예제 #1
0
VARIOGRAM *reml_sills(DATA *data, VARIOGRAM *vp) {
	int i, j, k;
	MAT **Vk = NULL, *X = MNULL;
	VEC *Y = VNULL, *init = VNULL;
	DPOINT *dpa, *dpb;
	double dx, dy = 0.0, dz = 0.0, dzero2;

	if (data == NULL  || vp == NULL)
		ErrMsg(ER_NULL, "reml()");
	select_at(data, (DPOINT *) NULL);
	if (vp->n_models <= 0)
		ErrMsg(ER_VARNOTSET, "reml: please define initial variogram model");
/*
 * create Y, X, Vk's only once:
 */
	Y = get_y(&data, Y, 1);
	X = get_X(&data, X, 1);
	Vk = (MAT **) emalloc(vp->n_models * sizeof(MAT));
	init = v_resize(init, vp->n_models);

	for (i = 0; i < vp->n_models; i++) {
		init->ve[i] = vp->part[i].sill; /* remember init. values for updating */
		vp->part[i].sill = 1;
		Vk[i] = m_resize(MNULL, X->m, X->m);
	}
	dzero2 = gl_zero * gl_zero;
	for (i = 0; i < data->n_list; i++) {
		for (j = 0; j < vp->n_models; j++) /* fill diagonals */
			Vk[j]->me[i][i] = Covariance(vp->part[j], 0.0, 0.0, 0.0);
		for (j = 0; j < i; j++) { /* off-diagonal elements: */
			dpa = data->list[i];
			dpb = data->list[j];
			/* 
		 	 * if different points coincide on a locations, shift them,
		 	 * or the covariance matrix will become singular
		 	 */
			dx = dpa->x - dpb->x;
			dy = dpa->y - dpb->y;
			dz = dpa->z - dpb->z;
			if (data->pp_norm2(dpa, dpb) < dzero2) {
				if (data->mode & X_BIT_SET)
					dx = (dx >= 0 ? gl_zero : -gl_zero);
				if (data->mode & Y_BIT_SET)
					dy = (dy >= 0 ? gl_zero : -gl_zero);
				if (data->mode & Z_BIT_SET)
					dz = (dz >= 0 ? gl_zero : -gl_zero);
			}
			for (k = 0; k < vp->n_models; k++)
				Vk[k]->me[i][j] = Vk[k]->me[j][i] = 
						Covariance(vp->part[k], dx, dy, dz);
		}
	}
	if (reml(Y, X, Vk, vp->n_models, gl_iter, gl_fit_limit, init))
		vp->ev->refit = 0;
	else /* on convergence */
		pr_warning("no convergence while fitting variogram");
	for (i = 0; i < vp->n_models; i++)
		vp->part[i].sill = init->ve[i];
	update_variogram(vp);
	if (DEBUG_VGMFIT)
		logprint_variogram(vp, 1);
	for (i = 0; i < vp->n_models; i++)
		m_free(Vk[i]); 
	efree(Vk);
	m_free(X);
	v_free(Y);
	v_free(init);
	return vp;
}
예제 #2
0
파일: fit.c 프로젝트: BenGraeler/gstat
static void wls_fit(VARIOGRAM *vp) {
/*
 * non-linear iterative reweighted least squares fitting of variogram model to
 * sample variogram (..covariogram model to sample covariogram, cross, etc.)
 * all information necessary is contained in *vp.
 *
 * uses Marquardt-Levenberg algorithm;
 * the implementation follows gnuplot's fit.c
 */
	static PERM *p = PNULL;
	int i, j, n_iter = 0, bounded = 0, timetostop;
	double SSErr, oldSSErr = DBL_MAX, step;
	LM *lm;

	p = px_resize(p, vp->ev->n_est);
	if (! vp->ev->cloud) {
		for (i = j = 0; i < (vp->ev->zero == ZERO_AVOID ?
				vp->ev->n_est-1 : vp->ev->n_est); i++) {
			if (vp->ev->nh[i] > 0)
				p->pe[j++] = i;
		}
		p->size = j;
	} 
	lm = init_lm(NULL);

	/* oldSSErr = getSSErr(vp, p, lm); */
	do {
		print_progress(n_iter, gl_iter);
		/* if (DEBUG_VGMFIT) 
			printlog("%s: ", vp->descr); */
		if ((vp->fit_is_singular = fit_GaussNewton(vp, p, lm, n_iter, &bounded))) {
			pr_warning("singular model in variogram fit");
			print_progress(gl_iter, gl_iter);
			vp->SSErr = getSSErr(vp, p, lm);
			return;
		} 
		update_variogram(vp);

		SSErr = getSSErr(vp, p, lm);
		/* we can't use lm->SSErr here since that's only in the
		X-filled-with-derivatives, not the true residuals */

		step = oldSSErr - SSErr;
		if (SSErr > gl_zero)
			step /= SSErr;

		n_iter++;

		if (DEBUG_VGMFIT)
			printlog("after it. %d: SSErr %g->%g, step=%g (fit_limit %g%s)\n",
					n_iter, oldSSErr, SSErr, step, gl_fit_limit, 
					bounded ? "; bounded" : "");

		oldSSErr = SSErr;
		timetostop = (step < gl_fit_limit && step >= 0.0 && bounded == 0) || n_iter == gl_iter;
	} while (! timetostop);

	print_progress(gl_iter, gl_iter);

	if (n_iter == gl_iter)
		pr_warning("No convergence after %d iterations: try different initial values?", n_iter);

	if (DEBUG_VGMFIT) {
		printlog("# iterations: %d, SSErr %g, last step %g", n_iter, SSErr, step);
		if (step < 0.0)
			printlog(", last step was in the wrong direction.\n");
		else
			printlog("\n");
	}

	free_lm(lm);
	vp->SSErr = SSErr;
	return;
} /* wls_fit */