				UNLIKELY_UNHANDLED_EXCEPTION(exc);
				return *unbox<Dictionary *>(ret);
			}

			exc = NULL;

			GDMonoUtils::IsArrayGenericType type_is_array = CACHED_METHOD_THUNK(MarshalUtils, IsArrayGenericType);
			MonoBoolean is_array = type_is_array((MonoObject *)reftype, (MonoObject **)&exc);
			UNLIKELY_UNHANDLED_EXCEPTION(exc);

			if (is_array) {
				MonoException *exc = NULL;
				MonoObject *ret = type.type_class->get_method("GetPtr")->invoke(p_obj, &exc);
				UNLIKELY_UNHANDLED_EXCEPTION(exc);
				return *unbox<Array *>(ret);
			}
		} break;
	}

	ERR_EXPLAIN(String() + "Attempted to convert an unmarshallable managed type to Variant. Name: \'" +
				type.type_class->get_name() + "\' Encoding: " + itos(type.type_encoding));
	ERR_FAIL_V(Variant());
}
예제 #20
0
MonoObject *variant_to_mono_object(const Variant *p_var, const ManagedType &p_type) {
	switch (p_type.type_encoding) {
		case MONO_TYPE_BOOLEAN: {
			MonoBoolean val = p_var->operator bool();
			return BOX_BOOLEAN(val);
		}

		case MONO_TYPE_I1: {
			char val = p_var->operator signed char();
			return BOX_INT8(val);
		}
		case MONO_TYPE_I2: {
			short val = p_var->operator signed short();
			return BOX_INT16(val);
		}
		case MONO_TYPE_I4: {
			int val = p_var->operator signed int();
			return BOX_INT32(val);
		}
		case MONO_TYPE_I8: {
			int64_t val = p_var->operator int64_t();
			return BOX_INT64(val);
		}

		case MONO_TYPE_U1: {
			char val = p_var->operator unsigned char();
			return BOX_UINT8(val);
		}
		case MONO_TYPE_U2: {
			short val = p_var->operator unsigned short();
			return BOX_UINT16(val);
		}
		case MONO_TYPE_U4: {
			int val = p_var->operator unsigned int();
			return BOX_UINT32(val);
		}
		case MONO_TYPE_U8: {
			uint64_t val = p_var->operator uint64_t();
			return BOX_UINT64(val);
		}

		case MONO_TYPE_R4: {
			float val = p_var->operator float();
			return BOX_FLOAT(val);
		}
		case MONO_TYPE_R8: {
			double val = p_var->operator double();
			return BOX_DOUBLE(val);
		}

		case MONO_TYPE_STRING: {
			return (MonoObject *)mono_string_from_godot(p_var->operator String());
		} break;

		case MONO_TYPE_VALUETYPE: {
			GDMonoClass *tclass = p_type.type_class;

			if (tclass == CACHED_CLASS(Vector2))
				RETURN_BOXED_STRUCT(Vector2, p_var);

			if (tclass == CACHED_CLASS(Rect2))
				RETURN_BOXED_STRUCT(Rect2, p_var);

			if (tclass == CACHED_CLASS(Transform2D))
				RETURN_BOXED_STRUCT(Transform2D, p_var);

			if (tclass == CACHED_CLASS(Vector3))
				RETURN_BOXED_STRUCT(Vector3, p_var);

			if (tclass == CACHED_CLASS(Basis))
				RETURN_BOXED_STRUCT(Basis, p_var);

			if (tclass == CACHED_CLASS(Quat))
				RETURN_BOXED_STRUCT(Quat, p_var);

			if (tclass == CACHED_CLASS(Transform))
				RETURN_BOXED_STRUCT(Transform, p_var);

			if (tclass == CACHED_CLASS(AABB))
				RETURN_BOXED_STRUCT(AABB, p_var);

			if (tclass == CACHED_CLASS(Color))
				RETURN_BOXED_STRUCT(Color, p_var);

			if (tclass == CACHED_CLASS(Plane))
				RETURN_BOXED_STRUCT(Plane, p_var);

			if (mono_class_is_enum(tclass->get_mono_ptr())) {
				int val = p_var->operator signed int();
				return BOX_ENUM(tclass->get_mono_ptr(), val);
			}
		} break;

