cv::Mat HogIntegralImageComputer::compute_block_features(const cv::Point &start, const cv::Point &end) const
{
    // sanity checks
    assert(end.y < _integral_image.rows-1 && end.x < _integral_image.cols-1 &&
           end.x >= 0 && end.y >= 0);
    assert(start.y < _integral_image.rows-1 && start.x < _integral_image.cols-1 &&
           start.x >= 0 && start.y >= 0);
    // We have top, middle and bottom blocks
    // The border of blocks might overlap (for simplicity reasons)
    int h = end.y - start.y + 1;

    if (h < 3) {
        //return cv::Mat::zeros(1, 8*3, CV_32FC1);
        return cv::Mat::zeros(1, CC_HOG_CHANS*3, CV_32FC1);
    }

    int h_top = h * 0.2;     // the first border
    int h_bottom = h * 0.8;  // the second border

    h_top    = std::min(h_top, h - 3);
    h_bottom = std::min(h_bottom, h - 2);

    cv::Point start1 = start;
    cv::Point end1   = cv::Point(end.x, start.y + h_top);

    cv::Point start2 = cv::Point(start.x, start.y + h_top + 1);
    cv::Point end2   = cv::Point(end.x,   start.y + h_bottom);

    cv::Point start3 = cv::Point(start.x, start.y + h_bottom + 1);
    cv::Point end3   = cv::Point(end.x,   end.y);

    cv::VecHogf v1 = vec_max(query_ii(start1, end1), cv::VecHogf(0.0f));
    cv::VecHogf v2 = vec_max(query_ii(start2, end2), cv::VecHogf(0.0f));
    cv::VecHogf v3 = vec_max(query_ii(start3, end3), cv::VecHogf(0.0f));
    cv::VecHogf v_norm = v1 + v2 + v3;

    assert(v_norm[4] + 1e-5 > 0);
    v1 = v1 / (v_norm[CC_HOG_CHANS] + 1e-5);
    v2 = v2 / (v_norm[CC_HOG_CHANS] + 1e-5);
    v3 = v3 / (v_norm[CC_HOG_CHANS] + 1e-5);

#if CC_HOG_CHANS == 4
    cv::Mat result = (cv::Mat_<float>(1,CC_HOG_CHANS*3) << 
        v1[0], v1[1], v1[2], v1[3],
        v2[0], v2[1], v2[2], v2[3],
        v3[0], v3[1], v3[2], v3[3]);
#else
    cv::Mat result = (cv::Mat_<float>(1,CC_HOG_CHANS*3) << 
        v1[0], v1[1], v1[2], v1[3], v1[4], v1[5], v1[6], v1[7],
        v2[0], v2[1], v2[2], v2[3], v2[4], v2[5], v2[6], v2[7],
        v3[0], v3[1], v3[2], v3[3], v3[4], v3[5], v3[6], v3[7]);
#endif
    cv::sqrt(result, result);
    return result;
}
예제 #2
0
 SIMD_INLINE void PartialSort5(v128_u8 a[5])
 {
     SortU8(a[2], a[3]); 
     SortU8(a[1], a[2]);
     SortU8(a[2], a[3]); 
     a[4] = vec_max(a[1], a[4]); 
     a[0] = vec_min(a[0], a[3]); 
     SortU8(a[2], a[0]); 
     a[2] = vec_max(a[4], a[2]); 
     a[2] = vec_min(a[2], a[0]);
 }
예제 #3
0
파일: dpalphaprey.c 프로젝트: juapebe/HPC
void DP_alpha_prey_w(PARAM *param, PRIOR *prior, DATA *data, const gsl_rng *r, int pid) {
  int i,j,id;
  float cur_alpha_prey, tmp_lambda, maxl, tmp;
  float prob[_MAX_COMP_];
  for(i=0;i<_MAX_COMP_;i++) prob[i] = log(prior->gamma_alpha_prey[i]);
  cur_alpha_prey = param->alpha_prey[pid];
  for(i=0;i<_MAX_COMP_;i++) {
    for(j=0;j<data->preyNinter[pid];j++) {
      id = data->p2i[pid][j];
      if(param->Z[data->a2u[id]]) {
        tmp_lambda = param->lambda_true[id] + prior->theta_alpha_prey[i] - cur_alpha_prey;
        tmp = GSL_MIN(50.0, data->d[id]);
        if(tmp > 0.0) prob[i] += log_poisson_g_prop(tmp, exp(tmp_lambda), param->eta[pid]);
      }
    }
  }
  maxl = vec_max(prob, _MAX_COMP_);
  for(i=0;i<_MAX_COMP_;i++) prob[i] -= maxl;
  for(i=0;i<_MAX_COMP_;i++) prob[i] = exp(prob[i]);
  prior->w_alpha_prey[pid] = ranMultinom(r, prob, _MAX_COMP_);
  param->alpha_prey[pid] = prior->theta_alpha_prey[prior->w_alpha_prey[pid]];

  for(j=0;j<data->preyNinter[pid];j++) {
    id = data->p2i[pid][j];
    param->lambda_true[id] += param->alpha_prey[pid] - cur_alpha_prey;
  }
}
예제 #4
0
// out: newp1 = clip((p2 + ((p0 + q0 + 1) >> 1)) >> 1, p1-tc0, p1+tc0)
static inline vec_u8_t h264_deblock_q1(register vec_u8_t p0,
                                       register vec_u8_t p1,
                                       register vec_u8_t p2,
                                       register vec_u8_t q0,
                                       register vec_u8_t tc0) {

    register vec_u8_t average = vec_avg(p0, q0);
    register vec_u8_t temp;
    register vec_u8_t uncliped;
    register vec_u8_t ones;
    register vec_u8_t max;
    register vec_u8_t min;
    register vec_u8_t newp1;

    temp = vec_xor(average, p2);
    average = vec_avg(average, p2);     /*avg(p2, avg(p0, q0)) */
    ones = vec_splat_u8(1);
    temp = vec_and(temp, ones);         /*(p2^avg(p0, q0)) & 1 */
    uncliped = vec_subs(average, temp); /*(p2+((p0+q0+1)>>1))>>1 */
    max = vec_adds(p1, tc0);
    min = vec_subs(p1, tc0);
    newp1 = vec_max(min, uncliped);
    newp1 = vec_min(max, newp1);
    return newp1;
}
예제 #5
0
파일: dpeta.c 프로젝트: juapebe/HPC
void DP_eta_w(PARAM *param, PRIOR *prior, DATA *data, const gsl_rng *r, int pid) {
  int i,j,id;
  float cur_eta, tmp_lambda, maxl, tmp;
  float prob[_MAX_COMP_];
  for(i=0;i<_MAX_COMP_;i++) prob[i] = log(prior->gamma_eta[i]);
  cur_eta = param->eta[pid];
  for(i=0;i<_MAX_COMP_;i++) {
    for(j=0;j<data->preyNinter[pid];j++) {
      id = data->p2i[pid][j];
      if(param->Z[data->a2u[id]] && data->d[id] > 0.0) {
        tmp_lambda = param->lambda_true[id];
        //else tmp_lambda = param->lambda_false[id];

        if(lowMode) tmp = GSL_MIN(_LM_, data->d[id]);
        else tmp = data->d[id];
        if(data->d[id] > 0.0) prob[i] += log_poisson_g_prop(tmp, exp(tmp_lambda), prior->theta_eta[i]);
      }
    }
  }
  maxl = vec_max(prob, _MAX_COMP_);
  for(i=0;i<_MAX_COMP_;i++) prob[i] -= maxl;
  for(i=0;i<_MAX_COMP_;i++) prob[i] = exp(prob[i]);
  prior->w_eta[pid] = ranMultinom(r, prob, _MAX_COMP_);
  param->eta[pid] = prior->theta_eta[prior->w_eta[pid]];
}
예제 #6
0
// out: newp1 = clip((p2 + ((p0 + q0 + 1) >> 1)) >> 1, p1-tc0, p1+tc0)
static inline vector unsigned char h264_deblock_q1(register vector unsigned char p0,
                                                   register vector unsigned char p1,
                                                   register vector unsigned char p2,
                                                   register vector unsigned char q0,
                                                   register vector unsigned char tc0) {

    register vector unsigned char average = vec_avg(p0, q0);
    register vector unsigned char temp;
    register vector unsigned char uncliped;
    register vector unsigned char ones;
    register vector unsigned char max;
    register vector unsigned char min;
    register vector unsigned char newp1;

    temp = vec_xor(average, p2);
    average = vec_avg(average, p2);     /*avg(p2, avg(p0, q0)) */
    ones = vec_splat_u8(1);
    temp = vec_and(temp, ones);         /*(p2^avg(p0, q0)) & 1 */
    uncliped = vec_subs(average, temp); /*(p2+((p0+q0+1)>>1))>>1 */
    max = vec_adds(p1, tc0);
    min = vec_subs(p1, tc0);
    newp1 = vec_max(min, uncliped);
    newp1 = vec_min(max, newp1);
    return newp1;
}
예제 #7
0
파일: dpmu.c 프로젝트: juapebe/HPC
void DP_mu_w(PARAM *param, PRIOR *prior, DATA *data, const gsl_rng *r, int pid) {
  int i,j,id;
  float cur_mu, tmp_lambda, maxl, tmp;
  float prob[_MAX_COMP_];
  for(i=0;i<_MAX_COMP_;i++) prob[i] = log(prior->gamma_mu[i]);
  cur_mu = param->mu[pid];
  for(i=0;i<_MAX_COMP_;i++) {
    for(j=0;j<data->preyNinter[pid];j++) {
      id = data->p2i[pid][j];
      if(data->ctrl[data->i2IP[id]]) {
        tmp_lambda = param->lambda_false[id] + prior->theta_mu[i] - cur_mu;
        tmp = data->d[id];
        prob[i] += log_poisson_g_prop(tmp, exp(tmp_lambda), param->eta0[data->i2p[id]]);
      }
    }
  }
  maxl = vec_max(prob, _MAX_COMP_);
  for(i=0;i<_MAX_COMP_;i++) prob[i] -= maxl;
  for(i=0;i<_MAX_COMP_;i++) prob[i] = exp(prob[i]);
  prior->w_mu[pid] = ranMultinom(r, prob, _MAX_COMP_);
  param->mu[pid] = prior->theta_mu[prior->w_mu[pid]];

  for(j=0;j<data->preyNinter[pid];j++) {
    id = data->p2i[pid][j];
    param->lambda_false[id] += param->mu[pid] - cur_mu;
  }
}
예제 #8
0
 SIMD_INLINE void PartialSort9(v128_u8 a[9])
 {
     SortU8(a[1], a[2]); SortU8(a[4], a[5]); SortU8(a[7], a[8]); 
     SortU8(a[0], a[1]); SortU8(a[3], a[4]); SortU8(a[6], a[7]);
     SortU8(a[1], a[2]); SortU8(a[4], a[5]); SortU8(a[7], a[8]); 
     a[3] = vec_max(a[0], a[3]); 
     a[5] = vec_min(a[5], a[8]); 
     SortU8(a[4], a[7]);
     a[6] = vec_max(a[3], a[6]); 
     a[4] = vec_max(a[1], a[4]); 
     a[2] = vec_min(a[2], a[5]); 
     a[4] = vec_min(a[4], a[7]); 
     SortU8(a[4], a[2]); 
     a[4] = vec_max(a[6], a[4]);
     a[4] = vec_min(a[4], a[2]);
 }
예제 #9
0
파일: dpalphaIP.c 프로젝트: juapebe/HPC
void DP_alpha_IP_w(PARAM *param, PRIOR *prior, DATA *data, const gsl_rng *r, int pid) {
  int i,j,id;
  float cur_alpha_IP, tmp_lambda, maxl;
  float prob[_MAX_COMP_];
  for(i=0;i<_MAX_COMP_;i++) prob[i] = log(prior->gamma_alpha_IP[i]);
  cur_alpha_IP = param->alpha_IP[pid];
  for(i=0;i<_MAX_COMP_;i++) {
    for(j=0;j<data->IPNinter[pid];j++) {
      id = data->IP2i[pid][j];
      if(param->Z[data->a2u[id]]) {
        tmp_lambda = param->lambda_true[id] + prior->theta_alpha_IP[i] - cur_alpha_IP;
        prob[i] += log_gaussian(data->d[id], (tmp_lambda), param->eta[data->i2p[id]]);
      }
    }
  }
  maxl = vec_max(prob, _MAX_COMP_);
  for(i=0;i<_MAX_COMP_;i++) prob[i] -= maxl;
  for(i=0;i<_MAX_COMP_;i++) prob[i] = exp(prob[i]);
  prior->w_alpha_IP[pid] = ranMultinom(r, prob, _MAX_COMP_);
  param->alpha_IP[pid] = prior->theta_alpha_IP[prior->w_alpha_IP[pid]];

  for(j=0;j<data->IPNinter[pid];j++) {
    id = data->IP2i[pid][j];
    param->lambda_true[id] += param->alpha_IP[pid] - cur_alpha_IP;
  }
}
예제 #10
0
int pix_abs16x16_y2_altivec(uint8_t *pix1, uint8_t *pix2, int line_size)
{
    int i;
    int s __attribute__((aligned(16)));
    const vector unsigned char zero = (const vector unsigned char)vec_splat_u8(0);
    vector unsigned char *tv;
    vector unsigned char pix1v, pix2v, pix3v, avgv, t5;
    vector unsigned int sad;
    vector signed int sumdiffs;
    uint8_t *pix3 = pix2 + line_size;

    s = 0;
    sad = (vector unsigned int)vec_splat_u32(0);

