void TestBigFill (const size_t size, const T magic) { vector<T> vbig (size); fill (vbig.begin() + 1, vbig.end(), magic); // offset to test prealignment loop typename vector<T>::const_iterator iMismatch; iMismatch = find_if (vbig.begin() + 1, vbig.end(), bind1st (not_equal_to<T>(), magic)); if (iMismatch == vbig.end()) cout << "works\n"; else cout.format ("does not work: mismatch at %zd, =0x%lX\n", abs_distance (vbig.begin(), iMismatch), (unsigned long)(*iMismatch)); }
template<typename MatrixType> void stable_norm(const MatrixType& m) { /* this test covers the following files: StableNorm.h */ typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; // Check the basic machine-dependent constants. { int ibeta, it, iemin, iemax; ibeta = std::numeric_limits<RealScalar>::radix; // base for floating-point numbers it = std::numeric_limits<RealScalar>::digits; // number of base-beta digits in mantissa iemin = std::numeric_limits<RealScalar>::min_exponent; // minimum exponent iemax = std::numeric_limits<RealScalar>::max_exponent; // maximum exponent VERIFY( (!(iemin > 1 - 2*it || 1+it>iemax || (it==2 && ibeta<5) || (it<=4 && ibeta <= 3 ) || it<2)) && "the stable norm algorithm cannot be guaranteed on this computer"); } Index rows = m.rows(); Index cols = m.cols(); Scalar big = internal::random<Scalar>() * (std::numeric_limits<RealScalar>::max() * RealScalar(1e-4)); Scalar small = internal::random<Scalar>() * (std::numeric_limits<RealScalar>::min() * RealScalar(1e4)); MatrixType vzero = MatrixType::Zero(rows, cols), vrand = MatrixType::Random(rows, cols), vbig(rows, cols), vsmall(rows,cols); vbig.fill(big); vsmall.fill(small); VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(), static_cast<RealScalar>(1)); VERIFY_IS_APPROX(vrand.stableNorm(), vrand.norm()); VERIFY_IS_APPROX(vrand.blueNorm(), vrand.norm()); VERIFY_IS_APPROX(vrand.hypotNorm(), vrand.norm()); RealScalar size = static_cast<RealScalar>(m.size()); // test isFinite VERIFY(!isFinite( std::numeric_limits<RealScalar>::infinity())); VERIFY(!isFinite(internal::sqrt(-internal::abs(big)))); // test overflow VERIFY(isFinite(internal::sqrt(size)*internal::abs(big))); VERIFY_IS_NOT_APPROX(internal::sqrt(copy(vbig.squaredNorm())), internal::abs(internal::sqrt(size)*big)); // here the default norm must fail VERIFY_IS_APPROX(vbig.stableNorm(), internal::sqrt(size)*internal::abs(big)); VERIFY_IS_APPROX(vbig.blueNorm(), internal::sqrt(size)*internal::abs(big)); VERIFY_IS_APPROX(vbig.hypotNorm(), internal::sqrt(size)*internal::abs(big)); // test underflow VERIFY(isFinite(internal::sqrt(size)*internal::abs(small))); VERIFY_IS_NOT_APPROX(internal::sqrt(copy(vsmall.squaredNorm())), internal::abs(internal::sqrt(size)*small)); // here the default norm must fail VERIFY_IS_APPROX(vsmall.stableNorm(), internal::sqrt(size)*internal::abs(small)); VERIFY_IS_APPROX(vsmall.blueNorm(), internal::sqrt(size)*internal::abs(small)); VERIFY_IS_APPROX(vsmall.hypotNorm(), internal::sqrt(size)*internal::abs(small)); // Test compilation of cwise() version VERIFY_IS_APPROX(vrand.colwise().stableNorm(), vrand.colwise().norm()); VERIFY_IS_APPROX(vrand.colwise().blueNorm(), vrand.colwise().norm()); VERIFY_IS_APPROX(vrand.colwise().hypotNorm(), vrand.colwise().norm()); VERIFY_IS_APPROX(vrand.rowwise().stableNorm(), vrand.rowwise().norm()); VERIFY_IS_APPROX(vrand.rowwise().blueNorm(), vrand.rowwise().norm()); VERIFY_IS_APPROX(vrand.rowwise().hypotNorm(), vrand.rowwise().norm()); }