		case MONO_TYPE_ARRAY:
		case MONO_TYPE_SZARRAY: {
			MonoArrayType *array_type = mono_type_get_array_type(p_type.type_class->get_mono_type());

			if (array_type->eklass == CACHED_CLASS_RAW(MonoObject))
				return (MonoObject *)Array_to_mono_array(p_var->operator Array());

			if (array_type->eklass == CACHED_CLASS_RAW(uint8_t))
				return (MonoObject *)PoolByteArray_to_mono_array(p_var->operator PoolByteArray());

			if (array_type->eklass == CACHED_CLASS_RAW(int32_t))
				return (MonoObject *)PoolIntArray_to_mono_array(p_var->operator PoolIntArray());

			if (array_type->eklass == REAL_T_MONOCLASS)
				return (MonoObject *)PoolRealArray_to_mono_array(p_var->operator PoolRealArray());

			if (array_type->eklass == CACHED_CLASS_RAW(String))
				return (MonoObject *)PoolStringArray_to_mono_array(p_var->operator PoolStringArray());

			if (array_type->eklass == CACHED_CLASS_RAW(Vector2))
				return (MonoObject *)PoolVector2Array_to_mono_array(p_var->operator PoolVector2Array());

			if (array_type->eklass == CACHED_CLASS_RAW(Vector3))
				return (MonoObject *)PoolVector3Array_to_mono_array(p_var->operator PoolVector3Array());

			if (array_type->eklass == CACHED_CLASS_RAW(Color))
				return (MonoObject *)PoolColorArray_to_mono_array(p_var->operator PoolColorArray());

			ERR_EXPLAIN(String() + "Attempted to convert Variant to a managed array of unmarshallable element type.");
			ERR_FAIL_V(NULL);
		} break;

		case MONO_TYPE_CLASS: {
			GDMonoClass *type_class = p_type.type_class;

			// GodotObject
			if (CACHED_CLASS(GodotObject)->is_assignable_from(type_class)) {
				return GDMonoUtils::unmanaged_get_managed(p_var->operator Object *());
			}

			if (CACHED_CLASS(NodePath) == type_class) {
				return GDMonoUtils::create_managed_from(p_var->operator NodePath());
			}

			if (CACHED_CLASS(RID) == type_class) {
				return GDMonoUtils::create_managed_from(p_var->operator RID());
			}

			if (CACHED_CLASS(Dictionary) == type_class) {
				return GDMonoUtils::create_managed_from(p_var->operator Dictionary(), CACHED_CLASS(Dictionary));
			}