    /*
       Due to the fact that pix3 = pix2 + line_size, the pix3 of one
       iteration becomes pix2 in the next iteration. We can use this
       fact to avoid a potentially expensive unaligned read, each
       time around the loop.
       Read unaligned pixels into our vectors. The vectors are as follows:
       pix2v: pix2[0]-pix2[15]
       Split the pixel vectors into shorts
    */
    tv = (vector unsigned char *) &pix2[0];
    pix2v = vec_perm(tv[0], tv[1], vec_lvsl(0, &pix2[0]));
    
    for(i=0;i<16;i++) {
        /*
           Read unaligned pixels into our vectors. The vectors are as follows:
           pix1v: pix1[0]-pix1[15]
           pix3v: pix3[0]-pix3[15]
        */
        tv = (vector unsigned char *) pix1;
        pix1v = vec_perm(tv[0], tv[1], vec_lvsl(0, pix1));

        tv = (vector unsigned char *) &pix3[0];
        pix3v = vec_perm(tv[0], tv[1], vec_lvsl(0, &pix3[0]));

        /* Calculate the average vector */
        avgv = vec_avg(pix2v, pix3v);

        /* Calculate a sum of abs differences vector */
        t5 = vec_sub(vec_max(pix1v, avgv), vec_min(pix1v, avgv));

        /* Add each 4 pixel group together and put 4 results into sad */
        sad = vec_sum4s(t5, sad);
        
        pix1 += line_size;
        pix2v = pix3v;
        pix3 += line_size;
        
    }
    
    /* Sum up the four partial sums, and put the result into s */
    sumdiffs = vec_sums((vector signed int) sad, (vector signed int) zero);
    sumdiffs = vec_splat(sumdiffs, 3);
    vec_ste(sumdiffs, 0, &s);
    return s;    
}
예제 #11
0
void
gimp_composite_lighten_rgba8_rgba8_rgba8_altivec (GimpCompositeContext *ctx)
{
  const guchar *A = ctx->A;
  const guchar *B = ctx->B;
  guchar *D = ctx->D;
  guint length = ctx->n_pixels;
  vector unsigned char a,b,d,alpha_a,alpha_b;

  while (length >= 4)
    {
      a=LoadUnaligned(A);
      b=LoadUnaligned(B);

      alpha_a=vec_and(a, alphamask);
      alpha_b=vec_and(b, alphamask);
      d=vec_min(alpha_a, alpha_b);

      a=vec_andc(a, alphamask);
      a=vec_adds(a, d);
      b=vec_andc(b, alphamask);
      d=vec_max(a, b);

      StoreUnaligned(d, D);

      A+=16;
      B+=16;
      D+=16;
      length-=4;
    }
  /* process last pixels */
  length = length*4;
  a=LoadUnalignedLess(A, length);
  b=LoadUnalignedLess(B, length);

  alpha_a=vec_and(a,alphamask);
  alpha_b=vec_and(b,alphamask);
  d=vec_min(alpha_a,alpha_b);

  a=vec_andc(a,alphamask);
  a=vec_adds(a,d);
  b=vec_andc(b,alphamask);
  d=vec_max(a, b);

  StoreUnalignedLess(d, D, length);
}
예제 #12
0
파일: mmath.c 프로젝트: emmaggie/MSblender
double log_sum(double *x, int len) {
  int i;
  double res, sum;
  sum = vec_max(x, len);
  for(i=0;i<len;i++) x[i] -= sum;
  for(i=0;i<len;i++) x[i] = exp(x[i]);
  res = vec_sum(x, len);
  return res;  
}
예제 #13
0
__SIMDd _SIMD_max_pd(__SIMDd a, __SIMDd b)
{
#ifdef  USE_SSE
  return _mm_max_pd(a,b); 
#elif defined USE_AVX
  return _mm256_max_pd(a,b); 
#elif defined USE_IBM
  return vec_max(a,b);
#endif
}
예제 #14
0
folgen_vektor_p
folgen_vektor_add(folgen_vektor_p f, folgen_vektor_p g) {
	folgen_vektor_p  back;
	int  k, d, size, dim, a, b, test_f, test_g;
	vec_p  max, vec_1, n, n_f, n_g, r;

	ASSERT( f->grad->dim == g->grad->dim );
	dim = f->grad->dim;
	max = vec_max( f->grad, g->grad );


	vec_1 = vec_one( dim );
	n = vec_add( vec_1, max );
	n_f = vec_add( vec_1, f->grad );
	n_g = vec_add( vec_1, g->grad );
	size = vec_size( n );

	back = folgen_vektor_new( max );
	for(k=0;k<size;k++) {
		r = entry_one2d( k, n );
		test_f = 0;
		test_g = 0;
		for(d=0;d<dim;d++) {
			if( r->array[d] > f->grad->array[d] ) {
				test_f = test_f + 1;
			}
			if( r->array[d] > g->grad->array[d] ) {
				test_g = test_g + 1;
			}
		}
		if( (test_f == 0) && (test_g == 0) ) {
			a = entry_d2one( r, n_f );
			b = entry_d2one( r, n_g );
			folge_del( back->vektor[k] );
			back->vektor[k] = folge_add( f->vektor[a], g->vektor[b] );
		}
		if( (test_f != 0) && (test_g == 0) ) {
			b = entry_d2one( r, n_g );
			folge_del( back->vektor[k] );
			back->vektor[k] = folge_copy( g->vektor[b] );
		}
		if( (test_f == 0) && (test_g != 0) ) {
			a = entry_d2one( r, n_f );
			folge_del( back->vektor[k] );
			back->vektor[k] = folge_copy( f->vektor[a] );
		}
		vec_del( r );
	}
	vec_del( n );
	vec_del( n_f );
	vec_del( n_g );
	vec_del( vec_1 );

	return back;
}
예제 #15
0
/* Assumes input points to the beginning of the SSS symbol. The SSS symbol start is
 * given by SSS_SYMBOL_ST() macro in sss.h.
 * Estimates the m0 and m1 values and saves in m0_value and m1_value
 * the resulted correlation (higher is more likely)
 *
 */
void sss_synch_m0m1(sss_synch_t *q, cf_t *input, int *m0, float *m0_value,
		int *m1, float *m1_value) {

	/* This is aprox 3-4 kbytes of stack. Consider moving to sss_synch_t?? */
	cf_t zdelay[N_SSS+1],zconj[N_SSS+1],zprod[N_SSS+1];
	cf_t y[2][N_SSS+1], z[N_SSS+1], tmp[N_SSS+1];
	float tmp_real[N_SSS+1];
	cf_t input_fft[SSS_DFT_LEN];

	int i;

	dft_run_c2c(&q->dftp_input, input, input_fft);

	for (i = 0; i < N_SSS; i++) {
		y[0][i] = input_fft[SSS_POS_SYMBOL + 2 * i];
		y[1][i] = input_fft[SSS_POS_SYMBOL + 2 * i + 1];
	}

	vec_dot_prod(y[0], q->fc_tables.c[0], z, N_SSS);
	memcpy(zdelay, &z[1], (N_SSS - 1) * sizeof(cf_t));
	vec_conj(z, zconj, N_SSS - 1);
	vec_dot_prod(zdelay, zconj, zprod, N_SSS - 1);

	corr_all_zs(zprod, q->fc_tables.s, tmp);
	vec_abs(tmp, tmp_real, N_SSS);
	vec_max(tmp_real, m0_value, m0, N_SSS);

	vec_dot_prod(y[1], q->fc_tables.c[1], tmp, N_SSS);
	vec_dot_prod(tmp, q->fc_tables.z1[*m0], z, N_SSS);
	memcpy(zdelay, &z[1], (N_SSS - 1) * sizeof(cf_t));
	vec_conj(z, zconj, N_SSS - 1);
	vec_dot_prod(zdelay, zconj, zprod, N_SSS - 1);

	corr_all_zs(zprod, q->fc_tables.s, tmp);
	vec_abs(tmp, tmp_real, N_SSS);
	vec_max(tmp_real, m1_value, m1, N_SSS);

}
예제 #16
0
/**
 * Sum of Squared Errors for a 8x8 block.
 * AltiVec-enhanced.
 * It's the pix_abs8x8_altivec code above w/ squaring added.
 */
int sse8_altivec(void *v, uint8_t *pix1, uint8_t *pix2, int line_size)
{
    int i;
    int s __attribute__((aligned(16)));
    const vector unsigned int zero = (const vector unsigned int)vec_splat_u32(0);
    vector unsigned char perm1, perm2, permclear, *pix1v, *pix2v;
    vector unsigned char t1, t2, t3,t4, t5;
    vector unsigned int sum;
    vector signed int sumsqr;
    
    sum = (vector unsigned int)vec_splat_u32(0);

    permclear = (vector unsigned char)AVV(255,255,255,255,255,255,255,255,0,0,0,0,0,0,0,0);

    
    for(i=0;i<8;i++) {
	/* Read potentially unaligned pixels into t1 and t2
	   Since we're reading 16 pixels, and actually only want 8,
	   mask out the last 8 pixels. The 0s don't change the sum. */
        perm1 = vec_lvsl(0, pix1);
        pix1v = (vector unsigned char *) pix1;
        perm2 = vec_lvsl(0, pix2);
        pix2v = (vector unsigned char *) pix2;
        t1 = vec_and(vec_perm(pix1v[0], pix1v[1], perm1), permclear);
        t2 = vec_and(vec_perm(pix2v[0], pix2v[1], perm2), permclear);

        /*
          Since we want to use unsigned chars, we can take advantage
          of the fact that abs(a-b)^2 = (a-b)^2.
        */
        
	/* Calculate abs differences vector */ 
        t3 = vec_max(t1, t2);
        t4 = vec_min(t1, t2);
        t5 = vec_sub(t3, t4);
        
        /* Square the values and add them to our sum */
        sum = vec_msum(t5, t5, sum);
        
        pix1 += line_size;
        pix2 += line_size;
    }
    
    /* Sum up the four partial sums, and put the result into s */
    sumsqr = vec_sums((vector signed int) sum, (vector signed int) zero);
    sumsqr = vec_splat(sumsqr, 3);
    vec_ste(sumsqr, 0, &s);
    
    return s;
}
예제 #17
0
/*! <em>Pointwise Maximum</em> of vA and vB. */
inline vec4i vec4i_max(vec4i vA, vec4i vB) {
#if defined(__ALTIVEC__)	/* AltiVec */
  return vec_max((vector int)vA, (vector int)vB);
#else  /* Scalar */
  int * s1 = (int*)&vA;
  int * s2 = (int*)&vB;
  vec4i max;
  int * smax = (int*)&max;
  smax[0] = MAX(s1[0], s2[0]);
  smax[1] = MAX(s1[1], s2[1]);
  smax[2] = MAX(s1[2], s2[2]);
  smax[3] = MAX(s1[3], s2[3]);
  return max;
#endif
}
예제 #18
0
int pix_abs16x16_x2_altivec(uint8_t *pix1, uint8_t *pix2, int line_size)
{
    int i;
    int s __attribute__((aligned(16)));
    const vector unsigned char zero = (const vector unsigned char)vec_splat_u8(0);
    vector unsigned char *tv;
    vector unsigned char pix1v, pix2v, pix2iv, avgv, t5;
    vector unsigned int sad;
    vector signed int sumdiffs;

    s = 0;
    sad = (vector unsigned int)vec_splat_u32(0);
    for(i=0;i<16;i++) {
        /*
           Read unaligned pixels into our vectors. The vectors are as follows:
           pix1v: pix1[0]-pix1[15]
           pix2v: pix2[0]-pix2[15]	pix2iv: pix2[1]-pix2[16]
        */
        tv = (vector unsigned char *) pix1;
        pix1v = vec_perm(tv[0], tv[1], vec_lvsl(0, pix1));
        
        tv = (vector unsigned char *) &pix2[0];
        pix2v = vec_perm(tv[0], tv[1], vec_lvsl(0, &pix2[0]));

        tv = (vector unsigned char *) &pix2[1];
        pix2iv = vec_perm(tv[0], tv[1], vec_lvsl(0, &pix2[1]));

        /* Calculate the average vector */
        avgv = vec_avg(pix2v, pix2iv);

        /* Calculate a sum of abs differences vector */
        t5 = vec_sub(vec_max(pix1v, avgv), vec_min(pix1v, avgv));

        /* Add each 4 pixel group together and put 4 results into sad */
        sad = vec_sum4s(t5, sad);
        
        pix1 += line_size;
        pix2 += line_size;
    }
    /* Sum up the four partial sums, and put the result into s */
    sumdiffs = vec_sums((vector signed int) sad, (vector signed int) zero);
    sumdiffs = vec_splat(sumdiffs, 3);
    vec_ste(sumdiffs, 0, &s);

    return s;
}
예제 #19
0
int pix_abs8x8_altivec(uint8_t *pix1, uint8_t *pix2, int line_size)
{
    int i;
    int s __attribute__((aligned(16)));
    const vector unsigned int zero = (const vector unsigned int)vec_splat_u32(0);
    vector unsigned char perm1, perm2, permclear, *pix1v, *pix2v;
    vector unsigned char t1, t2, t3,t4, t5;
    vector unsigned int sad;
    vector signed int sumdiffs;

    sad = (vector unsigned int)vec_splat_u32(0);

    permclear = (vector unsigned char)AVV(255,255,255,255,255,255,255,255,0,0,0,0,0,0,0,0);

    for(i=0;i<8;i++) {
	/* Read potentially unaligned pixels into t1 and t2
	   Since we're reading 16 pixels, and actually only want 8,
	   mask out the last 8 pixels. The 0s don't change the sum. */
        perm1 = vec_lvsl(0, pix1);
        pix1v = (vector unsigned char *) pix1;
        perm2 = vec_lvsl(0, pix2);
        pix2v = (vector unsigned char *) pix2;
        t1 = vec_and(vec_perm(pix1v[0], pix1v[1], perm1), permclear);
        t2 = vec_and(vec_perm(pix2v[0], pix2v[1], perm2), permclear);

	/* Calculate a sum of abs differences vector */ 
        t3 = vec_max(t1, t2);
        t4 = vec_min(t1, t2);
        t5 = vec_sub(t3, t4);

