예제 #1
0
파일: predg3f.c 프로젝트: pdobrowo/libcs2
void predg3f_pquv(struct vec3f_s *p, struct vec3f_s *q, struct vec3f_s *u, struct vec3f_s *v, const struct predg3f_s *g)
{
    vec3f_cross(p, &g->k, &g->l);
    vec3f_sub(q, &g->a, &g->b);
    vec3f_sub(u, &g->k, &g->l);
    vec3f_cross(v, &g->a, &g->b);
}
예제 #2
0
void do_movement() {
    GLfloat camera_speed;
    camera_speed = 5.0f * delta_time;
    if(keys[GLFW_KEY_W]) {
        vec3f_muls(temp_vec3f, camera_front, camera_speed);
        vec3f_add(camera_pos, camera_pos, temp_vec3f);
    }
    if(keys[GLFW_KEY_S]) {
        vec3f_muls(temp_vec3f, camera_front, camera_speed);
        vec3f_sub(camera_pos, camera_pos, temp_vec3f);
    }
    if(keys[GLFW_KEY_A]) {
        vec3f_cross(temp_vec3f, camera_front, camera_up);
        vec3f_normalize(temp_vec3f, temp_vec3f);
        vec3f_muls(temp_vec3f, temp_vec3f, camera_speed);
        vec3f_sub(camera_pos, camera_pos, temp_vec3f);
    }
    if(keys[GLFW_KEY_D]) {
        vec3f_cross(temp_vec3f, camera_front, camera_up);
        vec3f_normalize(temp_vec3f, temp_vec3f);
        vec3f_muls(temp_vec3f, temp_vec3f, camera_speed);
        vec3f_add(camera_pos, camera_pos, temp_vec3f);
    }
}
예제 #3
0
/**
 * Apply an infinitesimal rotation w*dt to a direction cosine matrix A.
 * An orthonormalization step is added to prevent rounding errors.
 *
 * Without the normalization, this would be a simple matrix multiplication:
 *
 * return mat3_matmul( A, (mat3f) {
 *        1,   -w.z,  w.y,
 *      w.z,    1, -w.x,
 *     -w.y,  w.x,    1
 * };
 */
static mat3f dcm_integrate(mat3f A, vec3f w, float dt)
{
    w = vec3f_scale(w, dt);

    // Calculate the new x and y axes. z is calculated later.
    //
    vec3f x = vec3f_matmul(A, (vec3f){    1, w.z, -w.y } );
    vec3f y = vec3f_matmul(A, (vec3f){ -w.z,   1,  w.x } );

    // Orthonormalization
    //
    // First we compute the dot product of the x and y rows of the matrix, which
    // is supposed to be zero, so the result is a measure of how much the X and Y
    // rows are rotating toward each other
    //
    float error = vec3f_dot(x, y);

    // We apportion half of the error each to the x and y rows, and approximately
    // rotate the X and Y rows in the opposite direction by cross coupling:
    //
    vec3f xo, yo, zo;
    xo = vec3f_sub(x, vec3f_scale(y, 0.5 * error));
    yo = vec3f_sub(y, vec3f_scale(x, 0.5 * error));

    // Scale them to unit length and take a cross product for the Z axis
    //
    xo = vec3f_norm(xo);
    yo = vec3f_norm(yo);
    zo = vec3f_cross(xo, yo);

    return (mat3f) {
        xo.x, yo.x, zo.x,
        xo.y, yo.y, zo.y,
        xo.z, yo.z, zo.z
    };
}