			if (CACHED_CLASS(Array) == type_class) {
				return GDMonoUtils::create_managed_from(p_var->operator Array(), CACHED_CLASS(Array));
			}
		} break;
		case MONO_TYPE_OBJECT: {
			// Variant
			switch (p_var->get_type()) {
				case Variant::BOOL: {
					MonoBoolean val = p_var->operator bool();
					return BOX_BOOLEAN(val);
				}
				case Variant::INT: {
					int val = p_var->operator signed int();
					return BOX_INT32(val);
				}
				case Variant::REAL: {
#ifdef REAL_T_IS_DOUBLE
					double val = p_var->operator double();
					return BOX_DOUBLE(val);
#else
					float val = p_var->operator float();
					return BOX_FLOAT(val);
#endif
				}
				case Variant::STRING:
					return (MonoObject *)mono_string_from_godot(p_var->operator String());
				case Variant::VECTOR2:
					RETURN_BOXED_STRUCT(Vector2, p_var);
				case Variant::RECT2:
					RETURN_BOXED_STRUCT(Rect2, p_var);
				case Variant::VECTOR3:
					RETURN_BOXED_STRUCT(Vector3, p_var);
				case Variant::TRANSFORM2D:
					RETURN_BOXED_STRUCT(Transform2D, p_var);
				case Variant::PLANE:
					RETURN_BOXED_STRUCT(Plane, p_var);
				case Variant::QUAT:
					RETURN_BOXED_STRUCT(Quat, p_var);
				case Variant::AABB:
					RETURN_BOXED_STRUCT(AABB, p_var);
				case Variant::BASIS:
					RETURN_BOXED_STRUCT(Basis, p_var);
				case Variant::TRANSFORM:
					RETURN_BOXED_STRUCT(Transform, p_var);
				case Variant::COLOR:
					RETURN_BOXED_STRUCT(Color, p_var);
				case Variant::NODE_PATH:
					return GDMonoUtils::create_managed_from(p_var->operator NodePath());
				case Variant::_RID:
					return GDMonoUtils::create_managed_from(p_var->operator RID());
				case Variant::OBJECT: {
					return GDMonoUtils::unmanaged_get_managed(p_var->operator Object *());
				}
				case Variant::DICTIONARY:
					return GDMonoUtils::create_managed_from(p_var->operator Dictionary(), CACHED_CLASS(Dictionary));
				case Variant::ARRAY:
					return GDMonoUtils::create_managed_from(p_var->operator Array(), CACHED_CLASS(Array));
				case Variant::POOL_BYTE_ARRAY:
					return (MonoObject *)PoolByteArray_to_mono_array(p_var->operator PoolByteArray());
				case Variant::POOL_INT_ARRAY:
					return (MonoObject *)PoolIntArray_to_mono_array(p_var->operator PoolIntArray());
				case Variant::POOL_REAL_ARRAY:
					return (MonoObject *)PoolRealArray_to_mono_array(p_var->operator PoolRealArray());
				case Variant::POOL_STRING_ARRAY:
					return (MonoObject *)PoolStringArray_to_mono_array(p_var->operator PoolStringArray());
				case Variant::POOL_VECTOR2_ARRAY:
					return (MonoObject *)PoolVector2Array_to_mono_array(p_var->operator PoolVector2Array());
				case Variant::POOL_VECTOR3_ARRAY:
					return (MonoObject *)PoolVector3Array_to_mono_array(p_var->operator PoolVector3Array());
				case Variant::POOL_COLOR_ARRAY:
					return (MonoObject *)PoolColorArray_to_mono_array(p_var->operator PoolColorArray());
				default:
					return NULL;
			}
			break;
			case MONO_TYPE_GENERICINST: {
				MonoReflectionType *reftype = mono_type_get_object(SCRIPTS_DOMAIN, p_type.type_class->get_mono_type());

				MonoException *exc = NULL;
				GDMonoUtils::IsDictionaryGenericType type_is_dict = CACHED_METHOD_THUNK(MarshalUtils, IsDictionaryGenericType);
				MonoBoolean is_dict = type_is_dict((MonoObject *)reftype, (MonoObject **)&exc);
				UNLIKELY_UNHANDLED_EXCEPTION(exc);

				if (is_dict) {
					return GDMonoUtils::create_managed_from(p_var->operator Dictionary(), p_type.type_class);
				}

				exc = NULL;
				GDMonoUtils::IsArrayGenericType type_is_array = CACHED_METHOD_THUNK(MarshalUtils, IsArrayGenericType);
				MonoBoolean is_array = type_is_array((MonoObject *)reftype, (MonoObject **)&exc);
				UNLIKELY_UNHANDLED_EXCEPTION(exc);

				if (is_array) {
					return GDMonoUtils::create_managed_from(p_var->operator Array(), p_type.type_class);
				}
			} break;
		} break;
	}

	ERR_EXPLAIN(String() + "Attempted to convert Variant to an unmarshallable managed type. Name: \'" +
				p_type.type_class->get_name() + "\' Encoding: " + itos(p_type.type_encoding));
	ERR_FAIL_V(NULL);
}
예제 #21
0
void GDMonoField::set_value_from_variant(MonoObject *p_object, const Variant &p_value) {
#define SET_FROM_STRUCT(m_type)                                                               \
	{                                                                                         \
		GDMonoMarshal::M_##m_type from = MARSHALLED_OUT(m_type, p_value.operator ::m_type()); \
		mono_field_set_value(p_object, mono_field, &from);                                    \
	}