	/* Add each 4 pixel group together and put 4 results into sad */
        sad = vec_sum4s(t5, sad);

        pix1 += line_size;
        pix2 += line_size;
    }

    /* Sum up the four partial sums, and put the result into s */
    sumdiffs = vec_sums((vector signed int) sad, (vector signed int) zero);
    sumdiffs = vec_splat(sumdiffs, 3);
    vec_ste(sumdiffs, 0, &s);

    return s;
}
예제 #20
0
static int sad16_x2_altivec(void *v, uint8_t *pix1, uint8_t *pix2, int line_size, int h)
{
    int i;
    int s;
    const vector unsigned char zero = (const vector unsigned char)vec_splat_u8(0);
    vector unsigned char perm1 = vec_lvsl(0, pix2);
    vector unsigned char perm2 = vec_add(perm1, vec_splat_u8(1));
    vector unsigned char pix2l, pix2r;
    vector unsigned char pix1v, pix2v, pix2iv, avgv, t5;
    vector unsigned int sad;
    vector signed int sumdiffs;

    s = 0;
    sad = (vector unsigned int)vec_splat_u32(0);
    for (i = 0; i < h; i++) {
        /* Read unaligned pixels into our vectors. The vectors are as follows:
           pix1v: pix1[0]-pix1[15]
           pix2v: pix2[0]-pix2[15]      pix2iv: pix2[1]-pix2[16] */
        pix1v  = vec_ld( 0, pix1);
        pix2l  = vec_ld( 0, pix2);
        pix2r  = vec_ld(16, pix2);
        pix2v  = vec_perm(pix2l, pix2r, perm1);
        pix2iv = vec_perm(pix2l, pix2r, perm2);

        /* Calculate the average vector */
        avgv = vec_avg(pix2v, pix2iv);

        /* Calculate a sum of abs differences vector */
        t5 = vec_sub(vec_max(pix1v, avgv), vec_min(pix1v, avgv));

        /* Add each 4 pixel group together and put 4 results into sad */
        sad = vec_sum4s(t5, sad);

        pix1 += line_size;
        pix2 += line_size;
    }
    /* Sum up the four partial sums, and put the result into s */
    sumdiffs = vec_sums((vector signed int) sad, (vector signed int) zero);
    sumdiffs = vec_splat(sumdiffs, 3);
    vec_ste(sumdiffs, 0, &s);

    return s;
}
예제 #21
0
파일: folge.c 프로젝트: FEPC-Expert/FEPC
folge_p
folge_add(folge_p f, folge_p g) {
	folge_p  back;
	int  size, k, size_g, size_f;
	fepc_real_t  x, y;
	vec_p  temp1, temp2, max, lang, min, r;


	size_f = vec_size( f->lang );
	size_g = vec_size( g->lang );
	if(size_f == 0) {
		back = folge_copy( g );
		return back;
	}

	if(size_g == 0) {
		back = folge_copy( f );
		return back;
	}

	if( (size_g!=0) && (size_f!=0) ) {
		min = vec_min( f->start, g->start );
		temp1 = vec_add( f->start, f->lang );
		temp2 = vec_add( g->start, g->lang );
		max = vec_max( temp1, temp2 );
		vec_del( temp1 );
		vec_del( temp2 );
		lang = vec_op( 1, max, -1, min);
		vec_del( max );
		back = folge_new( min, lang );
		size = vec_size( lang );
		for(k=0;k<size;k++) {
			temp1 = entry_one2d( k, lang );
			r = vec_add( min, temp1 );
			vec_del( temp1 );
			x = folge_glied( r, f );
			y = folge_glied( r, g );
			vec_del( r );
			back->glied[k] = x + y;
		}
		return back;
	}
}
예제 #22
0
static unsigned reg_sad_altivec(const kvz_pixel * const data1, const kvz_pixel * const data2,
                        const int width, const int height, const unsigned stride1, const unsigned stride2)
{
  vector unsigned int vsad = {0,0,0,0}, vzero = {0,0,0,0}; 
  vector signed int sumdiffs;
  int tmpsad, sad = 0;
  
  int y, x;
  
  for (y = 0; y < height; ++y) {
    vector unsigned char perm1, perm2;
    
    perm1 = vec_lvsl(0, &data1[y * stride1]);
    perm2 = vec_lvsl(0, &data2[y * stride2]);
    
    for (x = 0; x <= width-16; x+=16) {
      vector unsigned char t1, t2, t3, t4, t5;
      vector unsigned char *current, *previous;
      
      current = (vector unsigned char *) &data1[y * stride1 + x];
      previous = (vector unsigned char *) &data2[y * stride2 + x];
      
      t1  = vec_perm(current[0], current[1], perm1 );  /* align current vector  */ 
      t2  = vec_perm(previous[0], previous[1], perm2 );/* align previous vector */ 
      t3  = vec_max(t1, t2 );      /* find largest of two           */ 
      t4  = vec_min(t1, t2 );      /* find smaller of two           */ 
      t5  = vec_sub(t3, t4);       /* find absolute difference      */ 
      vsad = vec_sum4s(t5, vsad);    /* accumulate sum of differences */
    }

    for (; x < width; ++x) {
      sad += abs(data1[y * stride1 + x] - data2[y * stride2 + x]);
    }
  }
  
  sumdiffs = vec_sums((vector signed int) vsad, (vector signed int) vzero);
  /* copy vector sum into unaligned result */
  sumdiffs = vec_splat( sumdiffs, 3);
  vec_ste( sumdiffs, 0, &tmpsad );
  sad += tmpsad;
  
  return sad;
}
예제 #23
0
파일: dpeta.c 프로젝트: juapebe/HPC
void DP_eta_w(PARAM *param, PRIOR *prior, DATA *data, const gsl_rng *r, int pid) {
  int i,j,id;
  float cur_eta, tmp_lambda, maxl;
  float prob[_MAX_COMP_];
  for(i=0;i<_MAX_COMP_;i++) prob[i] = log(prior->gamma_eta[i]);
  cur_eta = param->eta[pid];
  for(i=0;i<_MAX_COMP_;i++) {
    for(j=0;j<data->preyNinter[pid];j++) {
      id = data->p2i[pid][j];
      if(param->Z[data->a2u[id]]) tmp_lambda = param->lambda_true[id];
      else tmp_lambda = param->lambda_false[id];
      prob[i] += log_gaussian(data->d[id], (tmp_lambda), prior->theta_eta[i]);
    }
  }
  maxl = vec_max(prob, _MAX_COMP_);
  for(i=0;i<_MAX_COMP_;i++) prob[i] -= maxl;
  for(i=0;i<_MAX_COMP_;i++) prob[i] = exp(prob[i]);
  prior->w_eta[pid] = ranMultinom(r, prob, _MAX_COMP_);
  param->eta[pid] = prior->theta_eta[prior->w_eta[pid]];
}
예제 #24
0
int pix_abs16x16_altivec(uint8_t *pix1, uint8_t *pix2, int line_size)
{
    int i;
    int s __attribute__((aligned(16)));
    const vector unsigned int zero = (const vector unsigned int)vec_splat_u32(0);
    vector unsigned char perm1, perm2, *pix1v, *pix2v;
    vector unsigned char t1, t2, t3,t4, t5;
    vector unsigned int sad;
    vector signed int sumdiffs;
    
    sad = (vector unsigned int)vec_splat_u32(0);


    for(i=0;i<16;i++) {
	/* Read potentially unaligned pixels into t1 and t2 */
        perm1 = vec_lvsl(0, pix1);
        pix1v = (vector unsigned char *) pix1;
        perm2 = vec_lvsl(0, pix2);
        pix2v = (vector unsigned char *) pix2;
        t1 = vec_perm(pix1v[0], pix1v[1], perm1);
        t2 = vec_perm(pix2v[0], pix2v[1], perm2);
       
	/* Calculate a sum of abs differences vector */ 
        t3 = vec_max(t1, t2);
        t4 = vec_min(t1, t2);
        t5 = vec_sub(t3, t4);
	
	/* Add each 4 pixel group together and put 4 results into sad */
        sad = vec_sum4s(t5, sad);

        pix1 += line_size;
        pix2 += line_size;
    }

    /* Sum up the four partial sums, and put the result into s */
    sumdiffs = vec_sums((vector signed int) sad, (vector signed int) zero);
    sumdiffs = vec_splat(sumdiffs, 3);
    vec_ste(sumdiffs, 0, &s);
    
    return s;
}
예제 #25
0
static int sad16_altivec(void *v, uint8_t *pix1, uint8_t *pix2, int line_size, int h)
{
    int i;
    int s;
    const vector unsigned int zero = (const vector unsigned int)vec_splat_u32(0);
    vector unsigned char perm = vec_lvsl(0, pix2);
    vector unsigned char t1, t2, t3,t4, t5;
    vector unsigned int sad;
    vector signed int sumdiffs;

    sad = (vector unsigned int)vec_splat_u32(0);


    for (i = 0; i < h; i++) {
        /* Read potentially unaligned pixels into t1 and t2 */
        vector unsigned char pix2l = vec_ld( 0, pix2);
        vector unsigned char pix2r = vec_ld(15, pix2);
        t1 = vec_ld(0, pix1);
        t2 = vec_perm(pix2l, pix2r, perm);

        /* Calculate a sum of abs differences vector */
        t3 = vec_max(t1, t2);
        t4 = vec_min(t1, t2);
        t5 = vec_sub(t3, t4);

        /* Add each 4 pixel group together and put 4 results into sad */
        sad = vec_sum4s(t5, sad);

        pix1 += line_size;
        pix2 += line_size;
    }

    /* Sum up the four partial sums, and put the result into s */
    sumdiffs = vec_sums((vector signed int) sad, (vector signed int) zero);
    sumdiffs = vec_splat(sumdiffs, 3);
    vec_ste(sumdiffs, 0, &s);

    return s;
}
예제 #26
0
파일: folge.c 프로젝트: FEPC-Expert/FEPC
fepc_real_t
folge_norm(folge_p f, folge_p g) {
	vec_p  temp, temp1, temp2, min, max, lang, vec_1;
	int  k, dim, size;
	fepc_real_t  norm, diff;

	ASSERT(f->start->dim == g->start->dim);
	dim = f->start->dim;
	vec_1 = vec_one( dim );

	min = vec_min( f->start, g->start );
	temp1 = vec_add( f->start, f->lang );
	temp2 = vec_add( g->start, g->lang );
	temp = vec_max( temp1, temp2 );
	vec_del( temp1 );
	vec_del( temp2 );
	lang = vec_op( 1, temp, -1, min );
	vec_del( temp );

	size = vec_size( lang );
	norm = 0.0;
	for(k=0;k<size;k++) {
		temp = entry_one2d( k, lang );
		temp1 = vec_add( temp, min );
		diff = folge_glied( temp1, f ) - folge_glied( temp1, g );
		norm = norm + ( diff * diff );
		vec_del( temp );
		vec_del( temp1 );
	}
	vec_del( vec_1 );
	vec_del( min );
	vec_del( lang );

	norm = sqrt(norm);
	return norm;
}
예제 #27
0
 template<> SIMD_INLINE v128_s16 InterferenceChange<false>(v128_s16 statistic, v128_s16 value, v128_s16 saturation)
 {
     return vec_max(vec_sub(statistic, value), saturation);
 }
예제 #28
0
void test1() {
// CHECK-LABEL: define void @test1
// CHECK-LE-LABEL: define void @test1

  res_vf = vec_abs(vf);
// CHECK: call <4 x float> @llvm.fabs.v4f32(<4 x float> %{{[0-9]*}})
// CHECK-LE: call <4 x float> @llvm.fabs.v4f32(<4 x float> %{{[0-9]*}})

  dummy();
// CHECK: call void @dummy()
// CHECK-LE: call void @dummy()

  res_vd = vec_add(vd, vd);
// CHECK: fadd <2 x double>
// CHECK-LE: fadd <2 x double>

  res_vd = vec_and(vbll, vd);
// CHECK: and <2 x i64>
// CHECK: bitcast <2 x i64> %{{[0-9]*}} to <2 x double>
// CHECK-LE: and <2 x i64>
// CHECK-LE: bitcast <2 x i64> %{{[0-9]*}} to <2 x double>

  res_vd = vec_and(vd, vbll);
// CHECK: and <2 x i64>
// CHECK: bitcast <2 x i64> %{{[0-9]*}} to <2 x double>
// CHECK-LE: and <2 x i64>
// CHECK-LE: bitcast <2 x i64> %{{[0-9]*}} to <2 x double>

  res_vd = vec_and(vd, vd);
// CHECK: and <2 x i64>
// CHECK: bitcast <2 x i64> %{{[0-9]*}} to <2 x double>
// CHECK-LE: and <2 x i64>
// CHECK-LE: bitcast <2 x i64> %{{[0-9]*}} to <2 x double>

  dummy();
// CHECK: call void @dummy()
// CHECK-LE: call void @dummy()

  res_vd = vec_andc(vbll, vd);
// CHECK: bitcast <2 x double> %{{[0-9]*}} to <2 x i64>
// CHECK: xor <2 x i64> %{{[0-9]*}}, <i64 -1, i64 -1>
// CHECK: and <2 x i64>
// CHECK: bitcast <2 x i64> %{{[0-9]*}} to <2 x double>
// CHECK-LE: bitcast <2 x double> %{{[0-9]*}} to <2 x i64>
// CHECK-LE: xor <2 x i64> %{{[0-9]*}}, <i64 -1, i64 -1>
// CHECK-LE: and <2 x i64>
// CHECK-LE: bitcast <2 x i64> %{{[0-9]*}} to <2 x double>

  dummy();
// CHECK: call void @dummy()
// CHECK-LE: call void @dummy()

