예제 #1
0
void TestBigFill (const size_t size, const T magic)
{
    vector<T> vbig (size);
    fill (vbig.begin() + 1, vbig.end(), magic);		// offset to test prealignment loop
    typename vector<T>::const_iterator iMismatch;
    iMismatch = find_if (vbig.begin() + 1, vbig.end(), bind1st (not_equal_to<T>(), magic));
    if (iMismatch == vbig.end())
	cout << "works\n";
    else
	cout.format ("does not work: mismatch at %zd, =0x%lX\n", abs_distance (vbig.begin(), iMismatch), (unsigned long)(*iMismatch));
}
예제 #2
0
template<typename MatrixType> void stable_norm(const MatrixType& m)
{
  /* this test covers the following files:
     StableNorm.h
  */
  typedef typename MatrixType::Index Index;
  typedef typename MatrixType::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;

  // Check the basic machine-dependent constants.
  {
    int ibeta, it, iemin, iemax;

    ibeta = std::numeric_limits<RealScalar>::radix;         // base for floating-point numbers
    it    = std::numeric_limits<RealScalar>::digits;        // number of base-beta digits in mantissa
    iemin = std::numeric_limits<RealScalar>::min_exponent;  // minimum exponent
    iemax = std::numeric_limits<RealScalar>::max_exponent;  // maximum exponent

    VERIFY( (!(iemin > 1 - 2*it || 1+it>iemax || (it==2 && ibeta<5) || (it<=4 && ibeta <= 3 ) || it<2))
           && "the stable norm algorithm cannot be guaranteed on this computer");
  }


  Index rows = m.rows();
  Index cols = m.cols();

  Scalar big = internal::random<Scalar>() * (std::numeric_limits<RealScalar>::max() * RealScalar(1e-4));
  Scalar small = internal::random<Scalar>() * (std::numeric_limits<RealScalar>::min() * RealScalar(1e4));

  MatrixType  vzero = MatrixType::Zero(rows, cols),
              vrand = MatrixType::Random(rows, cols),
              vbig(rows, cols),
              vsmall(rows,cols);

  vbig.fill(big);
  vsmall.fill(small);

  VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(), static_cast<RealScalar>(1));
  VERIFY_IS_APPROX(vrand.stableNorm(),      vrand.norm());
  VERIFY_IS_APPROX(vrand.blueNorm(),        vrand.norm());
  VERIFY_IS_APPROX(vrand.hypotNorm(),       vrand.norm());

  RealScalar size = static_cast<RealScalar>(m.size());

  // test isFinite
  VERIFY(!isFinite( std::numeric_limits<RealScalar>::infinity()));
  VERIFY(!isFinite(internal::sqrt(-internal::abs(big))));

  // test overflow
  VERIFY(isFinite(internal::sqrt(size)*internal::abs(big)));
  VERIFY_IS_NOT_APPROX(internal::sqrt(copy(vbig.squaredNorm())),   internal::abs(internal::sqrt(size)*big)); // here the default norm must fail
  VERIFY_IS_APPROX(vbig.stableNorm(), internal::sqrt(size)*internal::abs(big));
  VERIFY_IS_APPROX(vbig.blueNorm(),   internal::sqrt(size)*internal::abs(big));
  VERIFY_IS_APPROX(vbig.hypotNorm(),  internal::sqrt(size)*internal::abs(big));

  // test underflow
  VERIFY(isFinite(internal::sqrt(size)*internal::abs(small)));
  VERIFY_IS_NOT_APPROX(internal::sqrt(copy(vsmall.squaredNorm())),   internal::abs(internal::sqrt(size)*small)); // here the default norm must fail
  VERIFY_IS_APPROX(vsmall.stableNorm(), internal::sqrt(size)*internal::abs(small));
  VERIFY_IS_APPROX(vsmall.blueNorm(),   internal::sqrt(size)*internal::abs(small));
  VERIFY_IS_APPROX(vsmall.hypotNorm(),  internal::sqrt(size)*internal::abs(small));

// Test compilation of cwise() version
  VERIFY_IS_APPROX(vrand.colwise().stableNorm(),      vrand.colwise().norm());
  VERIFY_IS_APPROX(vrand.colwise().blueNorm(),        vrand.colwise().norm());
  VERIFY_IS_APPROX(vrand.colwise().hypotNorm(),       vrand.colwise().norm());
  VERIFY_IS_APPROX(vrand.rowwise().stableNorm(),      vrand.rowwise().norm());
  VERIFY_IS_APPROX(vrand.rowwise().blueNorm(),        vrand.rowwise().norm());
  VERIFY_IS_APPROX(vrand.rowwise().hypotNorm(),       vrand.rowwise().norm());
}