#define SET_FROM_ARRAY(m_type)                                                                   \
	{                                                                                            \
		MonoArray *managed = GDMonoMarshal::m_type##_to_mono_array(p_value.operator ::m_type()); \
		mono_field_set_value(p_object, mono_field, &managed);                                    \
	}

	switch (type.type_encoding) {
		case MONO_TYPE_BOOLEAN: {
			MonoBoolean val = p_value.operator bool();
			mono_field_set_value(p_object, mono_field, &val);
		} break;

		case MONO_TYPE_CHAR: {
			int16_t val = p_value.operator unsigned short();
			mono_field_set_value(p_object, mono_field, &val);
		} break;

		case MONO_TYPE_I1: {
			int8_t val = p_value.operator signed char();
			mono_field_set_value(p_object, mono_field, &val);
		} break;
		case MONO_TYPE_I2: {
			int16_t val = p_value.operator signed short();
			mono_field_set_value(p_object, mono_field, &val);
		} break;
		case MONO_TYPE_I4: {
			int32_t val = p_value.operator signed int();
			mono_field_set_value(p_object, mono_field, &val);
		} break;
		case MONO_TYPE_I8: {
			int64_t val = p_value.operator int64_t();
			mono_field_set_value(p_object, mono_field, &val);
		} break;

		case MONO_TYPE_U1: {
			uint8_t val = p_value.operator unsigned char();
			mono_field_set_value(p_object, mono_field, &val);
		} break;
		case MONO_TYPE_U2: {
			uint16_t val = p_value.operator unsigned short();
			mono_field_set_value(p_object, mono_field, &val);
		} break;
		case MONO_TYPE_U4: {
			uint32_t val = p_value.operator unsigned int();
			mono_field_set_value(p_object, mono_field, &val);
		} break;
		case MONO_TYPE_U8: {
			uint64_t val = p_value.operator uint64_t();
			mono_field_set_value(p_object, mono_field, &val);
		} break;

		case MONO_TYPE_R4: {
			float val = p_value.operator float();
			mono_field_set_value(p_object, mono_field, &val);
		} break;

		case MONO_TYPE_R8: {
			double val = p_value.operator double();
			mono_field_set_value(p_object, mono_field, &val);
		} break;

		case MONO_TYPE_STRING: {
			MonoString *mono_string = GDMonoMarshal::mono_string_from_godot(p_value);
			mono_field_set_value(p_object, mono_field, mono_string);
		} break;

		case MONO_TYPE_VALUETYPE: {
			GDMonoClass *tclass = type.type_class;

			if (tclass == CACHED_CLASS(Vector2)) {
				SET_FROM_STRUCT(Vector2);
				break;
			}

			if (tclass == CACHED_CLASS(Rect2)) {
				SET_FROM_STRUCT(Rect2);
				break;
			}

			if (tclass == CACHED_CLASS(Transform2D)) {
				SET_FROM_STRUCT(Transform2D);
				break;
			}

			if (tclass == CACHED_CLASS(Vector3)) {
				SET_FROM_STRUCT(Vector3);
				break;
			}

			if (tclass == CACHED_CLASS(Basis)) {
				SET_FROM_STRUCT(Basis);
				break;
			}

			if (tclass == CACHED_CLASS(Quat)) {
				SET_FROM_STRUCT(Quat);
				break;
			}

			if (tclass == CACHED_CLASS(Transform)) {
				SET_FROM_STRUCT(Transform);
				break;
			}