  res_vd = vec_andc(vd, vbll);
// CHECK: bitcast <2 x double> %{{[0-9]*}} to <2 x i64>
// CHECK: xor <2 x i64> %{{[0-9]*}}, <i64 -1, i64 -1>
// CHECK: and <2 x i64>
// CHECK: bitcast <2 x i64> %{{[0-9]*}} to <2 x double>
// CHECK-LE: bitcast <2 x double> %{{[0-9]*}} to <2 x i64>
// CHECK-LE: xor <2 x i64> %{{[0-9]*}}, <i64 -1, i64 -1>
// CHECK-LE: and <2 x i64>
// CHECK-LE: bitcast <2 x i64> %{{[0-9]*}} to <2 x double>

  dummy();
// CHECK: call void @dummy()

  res_vd = vec_andc(vd, vd);
// CHECK: bitcast <2 x double> %{{[0-9]*}} to <2 x i64>
// CHECK: xor <2 x i64> %{{[0-9]*}}, <i64 -1, i64 -1>
// CHECK: and <2 x i64>
// CHECK: bitcast <2 x i64> %{{[0-9]*}} to <2 x double>

  dummy();
// CHECK: call void @dummy()
// CHECK-LE: call void @dummy()

  res_vd = vec_ceil(vd);
// CHECK: call <2 x double> @llvm.ceil.v2f64(<2 x double> %{{[0-9]*}})
// CHECK-LE: call <2 x double> @llvm.ceil.v2f64(<2 x double> %{{[0-9]*}})

  res_vf = vec_ceil(vf);
// CHECK: call <4 x float> @llvm.ceil.v4f32(<4 x float> %{{[0-9]*}})
// CHECK-LE: call <4 x float> @llvm.ceil.v4f32(<4 x float> %{{[0-9]*}})

  res_vbll = vec_cmpeq(vd, vd);
// CHECK: call <2 x i64> @llvm.ppc.vsx.xvcmpeqdp(<2 x double> %{{[0-9]*}}, <2 x double> %{{[0-9]*}})
// CHECK-LE: call <2 x i64> @llvm.ppc.vsx.xvcmpeqdp(<2 x double> %{{[0-9]*}}, <2 x double> %{{[0-9]*}})

  res_vbi = vec_cmpeq(vf, vf);
// CHECK: call <4 x i32> @llvm.ppc.vsx.xvcmpeqsp(<4 x float> %{{[0-9]*}}, <4 x float> %{{[0-9]*}})
// CHECK-LE: call <4 x i32> @llvm.ppc.vsx.xvcmpeqsp(<4 x float> %{{[0-9]*}}, <4 x float> %{{[0-9]*}})

  res_vbll = vec_cmpge(vd, vd);
// CHECK: call <2 x i64> @llvm.ppc.vsx.xvcmpgedp(<2 x double> %{{[0-9]*}}, <2 x double> %{{[0-9]*}})
// CHECK-LE: call <2 x i64> @llvm.ppc.vsx.xvcmpgedp(<2 x double> %{{[0-9]*}}, <2 x double> %{{[0-9]*}})

  res_vbi = vec_cmpge(vf, vf);
// CHECK: call <4 x i32> @llvm.ppc.vsx.xvcmpgesp(<4 x float> %{{[0-9]*}}, <4 x float> %{{[0-9]*}})
// CHECK-LE: call <4 x i32> @llvm.ppc.vsx.xvcmpgesp(<4 x float> %{{[0-9]*}}, <4 x float> %{{[0-9]*}})

  res_vbll = vec_cmpgt(vd, vd);
// CHECK: call <2 x i64> @llvm.ppc.vsx.xvcmpgtdp(<2 x double> %{{[0-9]*}}, <2 x double> %{{[0-9]*}})
// CHECK-LE: call <2 x i64> @llvm.ppc.vsx.xvcmpgtdp(<2 x double> %{{[0-9]*}}, <2 x double> %{{[0-9]*}})

  res_vbi = vec_cmpgt(vf, vf);
// CHECK: call <4 x i32> @llvm.ppc.vsx.xvcmpgtsp(<4 x float> %{{[0-9]*}}, <4 x float> %{{[0-9]*}})
// CHECK-LE: call <4 x i32> @llvm.ppc.vsx.xvcmpgtsp(<4 x float> %{{[0-9]*}}, <4 x float> %{{[0-9]*}})

  res_vbll = vec_cmple(vd, vd);
// CHECK: call <2 x i64> @llvm.ppc.vsx.xvcmpgedp(<2 x double> %{{[0-9]*}}, <2 x double> %{{[0-9]*}})
// CHECK-LE: call <2 x i64> @llvm.ppc.vsx.xvcmpgedp(<2 x double> %{{[0-9]*}}, <2 x double> %{{[0-9]*}})

  res_vbi = vec_cmple(vf, vf);
// CHECK: call <4 x i32> @llvm.ppc.vsx.xvcmpgesp(<4 x float> %{{[0-9]*}}, <4 x float> %{{[0-9]*}})
// CHECK-LE: call <4 x i32> @llvm.ppc.vsx.xvcmpgesp(<4 x float> %{{[0-9]*}}, <4 x float> %{{[0-9]*}})

  res_vbll = vec_cmplt(vd, vd);
// CHECK: call <2 x i64> @llvm.ppc.vsx.xvcmpgtdp(<2 x double> %{{[0-9]*}}, <2 x double> %{{[0-9]*}})
// CHECK-LE: call <2 x i64> @llvm.ppc.vsx.xvcmpgtdp(<2 x double> %{{[0-9]*}}, <2 x double> %{{[0-9]*}})

  res_vbi = vec_cmplt(vf, vf);
// CHECK: call <4 x i32> @llvm.ppc.vsx.xvcmpgtsp(<4 x float> %{{[0-9]*}}, <4 x float> %{{[0-9]*}})
// CHECK-LE: call <4 x i32> @llvm.ppc.vsx.xvcmpgtsp(<4 x float> %{{[0-9]*}}, <4 x float> %{{[0-9]*}})

  /* vec_cpsgn */
  res_vf = vec_cpsgn(vf, vf);
// CHECK: call <4 x float> @llvm.copysign.v4f32(<4 x float> %{{.+}}, <4 x float> %{{.+}})
// CHECK-LE: call <4 x float> @llvm.copysign.v4f32(<4 x float> %{{.+}}, <4 x float> %{{.+}})

  res_vd = vec_cpsgn(vd, vd);
// CHECK: call <2 x double> @llvm.copysign.v2f64(<2 x double> %{{.+}}, <2 x double> %{{.+}})
// CHECK-LE: call <2 x double> @llvm.copysign.v2f64(<2 x double> %{{.+}}, <2 x double> %{{.+}})

  /* vec_div */
  res_vsll = vec_div(vsll, vsll);
// CHECK: sdiv <2 x i64>
// CHECK-LE: sdiv <2 x i64>

  res_vull = vec_div(vull, vull);
// CHECK: udiv <2 x i64>
// CHECK-LE: udiv <2 x i64>

  res_vf = vec_div(vf, vf);
// CHECK: fdiv <4 x float>
// CHECK-LE: fdiv <4 x float>

  res_vd = vec_div(vd, vd);
// CHECK: fdiv <2 x double>
// CHECK-LE: fdiv <2 x double>

  /* vec_max */
  res_vf = vec_max(vf, vf);
// CHECK: @llvm.ppc.vsx.xvmaxsp
// CHECK-LE: @llvm.ppc.vsx.xvmaxsp

  res_vd = vec_max(vd, vd);
// CHECK: @llvm.ppc.vsx.xvmaxdp
// CHECK-LE: @llvm.ppc.vsx.xvmaxdp

  res_vf = vec_vmaxfp(vf, vf);
// CHECK: @llvm.ppc.vsx.xvmaxsp
// CHECK-LE: @llvm.ppc.vsx.xvmaxsp

  /* vec_min */
  res_vf = vec_min(vf, vf);
// CHECK: @llvm.ppc.vsx.xvminsp
// CHECK-LE: @llvm.ppc.vsx.xvminsp

  res_vd = vec_min(vd, vd);
// CHECK: @llvm.ppc.vsx.xvmindp
// CHECK-LE: @llvm.ppc.vsx.xvmindp

  res_vf = vec_vminfp(vf, vf);
// CHECK: @llvm.ppc.vsx.xvminsp
// CHECK-LE: @llvm.ppc.vsx.xvminsp

  res_d = __builtin_vsx_xsmaxdp(d, d);
// CHECK: @llvm.ppc.vsx.xsmaxdp
// CHECK-LE: @llvm.ppc.vsx.xsmaxdp

  res_d = __builtin_vsx_xsmindp(d, d);
// CHECK: @llvm.ppc.vsx.xsmindp
// CHECK-LE: @llvm.ppc.vsx.xsmindp

  /* vec_perm */
  res_vsll = vec_perm(vsll, vsll, vuc);
// CHECK: @llvm.ppc.altivec.vperm
// CHECK-LE: @llvm.ppc.altivec.vperm

  res_vull = vec_perm(vull, vull, vuc);
// CHECK: @llvm.ppc.altivec.vperm
// CHECK-LE: @llvm.ppc.altivec.vperm

  res_vbll = vec_perm(vbll, vbll, vuc);
// CHECK: [[T1:%.+]] = bitcast <2 x i64> {{.+}} to <4 x i32>
// CHECK: [[T2:%.+]] = bitcast <2 x i64> {{.+}} to <4 x i32>
// CHECK: call <4 x i32> @llvm.ppc.altivec.vperm(<4 x i32> [[T1]], <4 x i32> [[T2]], <16 x i8>
// CHECK-LE: xor <16 x i8>
// CHECK-LE: [[T1:%.+]] = bitcast <2 x i64> {{.+}} to <4 x i32>
// CHECK-LE: [[T2:%.+]] = bitcast <2 x i64> {{.+}} to <4 x i32>
// CHECK-LE: call <4 x i32> @llvm.ppc.altivec.vperm(<4 x i32> [[T1]], <4 x i32> [[T2]], <16 x i8>

  res_vf = vec_round(vf);
// CHECK: call <4 x float> @llvm.round.v4f32(<4 x float>
// CHECK-LE: call <4 x float> @llvm.round.v4f32(<4 x float>

  res_vd = vec_round(vd);
// CHECK: call <2 x double> @llvm.round.v2f64(<2 x double>
// CHECK-LE: call <2 x double> @llvm.round.v2f64(<2 x double>

  res_vd = vec_perm(vd, vd, vuc);
// CHECK: @llvm.ppc.altivec.vperm
// CHECK-LE: @llvm.ppc.altivec.vperm

  res_vd = vec_splat(vd, 1);
// CHECK: [[T1:%.+]] = bitcast <2 x double> {{.+}} to <4 x i32>
// CHECK: [[T2:%.+]] = bitcast <2 x double> {{.+}} to <4 x i32>
// CHECK: call <4 x i32> @llvm.ppc.altivec.vperm(<4 x i32> [[T1]], <4 x i32> [[T2]], <16 x i8>
// CHECK-LE: xor <16 x i8>
// CHECK-LE: [[T1:%.+]] = bitcast <2 x double> {{.+}} to <4 x i32>
// CHECK-LE: [[T2:%.+]] = bitcast <2 x double> {{.+}} to <4 x i32>
// CHECK-LE: call <4 x i32> @llvm.ppc.altivec.vperm(<4 x i32> [[T1]], <4 x i32> [[T2]], <16 x i8>

  res_vbll = vec_splat(vbll, 1);
// CHECK: [[T1:%.+]] = bitcast <2 x i64> {{.+}} to <4 x i32>
// CHECK: [[T2:%.+]] = bitcast <2 x i64> {{.+}} to <4 x i32>
// CHECK: call <4 x i32> @llvm.ppc.altivec.vperm(<4 x i32> [[T1]], <4 x i32> [[T2]], <16 x i8>
// CHECK-LE: xor <16 x i8>
// CHECK-LE: [[T1:%.+]] = bitcast <2 x i64> {{.+}} to <4 x i32>
// CHECK-LE: [[T2:%.+]] = bitcast <2 x i64> {{.+}} to <4 x i32>
// CHECK-LE: call <4 x i32> @llvm.ppc.altivec.vperm(<4 x i32> [[T1]], <4 x i32> [[T2]], <16 x i8>

  res_vsll =  vec_splat(vsll, 1);
// CHECK: [[T1:%.+]] = bitcast <2 x i64> {{.+}} to <4 x i32>
// CHECK: [[T2:%.+]] = bitcast <2 x i64> {{.+}} to <4 x i32>
// CHECK: call <4 x i32> @llvm.ppc.altivec.vperm(<4 x i32> [[T1]], <4 x i32> [[T2]], <16 x i8>
// CHECK-LE: xor <16 x i8>
// CHECK-LE: [[T1:%.+]] = bitcast <2 x i64> {{.+}} to <4 x i32>
// CHECK-LE: [[T2:%.+]] = bitcast <2 x i64> {{.+}} to <4 x i32>
// CHECK-LE: call <4 x i32> @llvm.ppc.altivec.vperm(<4 x i32> [[T1]], <4 x i32> [[T2]], <16 x i8>

  res_vull =  vec_splat(vull, 1);
// CHECK: [[T1:%.+]] = bitcast <2 x i64> {{.+}} to <4 x i32>
// CHECK: [[T2:%.+]] = bitcast <2 x i64> {{.+}} to <4 x i32>
// CHECK: call <4 x i32> @llvm.ppc.altivec.vperm(<4 x i32> [[T1]], <4 x i32> [[T2]], <16 x i8>
// CHECK-LE: xor <16 x i8>
// CHECK-LE: [[T1:%.+]] = bitcast <2 x i64> {{.+}} to <4 x i32>
// CHECK-LE: [[T2:%.+]] = bitcast <2 x i64> {{.+}} to <4 x i32>
// CHECK-LE: call <4 x i32> @llvm.ppc.altivec.vperm(<4 x i32> [[T1]], <4 x i32> [[T2]], <16 x i8>

  res_vsi = vec_pack(vsll, vsll);
// CHECK: @llvm.ppc.altivec.vperm
// CHECK-LE: @llvm.ppc.altivec.vperm

  res_vui = vec_pack(vull, vull);
// CHECK: @llvm.ppc.altivec.vperm
// CHECK-LE: @llvm.ppc.altivec.vperm

  res_vbi = vec_pack(vbll, vbll);
// CHECK: @llvm.ppc.altivec.vperm
// CHECK-LE: @llvm.ppc.altivec.vperm

  res_vsll = vec_vperm(vsll, vsll, vuc);
// CHECK: @llvm.ppc.altivec.vperm
// CHECK-LE: @llvm.ppc.altivec.vperm

  res_vull = vec_vperm(vull, vull, vuc);
// CHECK: @llvm.ppc.altivec.vperm
// CHECK-LE: @llvm.ppc.altivec.vperm

  res_vd = vec_vperm(vd, vd, vuc);
// CHECK: @llvm.ppc.altivec.vperm
// CHECK-LE: @llvm.ppc.altivec.vperm