			if (tclass == CACHED_CLASS(AABB)) {
				SET_FROM_STRUCT(AABB);
				break;
			}

			if (tclass == CACHED_CLASS(Color)) {
				SET_FROM_STRUCT(Color);
				break;
			}

			if (tclass == CACHED_CLASS(Plane)) {
				SET_FROM_STRUCT(Plane);
				break;
			}

			if (mono_class_is_enum(tclass->get_mono_ptr())) {
				MonoType *enum_basetype = mono_class_enum_basetype(tclass->get_mono_ptr());
				switch (mono_type_get_type(enum_basetype)) {
					case MONO_TYPE_BOOLEAN: {
						MonoBoolean val = p_value.operator bool();
						mono_field_set_value(p_object, mono_field, &val);
						break;
					}
					case MONO_TYPE_CHAR: {
						uint16_t val = p_value.operator unsigned short();
						mono_field_set_value(p_object, mono_field, &val);
						break;
					}
					case MONO_TYPE_I1: {
						int8_t val = p_value.operator signed char();
						mono_field_set_value(p_object, mono_field, &val);
						break;
					}
					case MONO_TYPE_I2: {
						int16_t val = p_value.operator signed short();
						mono_field_set_value(p_object, mono_field, &val);
						break;
					}
					case MONO_TYPE_I4: {
						int32_t val = p_value.operator signed int();
						mono_field_set_value(p_object, mono_field, &val);
						break;
					}
					case MONO_TYPE_I8: {
						int64_t val = p_value.operator int64_t();
						mono_field_set_value(p_object, mono_field, &val);
						break;
					}
					case MONO_TYPE_U1: {
						uint8_t val = p_value.operator unsigned char();
						mono_field_set_value(p_object, mono_field, &val);
						break;
					}
					case MONO_TYPE_U2: {
						uint16_t val = p_value.operator unsigned short();
						mono_field_set_value(p_object, mono_field, &val);
						break;
					}
					case MONO_TYPE_U4: {
						uint32_t val = p_value.operator unsigned int();
						mono_field_set_value(p_object, mono_field, &val);
						break;
					}
					case MONO_TYPE_U8: {
						uint64_t val = p_value.operator uint64_t();
						mono_field_set_value(p_object, mono_field, &val);
						break;
					}
					default: {
						ERR_EXPLAIN(String() + "Attempted to convert Variant to a managed enum value of unmarshallable base type.");
						ERR_FAIL();
					}
				}

				break;
			}

			ERR_EXPLAIN(String() + "Attempted to set the value of a field of unmarshallable type: " + tclass->get_name());
			ERR_FAIL();
		} break;

		case MONO_TYPE_ARRAY:
		case MONO_TYPE_SZARRAY: {
			MonoArrayType *array_type = mono_type_get_array_type(type.type_class->get_mono_type());

			if (array_type->eklass == CACHED_CLASS_RAW(MonoObject)) {
				SET_FROM_ARRAY(Array);
				break;
			}

			if (array_type->eklass == CACHED_CLASS_RAW(uint8_t)) {
				SET_FROM_ARRAY(PoolByteArray);
				break;
			}

			if (array_type->eklass == CACHED_CLASS_RAW(int32_t)) {
				SET_FROM_ARRAY(PoolIntArray);
				break;
			}

			if (array_type->eklass == REAL_T_MONOCLASS) {
				SET_FROM_ARRAY(PoolRealArray);
				break;
			}

			if (array_type->eklass == CACHED_CLASS_RAW(String)) {
				SET_FROM_ARRAY(PoolStringArray);
				break;
			}

			if (array_type->eklass == CACHED_CLASS_RAW(Vector2)) {
				SET_FROM_ARRAY(PoolVector2Array);
				break;
			}

			if (array_type->eklass == CACHED_CLASS_RAW(Vector3)) {
				SET_FROM_ARRAY(PoolVector3Array);
				break;
			}

			if (array_type->eklass == CACHED_CLASS_RAW(Color)) {
				SET_FROM_ARRAY(PoolColorArray);
				break;
			}

			ERR_EXPLAIN(String() + "Attempted to convert Variant to a managed array of unmarshallable element type.");
			ERR_FAIL();
		} break;

		case MONO_TYPE_CLASS: {
			GDMonoClass *type_class = type.type_class;

			// GodotObject
			if (CACHED_CLASS(GodotObject)->is_assignable_from(type_class)) {
				MonoObject *managed = GDMonoUtils::unmanaged_get_managed(p_value.operator Object *());
				mono_field_set_value(p_object, mono_field, managed);
				break;
			}

			if (CACHED_CLASS(NodePath) == type_class) {
				MonoObject *managed = GDMonoUtils::create_managed_from(p_value.operator NodePath());
				mono_field_set_value(p_object, mono_field, managed);
				break;
			}

			if (CACHED_CLASS(RID) == type_class) {
				MonoObject *managed = GDMonoUtils::create_managed_from(p_value.operator RID());
				mono_field_set_value(p_object, mono_field, managed);
				break;
			}

			if (CACHED_CLASS(Dictionary) == type_class) {
				MonoObject *managed = GDMonoUtils::create_managed_from(p_value.operator Dictionary(), CACHED_CLASS(Dictionary));
				mono_field_set_value(p_object, mono_field, managed);
				break;
			}

			if (CACHED_CLASS(Array) == type_class) {
				MonoObject *managed = GDMonoUtils::create_managed_from(p_value.operator Array(), CACHED_CLASS(Array));
				mono_field_set_value(p_object, mono_field, managed);
				break;
			}