  /* vec_vsx_ld */

  res_vsi = vec_vsx_ld(0, &vsi);
// CHECK: @llvm.ppc.vsx.lxvw4x
// CHECK-LE: @llvm.ppc.vsx.lxvw4x

  res_vui = vec_vsx_ld(0, &vui);
// CHECK: @llvm.ppc.vsx.lxvw4x
// CHECK-LE: @llvm.ppc.vsx.lxvw4x

  res_vf = vec_vsx_ld (0, &vf);
// CHECK: @llvm.ppc.vsx.lxvw4x
// CHECK-LE: @llvm.ppc.vsx.lxvw4x

  res_vsll = vec_vsx_ld(0, &vsll);
// CHECK: @llvm.ppc.vsx.lxvd2x
// CHECK-LE: @llvm.ppc.vsx.lxvd2x

  res_vull = vec_vsx_ld(0, &vull);
// CHECK: @llvm.ppc.vsx.lxvd2x
// CHECK-LE: @llvm.ppc.vsx.lxvd2x

  res_vd = vec_vsx_ld(0, &vd);
// CHECK: @llvm.ppc.vsx.lxvd2x
// CHECK-LE: @llvm.ppc.vsx.lxvd2x

  res_vull = vec_vsx_ld(0, &vull);
// CHECK: @llvm.ppc.vsx.lxvd2x
// CHECK-LE: @llvm.ppc.vsx.lxvd2x

  res_vd = vec_vsx_ld(0, &vd);
// CHECK: @llvm.ppc.vsx.lxvd2x
// CHECK-LE: @llvm.ppc.vsx.lxvd2x

  res_vss = vec_vsx_ld(0, &vss);
// CHECK: @llvm.ppc.vsx.lxvw4x
// CHECK-LE: @llvm.ppc.vsx.lxvw4x

  res_vss = vec_vsx_ld(0, &ss);
// CHECK: @llvm.ppc.vsx.lxvw4x
// CHECK-LE: @llvm.ppc.vsx.lxvw4x

  res_vus = vec_vsx_ld(0, &vus);
// CHECK: @llvm.ppc.vsx.lxvw4x
// CHECK-LE: @llvm.ppc.vsx.lxvw4x

  res_vus = vec_vsx_ld(0, &us);
// CHECK: @llvm.ppc.vsx.lxvw4x
// CHECK-LE: @llvm.ppc.vsx.lxvw4x

  res_vbc = vec_vsx_ld(0, &vbc);
// CHECK: @llvm.ppc.vsx.lxvw4x
// CHECK-LE: @llvm.ppc.vsx.lxvw4x

  res_vsc = vec_vsx_ld(0, &vsc);
// CHECK: @llvm.ppc.vsx.lxvw4x
// CHECK-LE: @llvm.ppc.vsx.lxvw4x

  res_vuc = vec_vsx_ld(0, &vuc);
// CHECK: @llvm.ppc.vsx.lxvw4x
// CHECK-LE: @llvm.ppc.vsx.lxvw4x

  res_vsc = vec_vsx_ld(0, &sc);
// CHECK: @llvm.ppc.vsx.lxvw4x
// CHECK-LE: @llvm.ppc.vsx.lxvw4x

  res_vuc = vec_vsx_ld(0, &uc);
// CHECK: @llvm.ppc.vsx.lxvw4x
// CHECK-LE: @llvm.ppc.vsx.lxvw4x

  /* vec_vsx_st */

  vec_vsx_st(vsi, 0, &res_vsi);
// CHECK: @llvm.ppc.vsx.stxvw4x
// CHECK-LE: @llvm.ppc.vsx.stxvw4x

  vec_vsx_st(vsi, 0, &res_si);
// CHECK: @llvm.ppc.vsx.stxvw4x
// CHECK-LE: @llvm.ppc.vsx.stxvw4x

  vec_vsx_st(vui, 0, &res_vui);
// CHECK: @llvm.ppc.vsx.stxvw4x
// CHECK-LE: @llvm.ppc.vsx.stxvw4x

  vec_vsx_st(vui, 0, &res_ui);
// CHECK: @llvm.ppc.vsx.stxvw4x
// CHECK-LE: @llvm.ppc.vsx.stxvw4x

  vec_vsx_st(vf, 0, &res_vf);
// CHECK: @llvm.ppc.vsx.stxvw4x
// CHECK-LE: @llvm.ppc.vsx.stxvw4x

  vec_vsx_st(vsll, 0, &res_vsll);
// CHECK: @llvm.ppc.vsx.stxvd2x
// CHECK-LE: @llvm.ppc.vsx.stxvd2x

  vec_vsx_st(vull, 0, &res_vull);
// CHECK: @llvm.ppc.vsx.stxvd2x
// CHECK-LE: @llvm.ppc.vsx.stxvd2x

  vec_vsx_st(vd, 0, &res_vd);
// CHECK: @llvm.ppc.vsx.stxvd2x
// CHECK-LE: @llvm.ppc.vsx.stxvd2x

  vec_vsx_st(vss, 0, &res_vss);
// CHECK: @llvm.ppc.vsx.stxvw4x
// CHECK-LE: @llvm.ppc.vsx.stxvw4x

  vec_vsx_st(vss, 0, &res_ss);
// CHECK: @llvm.ppc.vsx.stxvw4x
// CHECK-LE: @llvm.ppc.vsx.stxvw4x

  vec_vsx_st(vus, 0, &res_vus);
// CHECK: @llvm.ppc.vsx.stxvw4x
// CHECK-LE: @llvm.ppc.vsx.stxvw4x

  vec_vsx_st(vus, 0, &res_us);
// CHECK: @llvm.ppc.vsx.stxvw4x
// CHECK-LE: @llvm.ppc.vsx.stxvw4x

  vec_vsx_st(vsc, 0, &res_vsc);
// CHECK: @llvm.ppc.vsx.stxvw4x
// CHECK-LE: @llvm.ppc.vsx.stxvw4x

  vec_vsx_st(vsc, 0, &res_sc);
// CHECK: @llvm.ppc.vsx.stxvw4x
// CHECK-LE: @llvm.ppc.vsx.stxvw4x

  vec_vsx_st(vuc, 0, &res_vuc);
// CHECK: @llvm.ppc.vsx.stxvw4x
// CHECK-LE: @llvm.ppc.vsx.stxvw4x

  vec_vsx_st(vuc, 0, &res_uc);
// CHECK: @llvm.ppc.vsx.stxvw4x
// CHECK-LE: @llvm.ppc.vsx.stxvw4x

  vec_vsx_st(vbc, 0, &res_vbc);
// CHECK: @llvm.ppc.vsx.stxvw4x
// CHECK-LE: @llvm.ppc.vsx.stxvw4x

  vec_vsx_st(vbc, 0, &res_sc);
// CHECK: @llvm.ppc.vsx.stxvw4x
// CHECK-LE: @llvm.ppc.vsx.stxvw4x

  vec_vsx_st(vbc, 0, &res_uc);
// CHECK: @llvm.ppc.vsx.stxvw4x
// CHECK-LE: @llvm.ppc.vsx.stxvw4x

  /* vec_and */
  res_vsll = vec_and(vsll, vsll);
// CHECK: and <2 x i64>
// CHECK-LE: and <2 x i64>

  res_vsll = vec_and(vbll, vsll);
// CHECK: and <2 x i64>
// CHECK-LE: and <2 x i64>

  res_vsll = vec_and(vsll, vbll);
// CHECK: and <2 x i64>
// CHECK-LE: and <2 x i64>

  res_vull = vec_and(vull, vull);
// CHECK: and <2 x i64>
// CHECK-LE: and <2 x i64>

  res_vull = vec_and(vbll, vull);
// CHECK: and <2 x i64>
// CHECK-LE: and <2 x i64>

  res_vull = vec_and(vull, vbll);
// CHECK: and <2 x i64>
// CHECK-LE: and <2 x i64>

  res_vbll = vec_and(vbll, vbll);
// CHECK: and <2 x i64>
// CHECK-LE: and <2 x i64>

  /* vec_vand */
  res_vsll = vec_vand(vsll, vsll);
// CHECK: and <2 x i64>
// CHECK-LE: and <2 x i64>

  res_vsll = vec_vand(vbll, vsll);
// CHECK: and <2 x i64>
// CHECK-LE: and <2 x i64>

  res_vsll = vec_vand(vsll, vbll);
// CHECK: and <2 x i64>
// CHECK-LE: and <2 x i64>

  res_vull = vec_vand(vull, vull);
// CHECK: and <2 x i64>
// CHECK-LE: and <2 x i64>

  res_vull = vec_vand(vbll, vull);
// CHECK: and <2 x i64>
// CHECK-LE: and <2 x i64>

  res_vull = vec_vand(vull, vbll);
// CHECK: and <2 x i64>
// CHECK-LE: and <2 x i64>

  res_vbll = vec_vand(vbll, vbll);
// CHECK: and <2 x i64>
// CHECK-LE: and <2 x i64>

  /* vec_andc */
  res_vsll = vec_andc(vsll, vsll);
// CHECK: xor <2 x i64>
// CHECK: and <2 x i64>
// CHECK-LE: xor <2 x i64>
// CHECK-LE: and <2 x i64>

  res_vsll = vec_andc(vbll, vsll);
// CHECK: xor <2 x i64>
// CHECK: and <2 x i64>
// CHECK-LE: xor <2 x i64>
// CHECK-LE: and <2 x i64>

  res_vsll = vec_andc(vsll, vbll);
// CHECK: xor <2 x i64>
// CHECK: and <2 x i64>
// CHECK-LE: xor <2 x i64>
// CHECK-LE: and <2 x i64>

  res_vull = vec_andc(vull, vull);
// CHECK: xor <2 x i64>
// CHECK: and <2 x i64>
// CHECK-LE: xor <2 x i64>
// CHECK-LE: and <2 x i64>

  res_vull = vec_andc(vbll, vull);
// CHECK: xor <2 x i64>
// CHECK: and <2 x i64>
// CHECK-LE: xor <2 x i64>
// CHECK-LE: and <2 x i64>

  res_vull = vec_andc(vull, vbll);
// CHECK: xor <2 x i64>
// CHECK: and <2 x i64>
// CHECK-LE: xor <2 x i64>
// CHECK-LE: and <2 x i64>

  res_vbll = vec_andc(vbll, vbll);
// CHECK: xor <2 x i64>
// CHECK: and <2 x i64>
// CHECK-LE: xor <2 x i64>
// CHECK-LE: and <2 x i64>

  res_vf = vec_floor(vf);
// CHECK: call <4 x float> @llvm.floor.v4f32(<4 x float> %{{[0-9]+}})
// CHECK-LE: call <4 x float> @llvm.floor.v4f32(<4 x float> %{{[0-9]+}})

  res_vd = vec_floor(vd);
// CHECK: call <2 x double> @llvm.floor.v2f64(<2 x double> %{{[0-9]+}})
// CHECK-LE: call <2 x double> @llvm.floor.v2f64(<2 x double> %{{[0-9]+}})

  res_vf = vec_madd(vf, vf, vf);
// CHECK: call <4 x float> @llvm.fma.v4f32(<4 x float> %{{[0-9]+}}, <4 x float> %{{[0-9]+}}, <4 x float> %{{[0-9]+}})
// CHECK-LE: call <4 x float> @llvm.fma.v4f32(<4 x float> %{{[0-9]+}}, <4 x float> %{{[0-9]+}}, <4 x float> %{{[0-9]+}})

  res_vd = vec_madd(vd, vd, vd);
// CHECK: call <2 x double> @llvm.fma.v2f64(<2 x double> %{{[0-9]+}}, <2 x double> %{{[0-9]+}}, <2 x double> %{{[0-9]+}})
// CHECK-LE: call <2 x double> @llvm.fma.v2f64(<2 x double> %{{[0-9]+}}, <2 x double> %{{[0-9]+}}, <2 x double> %{{[0-9]+}})

  /* vec_mergeh */
  res_vsll = vec_mergeh(vsll, vsll);
// CHECK: @llvm.ppc.altivec.vperm
// CHECK-LE: @llvm.ppc.altivec.vperm

  res_vsll = vec_mergeh(vsll, vbll);
// CHECK: @llvm.ppc.altivec.vperm
// CHECK-LE: @llvm.ppc.altivec.vperm

  res_vsll = vec_mergeh(vbll, vsll);
// CHECK: @llvm.ppc.altivec.vperm
// CHECK-LE: @llvm.ppc.altivec.vperm

  res_vull = vec_mergeh(vull, vull);
// CHECK: @llvm.ppc.altivec.vperm
// CHECK-LE: @llvm.ppc.altivec.vperm

  res_vull = vec_mergeh(vull, vbll);
// CHECK: @llvm.ppc.altivec.vperm
// CHECK-LE: @llvm.ppc.altivec.vperm

  res_vull = vec_mergeh(vbll, vull);
// CHECK: @llvm.ppc.altivec.vperm
// CHECK-LE: @llvm.ppc.altivec.vperm