			ERR_EXPLAIN(String() + "Attempted to set the value of a field of unmarshallable type: " + type_class->get_name());
			ERR_FAIL();
		} break;

		case MONO_TYPE_OBJECT: {
			// Variant
			switch (p_value.get_type()) {
				case Variant::BOOL: {
					MonoBoolean val = p_value.operator bool();
					mono_field_set_value(p_object, mono_field, &val);
				} break;
				case Variant::INT: {
					int32_t val = p_value.operator signed int();
					mono_field_set_value(p_object, mono_field, &val);
				} break;
				case Variant::REAL: {
#ifdef REAL_T_IS_DOUBLE
					double val = p_value.operator double();
					mono_field_set_value(p_object, mono_field, &val);
#else
					float val = p_value.operator float();
					mono_field_set_value(p_object, mono_field, &val);
#endif
				} break;
				case Variant::STRING: {
					MonoString *mono_string = GDMonoMarshal::mono_string_from_godot(p_value);
					mono_field_set_value(p_object, mono_field, mono_string);
				} break;
				case Variant::VECTOR2: {
					SET_FROM_STRUCT(Vector2);
				} break;
				case Variant::RECT2: {
					SET_FROM_STRUCT(Rect2);
				} break;
				case Variant::VECTOR3: {
					SET_FROM_STRUCT(Vector3);
				} break;
				case Variant::TRANSFORM2D: {
					SET_FROM_STRUCT(Transform2D);
				} break;
				case Variant::PLANE: {
					SET_FROM_STRUCT(Plane);
				} break;
				case Variant::QUAT: {
					SET_FROM_STRUCT(Quat);
				} break;
				case Variant::AABB: {
					SET_FROM_STRUCT(AABB);
				} break;
				case Variant::BASIS: {
					SET_FROM_STRUCT(Basis);
				} break;
				case Variant::TRANSFORM: {
					SET_FROM_STRUCT(Transform);
				} break;
				case Variant::COLOR: {
					SET_FROM_STRUCT(Color);
				} break;
				case Variant::NODE_PATH: {
					MonoObject *managed = GDMonoUtils::create_managed_from(p_value.operator NodePath());
					mono_field_set_value(p_object, mono_field, managed);
				} break;
				case Variant::_RID: {
					MonoObject *managed = GDMonoUtils::create_managed_from(p_value.operator RID());
					mono_field_set_value(p_object, mono_field, managed);
				} break;
				case Variant::OBJECT: {
					MonoObject *managed = GDMonoUtils::unmanaged_get_managed(p_value.operator Object *());
					mono_field_set_value(p_object, mono_field, managed);
					break;
				}
				case Variant::DICTIONARY: {
					MonoObject *managed = GDMonoUtils::create_managed_from(p_value.operator Dictionary(), CACHED_CLASS(Dictionary));
					mono_field_set_value(p_object, mono_field, managed);
				} break;
				case Variant::ARRAY: {
					MonoObject *managed = GDMonoUtils::create_managed_from(p_value.operator Array(), CACHED_CLASS(Array));
					mono_field_set_value(p_object, mono_field, managed);
				} break;
				case Variant::POOL_BYTE_ARRAY: {
					SET_FROM_ARRAY(PoolByteArray);
				} break;
				case Variant::POOL_INT_ARRAY: {
					SET_FROM_ARRAY(PoolIntArray);
				} break;
				case Variant::POOL_REAL_ARRAY: {
					SET_FROM_ARRAY(PoolRealArray);
				} break;
				case Variant::POOL_STRING_ARRAY: {
					SET_FROM_ARRAY(PoolStringArray);
				} break;
				case Variant::POOL_VECTOR2_ARRAY: {
					SET_FROM_ARRAY(PoolVector2Array);
				} break;
				case Variant::POOL_VECTOR3_ARRAY: {
					SET_FROM_ARRAY(PoolVector3Array);
				} break;
				case Variant::POOL_COLOR_ARRAY: {
					SET_FROM_ARRAY(PoolColorArray);
				} break;
				default: break;
			}
		} break;

		case MONO_TYPE_GENERICINST: {
			MonoReflectionType *reftype = mono_type_get_object(SCRIPTS_DOMAIN, type.type_class->get_mono_type());

			MonoException *exc = NULL;