  /* vec_mergel */
  res_vsll = vec_mergel(vsll, vsll);
// CHECK: @llvm.ppc.altivec.vperm
// CHECK-LE: @llvm.ppc.altivec.vperm

  res_vsll = vec_mergel(vsll, vbll);
// CHECK: @llvm.ppc.altivec.vperm
// CHECK-LE: @llvm.ppc.altivec.vperm

  res_vsll = vec_mergel(vbll, vsll);
// CHECK: @llvm.ppc.altivec.vperm
// CHECK-LE: @llvm.ppc.altivec.vperm

  res_vull = vec_mergel(vull, vull);
// CHECK: @llvm.ppc.altivec.vperm
// CHECK-LE: @llvm.ppc.altivec.vperm

  res_vull = vec_mergel(vull, vbll);
// CHECK: @llvm.ppc.altivec.vperm
// CHECK-LE: @llvm.ppc.altivec.vperm

  res_vull = vec_mergel(vbll, vull);
// CHECK: @llvm.ppc.altivec.vperm
// CHECK-LE: @llvm.ppc.altivec.vperm

  /* vec_msub */
  res_vf = vec_msub(vf, vf, vf);
// CHECK: fsub <4 x float> <float -0.000000e+00, float -0.000000e+00, float -0.000000e+00, float -0.000000e+00>, %{{[0-9]+}}
// CHECK-NEXT: call <4 x float> @llvm.fma.v4f32(<4 x float> %{{[0-9]+}}, <4 x float> %{{[0-9]+}}, <4 x float>
// CHECK-LE: fsub <4 x float> <float -0.000000e+00, float -0.000000e+00, float -0.000000e+00, float -0.000000e+00>, %{{[0-9]+}}
// CHECK-LE-NEXT: call <4 x float> @llvm.fma.v4f32(<4 x float> %{{[0-9]+}}, <4 x float> %{{[0-9]+}}, <4 x float>

  res_vd = vec_msub(vd, vd, vd);
// CHECK: fsub <2 x double> <double -0.000000e+00, double -0.000000e+00>, %{{[0-9]+}}
// CHECK-NEXT: call <2 x double> @llvm.fma.v2f64(<2 x double> %{{[0-9]+}}, <2 x double> %{{[0-9]+}}, <2 x double>
// CHECK-LE: fsub <2 x double> <double -0.000000e+00, double -0.000000e+00>, %{{[0-9]+}}
// CHECK-LE-NEXT: call <2 x double> @llvm.fma.v2f64(<2 x double> %{{[0-9]+}}, <2 x double> %{{[0-9]+}}, <2 x double>

  res_vsll = vec_mul(vsll, vsll);
// CHECK: mul <2 x i64>
// CHECK-LE: mul <2 x i64>

  res_vull = vec_mul(vull, vull);
// CHECK: mul <2 x i64>
// CHECK-LE: mul <2 x i64>

  res_vf = vec_mul(vf, vf);
// CHECK: fmul <4 x float> %{{[0-9]+}}, %{{[0-9]+}}
// CHECK-LE: fmul <4 x float> %{{[0-9]+}}, %{{[0-9]+}}

  res_vd = vec_mul(vd, vd);
// CHECK: fmul <2 x double> %{{[0-9]+}}, %{{[0-9]+}}
// CHECK-LE: fmul <2 x double> %{{[0-9]+}}, %{{[0-9]+}}

  res_vf = vec_nearbyint(vf);
// CHECK: call <4 x float> @llvm.round.v4f32(<4 x float> %{{[0-9]+}})
// CHECK-LE: call <4 x float> @llvm.round.v4f32(<4 x float> %{{[0-9]+}})

  res_vd = vec_nearbyint(vd);
// CHECK: call <2 x double> @llvm.round.v2f64(<2 x double> %{{[0-9]+}})
// CHECK-LE: call <2 x double> @llvm.round.v2f64(<2 x double> %{{[0-9]+}})

  res_vf = vec_nmadd(vf, vf, vf);
// CHECK: [[FM:[0-9]+]] = call <4 x float> @llvm.fma.v4f32(<4 x float> %{{[0-9]+}}, <4 x float> %{{[0-9]+}}, <4 x float> %{{[0-9]+}})
// CHECK-NEXT: fsub <4 x float> <float -0.000000e+00, float -0.000000e+00, float -0.000000e+00, float -0.000000e+00>, %[[FM]]
// CHECK-LE: [[FM:[0-9]+]] = call <4 x float> @llvm.fma.v4f32(<4 x float> %{{[0-9]+}}, <4 x float> %{{[0-9]+}}, <4 x float> %{{[0-9]+}})
// CHECK-LE-NEXT: fsub <4 x float> <float -0.000000e+00, float -0.000000e+00, float -0.000000e+00, float -0.000000e+00>, %[[FM]]

  res_vd = vec_nmadd(vd, vd, vd);
// CHECK: [[FM:[0-9]+]] = call <2 x double> @llvm.fma.v2f64(<2 x double> %{{[0-9]+}}, <2 x double> %{{[0-9]+}}, <2 x double> %{{[0-9]+}})
// CHECK-NEXT: fsub <2 x double> <double -0.000000e+00, double -0.000000e+00>, %[[FM]]
// CHECK-LE: [[FM:[0-9]+]] = call <2 x double> @llvm.fma.v2f64(<2 x double> %{{[0-9]+}}, <2 x double> %{{[0-9]+}}, <2 x double> %{{[0-9]+}})
// CHECK-LE-NEXT: fsub <2 x double> <double -0.000000e+00, double -0.000000e+00>, %[[FM]]

  res_vf = vec_nmsub(vf, vf, vf);
// CHECK: fsub <4 x float> <float -0.000000e+00, float -0.000000e+00, float -0.000000e+00, float -0.000000e+00>, %{{[0-9]+}}
// CHECK-NEXT: call <4 x float> @llvm.fma.v4f32(<4 x float> %{{[0-9]+}}, <4 x float> %{{[0-9]+}}, <4 x float>
// CHECK: fsub <4 x float> <float -0.000000e+00, float -0.000000e+00, float -0.000000e+00, float -0.000000e+00>, %{{[0-9]+}}
// CHECK-LE: fsub <4 x float> <float -0.000000e+00, float -0.000000e+00, float -0.000000e+00, float -0.000000e+00>, %{{[0-9]+}}
// CHECK-LE-NEXT: call <4 x float> @llvm.fma.v4f32(<4 x float> %{{[0-9]+}}, <4 x float> %{{[0-9]+}}, <4 x float>
// CHECK-LE: fsub <4 x float> <float -0.000000e+00, float -0.000000e+00, float -0.000000e+00, float -0.000000e+00>, %{{[0-9]+}}

  res_vd = vec_nmsub(vd, vd, vd);
// CHECK: fsub <2 x double> <double -0.000000e+00, double -0.000000e+00>, %{{[0-9]+}}
// CHECK-NEXT: [[FM:[0-9]+]] = call <2 x double> @llvm.fma.v2f64(<2 x double> %{{[0-9]+}}, <2 x double> %{{[0-9]+}}, <2 x double>
// CHECK-NEXT: fsub <2 x double> <double -0.000000e+00, double -0.000000e+00>, %[[FM]]
// CHECK-LE: fsub <2 x double> <double -0.000000e+00, double -0.000000e+00>, %{{[0-9]+}}
// CHECK-LE-NEXT: [[FM:[0-9]+]] = call <2 x double> @llvm.fma.v2f64(<2 x double> %{{[0-9]+}}, <2 x double> %{{[0-9]+}}, <2 x double>
// CHECK-LE-NEXT: fsub <2 x double> <double -0.000000e+00, double -0.000000e+00>, %[[FM]]

  /* vec_nor */
  res_vsll = vec_nor(vsll, vsll);
// CHECK: or <2 x i64>
// CHECK: xor <2 x i64>
// CHECK-LE: or <2 x i64>
// CHECK-LE: xor <2 x i64>

  res_vull = vec_nor(vull, vull);
// CHECK: or <2 x i64>
// CHECK: xor <2 x i64>
// CHECK-LE: or <2 x i64>
// CHECK-LE: xor <2 x i64>

  res_vull = vec_nor(vbll, vbll);
// CHECK: or <2 x i64>
// CHECK: xor <2 x i64>
// CHECK-LE: or <2 x i64>
// CHECK-LE: xor <2 x i64>

  res_vd = vec_nor(vd, vd);
// CHECK: bitcast <2 x double> %{{[0-9]+}} to <2 x i64>
// CHECK: [[OR:%.+]] = or <2 x i64> %{{[0-9]+}}, %{{[0-9]+}}
// CHECK-NEXT: xor <2 x i64> [[OR]], <i64 -1, i64 -1>
// CHECK-LE: bitcast <2 x double> %{{[0-9]+}} to <2 x i64>
// CHECK-LE: [[OR:%.+]] = or <2 x i64> %{{[0-9]+}}, %{{[0-9]+}}
// CHECK-LE-NEXT: xor <2 x i64> [[OR]], <i64 -1, i64 -1>

  /* vec_or */
  res_vsll = vec_or(vsll, vsll);
// CHECK: or <2 x i64>
// CHECK-LE: or <2 x i64>

  res_vsll = vec_or(vbll, vsll);
// CHECK: or <2 x i64>
// CHECK-LE: or <2 x i64>

  res_vsll = vec_or(vsll, vbll);
// CHECK: or <2 x i64>
// CHECK-LE: or <2 x i64>

  res_vull = vec_or(vull, vull);
// CHECK: or <2 x i64>
// CHECK-LE: or <2 x i64>

  res_vull = vec_or(vbll, vull);
// CHECK: or <2 x i64>
// CHECK-LE: or <2 x i64>

  res_vull = vec_or(vull, vbll);
// CHECK: or <2 x i64>
// CHECK-LE: or <2 x i64>

  res_vbll = vec_or(vbll, vbll);
// CHECK: or <2 x i64>
// CHECK-LE: or <2 x i64>

  res_vd = vec_or(vd, vd);
// CHECK: bitcast <2 x double> %{{[0-9]+}} to <2 x i64>
// CHECK: or <2 x i64> %{{[0-9]+}}, %{{[0-9]+}}
// CHECK-LE: bitcast <2 x double> %{{[0-9]+}} to <2 x i64>
// CHECK-LE: or <2 x i64> %{{[0-9]+}}, %{{[0-9]+}}

  res_vd = vec_or(vbll, vd);
// CHECK: [[T1:%.+]] = bitcast <2 x double> %{{[0-9]+}} to <2 x i64>
// CHECK: [[T2:%.+]] = or <2 x i64> %{{[0-9]+}}, [[T1]]
// CHECK: bitcast <2 x i64> [[T2]] to <2 x double>
// CHECK-LE: [[T1:%.+]] = bitcast <2 x double> %{{[0-9]+}} to <2 x i64>
// CHECK-LE: [[T2:%.+]] = or <2 x i64> %{{[0-9]+}}, [[T1]]
// CHECK-LE: bitcast <2 x i64> [[T2]] to <2 x double>

  res_vd = vec_or(vd, vbll);
// CHECK: [[T1:%.+]] = bitcast <2 x double> %{{[0-9]+}} to <2 x i64>
// CHECK: [[T2:%.+]] = or <2 x i64> [[T1]], %{{[0-9]+}}
// CHECK: bitcast <2 x i64> [[T2]] to <2 x double>
// CHECK-LE: [[T1:%.+]] = bitcast <2 x double> %{{[0-9]+}} to <2 x i64>
// CHECK-LE: [[T2:%.+]] = or <2 x i64> [[T1]], %{{[0-9]+}}
// CHECK-LE: bitcast <2 x i64> [[T2]] to <2 x double>

  res_vf = vec_re(vf);
// CHECK: call <4 x float> @llvm.ppc.vsx.xvresp(<4 x float>
// CHECK-LE: call <4 x float> @llvm.ppc.vsx.xvresp(<4 x float>

  res_vd = vec_re(vd);
// CHECK: call <2 x double> @llvm.ppc.vsx.xvredp(<2 x double>
// CHECK-LE: call <2 x double> @llvm.ppc.vsx.xvredp(<2 x double>

  res_vf = vec_rint(vf);
// CHECK: call <4 x float> @llvm.nearbyint.v4f32(<4 x float> %{{[0-9]+}})
// CHECK-LE: call <4 x float> @llvm.nearbyint.v4f32(<4 x float> %{{[0-9]+}})

  res_vd = vec_rint(vd);
// CHECK: call <2 x double> @llvm.nearbyint.v2f64(<2 x double> %{{[0-9]+}})
// CHECK-LE: call <2 x double> @llvm.nearbyint.v2f64(<2 x double> %{{[0-9]+}})

  res_vf = vec_rsqrte(vf);
// CHECK: call <4 x float> @llvm.ppc.vsx.xvrsqrtesp(<4 x float> %{{[0-9]+}})
// CHECK-LE: call <4 x float> @llvm.ppc.vsx.xvrsqrtesp(<4 x float> %{{[0-9]+}})

  res_vd = vec_rsqrte(vd);
// CHECK: call <2 x double> @llvm.ppc.vsx.xvrsqrtedp(<2 x double> %{{[0-9]+}})
// CHECK-LE: call <2 x double> @llvm.ppc.vsx.xvrsqrtedp(<2 x double> %{{[0-9]+}})

  dummy();
// CHECK: call void @dummy()
// CHECK-LE: call void @dummy()