			GDMonoUtils::IsDictionaryGenericType type_is_dict = CACHED_METHOD_THUNK(MarshalUtils, IsDictionaryGenericType);
			MonoBoolean is_dict = type_is_dict((MonoObject *)reftype, (MonoObject **)&exc);
			UNLIKELY_UNHANDLED_EXCEPTION(exc);

			if (is_dict) {
				MonoObject *managed = GDMonoUtils::create_managed_from(p_value.operator Dictionary(), type.type_class);
				mono_field_set_value(p_object, mono_field, managed);
				break;
			}

			exc = NULL;

			GDMonoUtils::IsArrayGenericType type_is_array = CACHED_METHOD_THUNK(MarshalUtils, IsArrayGenericType);
			MonoBoolean is_array = type_is_array((MonoObject *)reftype, (MonoObject **)&exc);
			UNLIKELY_UNHANDLED_EXCEPTION(exc);

			if (is_array) {
				MonoObject *managed = GDMonoUtils::create_managed_from(p_value.operator Array(), type.type_class);
				mono_field_set_value(p_object, mono_field, managed);
				break;
			}
		} break;

		default: {
			ERR_PRINTS(String() + "Attempted to set the value of a field of unexpected type encoding: " + itos(type.type_encoding));
		} break;
	}

#undef SET_FROM_ARRAY_AND_BREAK
#undef SET_FROM_STRUCT_AND_BREAK
}
예제 #22
0
파일: type.c 프로젝트: tomtix/uuc
const struct type *type_array_values(const struct type *ty)
{
    assert(type_is_array(ty));
    return ty->array_type.values;
}
예제 #23
0
static tree_t elab_signal_port(tree_t arch, tree_t formal, tree_t param,
                               map_list_t **maps)
{
   assert(tree_kind(param) == T_PARAM);

   tree_t actual = tree_value(param);

   // NULL name means associate the whole port
   tree_t name = NULL;
   if (tree_subkind(param) == P_NAMED) {
      tree_t n = tree_name(param);
      if (tree_kind(n) != T_REF)
         name = n;
   }

   const bool partial_map = name != NULL;

   switch (tree_kind(actual)) {
   case T_REF:
   case T_ARRAY_REF:
   case T_ARRAY_SLICE:
   case T_RECORD_REF:
      {
         // Replace the formal port with a signal and connect its nets to
         // those of the actual

         tree_t ref = actual;
         tree_kind_t ref_kind;
         while ((ref_kind = tree_kind(ref)) != T_REF) {
            if ((ref_kind == T_AGGREGATE) || (ref_kind == T_LITERAL))
               return actual;
            else
               ref = tree_value(ref);
         }

         tree_t decl = tree_ref(ref);
         tree_kind_t decl_kind = tree_kind(decl);
         if (decl_kind == T_SIGNAL_DECL) {
            tree_t s = elab_port_to_signal(arch, formal, actual);

            if (partial_map)
               tree_add_attr_int(s, partial_map_i, 1);

            map_list_t *m = xmalloc(sizeof(map_list_t));
            m->next   = *maps;
            m->formal = formal;
            m->actual = actual;
            m->signal = s;
            m->name   = name;

            *maps = m;

            return s;
         }
         else if (decl_kind == T_PORT_DECL)
            return NULL;    // Port was OPEN at a higher level
         else
            return actual;
      }

   case T_LITERAL:
   case T_AGGREGATE:
      {
         type_t formal_type = tree_type(formal);
         if (!type_is_unconstrained(formal_type))
            tree_set_type(actual, formal_type);
         return actual;
      }

   case T_OPEN:
      return NULL;

   case T_TYPE_CONV:
      // Only allow simple array type conversions for now
      {
         type_t to_type   = tree_type(actual);
         type_t from_type = tree_type(tree_value(tree_param(actual, 0)));

         if (type_is_array(to_type) && type_is_array(from_type))
            return actual;
         else
            fatal_at(tree_loc(actual), "sorry, this form of type conversion "
                     "is not supported as an actual");
      }

   default:
      fatal_at(tree_loc(actual), "tree %s not supported as actual",
               tree_kind_str(tree_kind(actual)));
   }
}
예제 #24
0
파일: type.c 프로젝트: tomtix/uuc
const struct expression *type_array_size(const struct type *ty)
{
    assert(type_is_array(ty));
    return ty->array_type.array_size;
}