  res_vf = vec_sel(vd, vd, vbll);
// CHECK: xor <2 x i64> %{{[0-9]+}}, <i64 -1, i64 -1>
// CHECK: and <2 x i64> %{{[0-9]+}},
// CHECK: and <2 x i64> %{{[0-9]+}}, %{{[0-9]+}}
// CHECK: or <2 x i64>
// CHECK: bitcast <2 x i64> %{{[0-9]+}} to <2 x double>
// CHECK-LE: xor <2 x i64> %{{[0-9]+}}, <i64 -1, i64 -1>
// CHECK-LE: and <2 x i64> %{{[0-9]+}},
// CHECK-LE: and <2 x i64> %{{[0-9]+}}, %{{[0-9]+}}
// CHECK-LE: or <2 x i64>
// CHECK-LE: bitcast <2 x i64> %{{[0-9]+}} to <2 x double>

  dummy();
// CHECK: call void @dummy()
// CHECK-LE: call void @dummy()

  res_vd = vec_sel(vd, vd, vull);
// CHECK: xor <2 x i64> %{{[0-9]+}}, <i64 -1, i64 -1>
// CHECK: and <2 x i64> %{{[0-9]+}},
// CHECK: and <2 x i64> %{{[0-9]+}}, %{{[0-9]+}}
// CHECK: or <2 x i64>
// CHECK: bitcast <2 x i64> %{{[0-9]+}} to <2 x double>
// CHECK-LE: xor <2 x i64> %{{[0-9]+}}, <i64 -1, i64 -1>
// CHECK-LE: and <2 x i64> %{{[0-9]+}},
// CHECK-LE: and <2 x i64> %{{[0-9]+}}, %{{[0-9]+}}
// CHECK-LE: or <2 x i64>
// CHECK-LE: bitcast <2 x i64> %{{[0-9]+}} to <2 x double>

  res_vf = vec_sqrt(vf);
// CHECK: call <4 x float> @llvm.sqrt.v4f32(<4 x float> %{{[0-9]+}})
// CHECK-LE: call <4 x float> @llvm.sqrt.v4f32(<4 x float> %{{[0-9]+}})

  res_vd = vec_sqrt(vd);
// CHECK: call <2 x double> @llvm.sqrt.v2f64(<2 x double> %{{[0-9]+}})
// CHECK-LE: call <2 x double> @llvm.sqrt.v2f64(<2 x double> %{{[0-9]+}})

  res_vd = vec_sub(vd, vd);
// CHECK: fsub <2 x double> %{{[0-9]+}}, %{{[0-9]+}}
// CHECK-LE: fsub <2 x double> %{{[0-9]+}}, %{{[0-9]+}}

  res_vf = vec_trunc(vf);
// CHECK: call <4 x float> @llvm.trunc.v4f32(<4 x float> %{{[0-9]+}})
// CHECK-LE: call <4 x float> @llvm.trunc.v4f32(<4 x float> %{{[0-9]+}})

  res_vd = vec_trunc(vd);
// CHECK: call <2 x double> @llvm.trunc.v2f64(<2 x double> %{{[0-9]+}})
// CHECK-LE: call <2 x double> @llvm.trunc.v2f64(<2 x double> %{{[0-9]+}})

  /* vec_vor */
  res_vsll = vec_vor(vsll, vsll);
// CHECK: or <2 x i64>
// CHECK-LE: or <2 x i64>

  res_vsll = vec_vor(vbll, vsll);
// CHECK: or <2 x i64>
// CHECK-LE: or <2 x i64>

  res_vsll = vec_vor(vsll, vbll);
// CHECK: or <2 x i64>
// CHECK-LE: or <2 x i64>

  res_vull = vec_vor(vull, vull);
// CHECK: or <2 x i64>
// CHECK-LE: or <2 x i64>

  res_vull = vec_vor(vbll, vull);
// CHECK: or <2 x i64>
// CHECK-LE: or <2 x i64>

  res_vull = vec_vor(vull, vbll);
// CHECK: or <2 x i64>
// CHECK-LE: or <2 x i64>

  res_vbll = vec_vor(vbll, vbll);
// CHECK: or <2 x i64>
// CHECK-LE: or <2 x i64>

  /* vec_xor */
  res_vsll = vec_xor(vsll, vsll);
// CHECK: xor <2 x i64>
// CHECK-LE: xor <2 x i64>

  res_vsll = vec_xor(vbll, vsll);
// CHECK: xor <2 x i64>
// CHECK-LE: xor <2 x i64>

  res_vsll = vec_xor(vsll, vbll);
// CHECK: xor <2 x i64>
// CHECK-LE: xor <2 x i64>

  res_vull = vec_xor(vull, vull);
// CHECK: xor <2 x i64>
// CHECK-LE: xor <2 x i64>

  res_vull = vec_xor(vbll, vull);
// CHECK: xor <2 x i64>
// CHECK-LE: xor <2 x i64>

  res_vull = vec_xor(vull, vbll);
// CHECK: xor <2 x i64>
// CHECK-LE: xor <2 x i64>

  res_vbll = vec_xor(vbll, vbll);
// CHECK: xor <2 x i64>
// CHECK-LE: xor <2 x i64>

  dummy();
// CHECK: call void @dummy()
// CHECK-LE: call void @dummy()

  res_vd = vec_xor(vd, vd);
// CHECK: [[X1:%.+]] = xor <2 x i64> %{{[0-9]+}}, %{{[0-9]+}}
// CHECK: bitcast <2 x i64> [[X1]] to <2 x double>
// CHECK-LE: [[X1:%.+]] = xor <2 x i64> %{{[0-9]+}}, %{{[0-9]+}}
// CHECK-LE: bitcast <2 x i64> [[X1]] to <2 x double>

  dummy();
// CHECK: call void @dummy()
// CHECK-LE: call void @dummy()

  res_vd = vec_xor(vd, vbll);
// CHECK: [[X1:%.+]] = xor <2 x i64> %{{[0-9]+}}, %{{[0-9]+}}
// CHECK: bitcast <2 x i64> [[X1]] to <2 x double>
// CHECK-LE: [[X1:%.+]] = xor <2 x i64> %{{[0-9]+}}, %{{[0-9]+}}
// CHECK-LE: bitcast <2 x i64> [[X1]] to <2 x double>

  dummy();
// CHECK: call void @dummy()
// CHECK-LE: call void @dummy()

  res_vd = vec_xor(vbll, vd);
// CHECK: [[X1:%.+]] = xor <2 x i64> %{{[0-9]+}}, %{{[0-9]+}}
// CHECK: bitcast <2 x i64> [[X1]] to <2 x double>
// CHECK-LE: [[X1:%.+]] = xor <2 x i64> %{{[0-9]+}}, %{{[0-9]+}}
// CHECK-LE: bitcast <2 x i64> [[X1]] to <2 x double>

  /* vec_vxor */
  res_vsll = vec_vxor(vsll, vsll);
// CHECK: xor <2 x i64>
// CHECK-LE: xor <2 x i64>

  res_vsll = vec_vxor(vbll, vsll);
// CHECK: xor <2 x i64>
// CHECK-LE: xor <2 x i64>

  res_vsll = vec_vxor(vsll, vbll);
// CHECK: xor <2 x i64>
// CHECK-LE: xor <2 x i64>

  res_vull = vec_vxor(vull, vull);
// CHECK: xor <2 x i64>
// CHECK-LE: xor <2 x i64>

  res_vull = vec_vxor(vbll, vull);
// CHECK: xor <2 x i64>
// CHECK-LE: xor <2 x i64>

  res_vull = vec_vxor(vull, vbll);
// CHECK: xor <2 x i64>
// CHECK-LE: xor <2 x i64>

  res_vbll = vec_vxor(vbll, vbll);
// CHECK: xor <2 x i64>
// CHECK-LE: xor <2 x i64>

  res_vsll = vec_cts(vd, 0);
// CHECK: fmul <2 x double>
// CHECK: fptosi <2 x double> %{{.*}} to <2 x i64>
// CHECK-LE: fmul <2 x double>
// CHECK-LE: fptosi <2 x double> %{{.*}} to <2 x i64>

  res_vsll = vec_cts(vd, 31);
// CHECK: fmul <2 x double>
// CHECK: fptosi <2 x double> %{{.*}} to <2 x i64>
// CHECK-LE: fmul <2 x double>
// CHECK-LE: fptosi <2 x double> %{{.*}} to <2 x i64>

  res_vsll = vec_ctu(vd, 0);
// CHECK: fmul <2 x double>
// CHECK: fptoui <2 x double> %{{.*}} to <2 x i64>
// CHECK-LE: fmul <2 x double>
// CHECK-LE: fptoui <2 x double> %{{.*}} to <2 x i64>

  res_vsll = vec_ctu(vd, 31);
// CHECK: fmul <2 x double>
// CHECK: fptoui <2 x double> %{{.*}} to <2 x i64>
// CHECK-LE: fmul <2 x double>
// CHECK-LE: fptoui <2 x double> %{{.*}} to <2 x i64>

  res_vd = vec_ctf(vsll, 0);
// CHECK: sitofp <2 x i64> %{{.*}} to <2 x double>
// CHECK: fmul <2 x double>
// CHECK-LE: sitofp <2 x i64> %{{.*}} to <2 x double>
// CHECK-LE: fmul <2 x double>

  res_vd = vec_ctf(vsll, 31);
// CHECK: sitofp <2 x i64> %{{.*}} to <2 x double>
// CHECK: fmul <2 x double>
// CHECK-LE: sitofp <2 x i64> %{{.*}} to <2 x double>
// CHECK-LE: fmul <2 x double>

  res_vd = vec_ctf(vull, 0);
// CHECK: uitofp <2 x i64> %{{.*}} to <2 x double>
// CHECK: fmul <2 x double>
// CHECK-LE: uitofp <2 x i64> %{{.*}} to <2 x double>
// CHECK-LE: fmul <2 x double>

  res_vd = vec_ctf(vull, 31);
// CHECK: uitofp <2 x i64> %{{.*}} to <2 x double>
// CHECK: fmul <2 x double>
// CHECK-LE: uitofp <2 x i64> %{{.*}} to <2 x double>
// CHECK-LE: fmul <2 x double>
}
예제 #29
0
/* Function:  p7_ViterbiFilter()
 * Synopsis:  Calculates Viterbi score, vewy vewy fast, in limited precision.
 * Incept:    SRE, Tue Nov 27 09:15:24 2007 [Janelia]
 *
 * Purpose:   Calculates an approximation of the Viterbi score for sequence
 *            <dsq> of length <L> residues, using optimized profile <om>,
 *            and a preallocated one-row DP matrix <ox>. Return the 
 *            estimated Viterbi score (in nats) in <ret_sc>.
 *            
 *            Score may overflow (and will, on high-scoring
 *            sequences), but will not underflow. 
 *            
 *            The model must be in a local alignment mode; other modes
 *            cannot provide the necessary guarantee of no underflow.
 *            
 *            This is a striped SIMD Viterbi implementation using Intel
 *            VMX integer intrinsics \citep{Farrar07}, in reduced
 *            precision (signed words, 16 bits).
 *
 * Args:      dsq     - digital target sequence, 1..L
 *            L       - length of dsq in residues          
 *            om      - optimized profile
 *            ox      - DP matrix
 *            ret_sc  - RETURN: Viterbi score (in nats)          
 *
 * Returns:   <eslOK> on success;
 *            <eslERANGE> if the score overflows; in this case
 *            <*ret_sc> is <eslINFINITY>, and the sequence can 
 *            be treated as a high-scoring hit.
 *
 * Throws:    <eslEINVAL> if <ox> allocation is too small, or if
 *            profile isn't in a local alignment mode. (Must be in local
 *            alignment mode because that's what helps us guarantee 
 *            limited dynamic range.)
 *
 * Xref:      [Farrar07] for ideas behind striped SIMD DP.
 *            J2/46-47 for layout of HMMER's striped SIMD DP.
 *            J2/50 for single row DP.
 *            J2/60 for reduced precision (epu8)
 *            J2/65 for initial benchmarking
 *            J2/66 for precision maximization
 *            J4/138-140 for reimplementation in 16-bit precision
 */
int
p7_ViterbiFilter(const ESL_DSQ *dsq, int L, const P7_OPROFILE *om, P7_OMX *ox, float *ret_sc)
{
  vector signed short mpv, dpv, ipv; /* previous row values                                       */
  vector signed short sv;	     /* temp storage of 1 curr row value in progress              */
  vector signed short dcv;	     /* delayed storage of D(i,q+1)                               */
  vector signed short xEv;	     /* E state: keeps max for Mk->E as we go                     */
  vector signed short xBv;	     /* B state: splatted vector of B[i-1] for B->Mk calculations */
  vector signed short Dmaxv;         /* keeps track of maximum D cell on row                      */
  int16_t  xE, xB, xC, xJ, xN;	     /* special states' scores                                    */
  int16_t  Dmax;		     /* maximum D cell score on row                               */
  int i;			     /* counter over sequence positions 1..L                      */
  int q;			     /* counter over vectors 0..nq-1                              */
  int Q;                             /* segment length: # of vectors                              */
  vector signed short *dp;           /* using {MDI}MX(q) macro requires initialization of <dp>    */
  vector signed short *rsc;	     /* will point at om->ru[x] for residue x[i]                  */
  vector signed short *tsc;	     /* will point into (and step thru) om->tu                    */

  vector signed short negInfv;

  Q = p7O_NQW(om->M);
  dp = ox->dpw[0];

  /* Check that the DP matrix is ok for us. */
  if (Q > ox->allocQ8)                                 ESL_EXCEPTION(eslEINVAL, "DP matrix allocated too small");
  if (om->mode != p7_LOCAL && om->mode != p7_UNILOCAL) ESL_EXCEPTION(eslEINVAL, "Fast filter only works for local alignment");
  ox->M   = om->M;

  negInfv = esl_vmx_set_s16((signed short)-32768);
  
  /* Initialization. In unsigned arithmetic, -infinity is -32768
   */
  for (q = 0; q < Q; q++)
    MMXo(q) = IMXo(q) = DMXo(q) = negInfv;
  xN   = om->base_w;
  xB   = xN + om->xw[p7O_N][p7O_MOVE];
  xJ   = -32768;
  xC   = -32768;
  xE   = -32768;

#if p7_DEBUGGING
  if (ox->debugging) p7_omx_DumpVFRow(ox, 0, xE, 0, xJ, xB, xC); /* first 0 is <rowi>: do header. second 0 is xN: always 0 here. */
#endif

  for (i = 1; i <= L; i++)
    {
      rsc   = om->rwv[dsq[i]];
      tsc   = om->twv;
      dcv   = negInfv;               /* "-infinity" */
      xEv   = negInfv;
      Dmaxv = negInfv;
      xBv   = esl_vmx_set_s16(xB);

      /* Right shifts by 1 value (2 bytes). 4,8,12,x becomes x,4,8,12. 
       * Because ia32 is littlendian, this means a left bit shift.
       * Zeros shift on automatically; replace it with -32768.
       */
      mpv = MMXo(Q-1);  mpv = vec_sld(negInfv, mpv, 14);
      dpv = DMXo(Q-1);  dpv = vec_sld(negInfv, dpv, 14);
      ipv = IMXo(Q-1);  ipv = vec_sld(negInfv, ipv, 14);

      for (q = 0; q < Q; q++)
	{
	  /* Calculate new MMXo(i,q); don't store it yet, hold it in sv. */
	  sv   =              vec_adds(xBv, *tsc);  tsc++;
	  sv   = vec_max (sv, vec_adds(mpv, *tsc)); tsc++;
	  sv   = vec_max (sv, vec_adds(ipv, *tsc)); tsc++;
	  sv   = vec_max (sv, vec_adds(dpv, *tsc)); tsc++;
	  sv   = vec_adds(sv, *rsc);                rsc++;
	  xEv  = vec_max(xEv, sv);
	  
	  /* Load {MDI}(i-1,q) into mpv, dpv, ipv;
	   * {MDI}MX(q) is then the current, not the prev row
	   */
	  mpv = MMXo(q);
	  dpv = DMXo(q);
	  ipv = IMXo(q);

	  /* Do the delayed stores of {MD}(i,q) now that memory is usable */
	  MMXo(q) = sv;
	  DMXo(q) = dcv;

	  /* Calculate the next D(i,q+1) partially: M->D only;
           * delay storage, holding it in dcv
	   */
	  dcv   = vec_adds(sv, *tsc);  tsc++;
	  Dmaxv = vec_max(dcv, Dmaxv);

	  /* Calculate and store I(i,q) */
	  sv     =             vec_adds(mpv, *tsc);  tsc++;
	  IMXo(q)= vec_max(sv, vec_adds(ipv, *tsc)); tsc++;
	}	  

      /* Now the "special" states, which start from Mk->E (->C, ->J->B) */
      xE = esl_vmx_hmax_s16(xEv);
      if (xE >= 32767) { *ret_sc = eslINFINITY; return eslERANGE; }	/* immediately detect overflow */
      xN = xN + om->xw[p7O_N][p7O_LOOP];
      xC = ESL_MAX(xC + om->xw[p7O_C][p7O_LOOP], xE + om->xw[p7O_E][p7O_MOVE]);
      xJ = ESL_MAX(xJ + om->xw[p7O_J][p7O_LOOP], xE + om->xw[p7O_E][p7O_LOOP]);
      xB = ESL_MAX(xJ + om->xw[p7O_J][p7O_MOVE], xN + om->xw[p7O_N][p7O_MOVE]);
      /* and now xB will carry over into next i, and xC carries over after i=L */

      /* Finally the "lazy F" loop (sensu [Farrar07]). We can often
       * prove that we don't need to evaluate any D->D paths at all.
       *
       * The observation is that if we can show that on the next row,
       * B->M(i+1,k) paths always dominate M->D->...->D->M(i+1,k) paths
       * for all k, then we don't need any D->D calculations.
       * 
       * The test condition is:
       *      max_k D(i,k) + max_k ( TDD(k-2) + TDM(k-1) - TBM(k) ) < xB(i)
       * So:
       *   max_k (TDD(k-2) + TDM(k-1) - TBM(k)) is precalc'ed in om->dd_bound;
       *   max_k D(i,k) is why we tracked Dmaxv;
       *   xB(i) was just calculated above.
       */
      Dmax = esl_vmx_hmax_s16(Dmaxv);
      if (Dmax + om->ddbound_w > xB) 
	{
	  /* Now we're obligated to do at least one complete DD path to be sure. */
	  /* dcv has carried through from end of q loop above */
	  dcv = vec_sld(negInfv, dcv, 14); 
	  tsc = om->twv + 7*Q;	/* set tsc to start of the DD's */
	  for (q = 0; q < Q; q++) 
	    {
	      DMXo(q) = vec_max(dcv, DMXo(q));	
	      dcv     = vec_adds(DMXo(q), *tsc); tsc++;
	    }

	  /* We may have to do up to three more passes; the check
	   * is for whether crossing a segment boundary can improve
	   * our score. 
	   */
	  do {
	    dcv = vec_sld(negInfv, dcv, 14); 
	    tsc = om->twv + 7*Q;	/* set tsc to start of the DD's */
	    for (q = 0; q < Q; q++) 
	      {
		if (! vec_any_gt(dcv, DMXo(q))) break;
		DMXo(q) = vec_max(dcv, DMXo(q));	
		dcv     = vec_adds(DMXo(q), *tsc);   tsc++;
	      }	    
	  } while (q == Q);
	}
      else  /* not calculating DD? then just store the last M->D vector calc'ed.*/
	DMXo(0) = vec_sld(negInfv, dcv, 14);
	  
#if p7_DEBUGGING
      if (ox->debugging) p7_omx_DumpVFRow(ox, i, xE, 0, xJ, xB, xC);   
#endif
    } /* end loop over sequence residues 1..L */

  /* finally C->T */
  if (xC > -32768) 
    {
      *ret_sc = (float) xC + (float) om->xw[p7O_C][p7O_MOVE] - (float) om->base_w;
      /* *ret_sc += L * om->ncj_roundoff;  see J4/150 for rationale: superceded by -3.0nat approximation*/
      *ret_sc /= om->scale_w;
      *ret_sc -= 3.0; /* the NN/CC/JJ=0,-3nat approximation: see J5/36. That's ~ L \log \frac{L}{L+3}, for our NN,CC,JJ contrib */
    }
  else *ret_sc = -eslINFINITY;
  return eslOK;
}
예제 #30
0
static int dct_quantize_altivec(MpegEncContext* s,
                         DCTELEM* data, int n,
                         int qscale, int* overflow)
{
    int lastNonZero;
    vector float row0, row1, row2, row3, row4, row5, row6, row7;
    vector float alt0, alt1, alt2, alt3, alt4, alt5, alt6, alt7;
    const vector float zero = (const vector float)FOUROF(0.);
    // used after quantize step
    int oldBaseValue = 0;

    // Load the data into the row/alt vectors
    {
        vector signed short data0, data1, data2, data3, data4, data5, data6, data7;

        data0 = vec_ld(0, data);
        data1 = vec_ld(16, data);
        data2 = vec_ld(32, data);
        data3 = vec_ld(48, data);
        data4 = vec_ld(64, data);
        data5 = vec_ld(80, data);
        data6 = vec_ld(96, data);
        data7 = vec_ld(112, data);

        // Transpose the data before we start
        TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7);

        // load the data into floating point vectors.  We load
        // the high half of each row into the main row vectors
        // and the low half into the alt vectors.
        row0 = vec_ctf(vec_unpackh(data0), 0);
        alt0 = vec_ctf(vec_unpackl(data0), 0);
        row1 = vec_ctf(vec_unpackh(data1), 0);
        alt1 = vec_ctf(vec_unpackl(data1), 0);
        row2 = vec_ctf(vec_unpackh(data2), 0);
        alt2 = vec_ctf(vec_unpackl(data2), 0);
        row3 = vec_ctf(vec_unpackh(data3), 0);
        alt3 = vec_ctf(vec_unpackl(data3), 0);
        row4 = vec_ctf(vec_unpackh(data4), 0);
        alt4 = vec_ctf(vec_unpackl(data4), 0);
        row5 = vec_ctf(vec_unpackh(data5), 0);
        alt5 = vec_ctf(vec_unpackl(data5), 0);
        row6 = vec_ctf(vec_unpackh(data6), 0);
        alt6 = vec_ctf(vec_unpackl(data6), 0);
        row7 = vec_ctf(vec_unpackh(data7), 0);
        alt7 = vec_ctf(vec_unpackl(data7), 0);
    }

    // The following block could exist as a separate an altivec dct
                // function.  However, if we put it inline, the DCT data can remain
                // in the vector local variables, as floats, which we'll use during the
                // quantize step...
    {
        const vector float vec_0_298631336 = (vector float)FOUROF(0.298631336f);
        const vector float vec_0_390180644 = (vector float)FOUROF(-0.390180644f);
        const vector float vec_0_541196100 = (vector float)FOUROF(0.541196100f);
        const vector float vec_0_765366865 = (vector float)FOUROF(0.765366865f);
        const vector float vec_0_899976223 = (vector float)FOUROF(-0.899976223f);
        const vector float vec_1_175875602 = (vector float)FOUROF(1.175875602f);
        const vector float vec_1_501321110 = (vector float)FOUROF(1.501321110f);
        const vector float vec_1_847759065 = (vector float)FOUROF(-1.847759065f);
        const vector float vec_1_961570560 = (vector float)FOUROF(-1.961570560f);
        const vector float vec_2_053119869 = (vector float)FOUROF(2.053119869f);
        const vector float vec_2_562915447 = (vector float)FOUROF(-2.562915447f);
        const vector float vec_3_072711026 = (vector float)FOUROF(3.072711026f);


        int whichPass, whichHalf;

        for(whichPass = 1; whichPass<=2; whichPass++) {
            for(whichHalf = 1; whichHalf<=2; whichHalf++) {
                vector float tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
                vector float tmp10, tmp11, tmp12, tmp13;
                vector float z1, z2, z3, z4, z5;

                tmp0 = vec_add(row0, row7); // tmp0 = dataptr[0] + dataptr[7];
                tmp7 = vec_sub(row0, row7); // tmp7 = dataptr[0] - dataptr[7];
                tmp3 = vec_add(row3, row4); // tmp3 = dataptr[3] + dataptr[4];
                tmp4 = vec_sub(row3, row4); // tmp4 = dataptr[3] - dataptr[4];
                tmp1 = vec_add(row1, row6); // tmp1 = dataptr[1] + dataptr[6];
                tmp6 = vec_sub(row1, row6); // tmp6 = dataptr[1] - dataptr[6];
                tmp2 = vec_add(row2, row5); // tmp2 = dataptr[2] + dataptr[5];
                tmp5 = vec_sub(row2, row5); // tmp5 = dataptr[2] - dataptr[5];

                tmp10 = vec_add(tmp0, tmp3); // tmp10 = tmp0 + tmp3;
                tmp13 = vec_sub(tmp0, tmp3); // tmp13 = tmp0 - tmp3;
                tmp11 = vec_add(tmp1, tmp2); // tmp11 = tmp1 + tmp2;
                tmp12 = vec_sub(tmp1, tmp2); // tmp12 = tmp1 - tmp2;


                // dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
                row0 = vec_add(tmp10, tmp11);

                // dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
                row4 = vec_sub(tmp10, tmp11);


                // z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
                z1 = vec_madd(vec_add(tmp12, tmp13), vec_0_541196100, (vector float)zero);

                // dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
                //                                CONST_BITS-PASS1_BITS);
                row2 = vec_madd(tmp13, vec_0_765366865, z1);

                // dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
                //                                CONST_BITS-PASS1_BITS);
                row6 = vec_madd(tmp12, vec_1_847759065, z1);

                z1 = vec_add(tmp4, tmp7); // z1 = tmp4 + tmp7;
                z2 = vec_add(tmp5, tmp6); // z2 = tmp5 + tmp6;
                z3 = vec_add(tmp4, tmp6); // z3 = tmp4 + tmp6;
                z4 = vec_add(tmp5, tmp7); // z4 = tmp5 + tmp7;

                // z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
                z5 = vec_madd(vec_add(z3, z4), vec_1_175875602, (vector float)zero);

                // z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
                z3 = vec_madd(z3, vec_1_961570560, z5);

                // z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
                z4 = vec_madd(z4, vec_0_390180644, z5);

                // The following adds are rolled into the multiplies above
                // z3 = vec_add(z3, z5);  // z3 += z5;
                // z4 = vec_add(z4, z5);  // z4 += z5;

                // z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
                // Wow!  It's actually more efficient to roll this multiply
                // into the adds below, even thought the multiply gets done twice!
                // z2 = vec_madd(z2, vec_2_562915447, (vector float)zero);

                // z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
                // Same with this one...
                // z1 = vec_madd(z1, vec_0_899976223, (vector float)zero);

                // tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
                // dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
                row7 = vec_madd(tmp4, vec_0_298631336, vec_madd(z1, vec_0_899976223, z3));

                // tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
                // dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
                row5 = vec_madd(tmp5, vec_2_053119869, vec_madd(z2, vec_2_562915447, z4));

                // tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
                // dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
                row3 = vec_madd(tmp6, vec_3_072711026, vec_madd(z2, vec_2_562915447, z3));

                // tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
                // dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
                row1 = vec_madd(z1, vec_0_899976223, vec_madd(tmp7, vec_1_501321110, z4));

                // Swap the row values with the alts.  If this is the first half,
                // this sets up the low values to be acted on in the second half.
                // If this is the second half, it puts the high values back in
                // the row values where they are expected to be when we're done.
                SWAP(row0, alt0);
                SWAP(row1, alt1);
                SWAP(row2, alt2);
                SWAP(row3, alt3);
                SWAP(row4, alt4);
                SWAP(row5, alt5);
                SWAP(row6, alt6);
                SWAP(row7, alt7);
            }

            if (whichPass == 1) {
                // transpose the data for the second pass

                // First, block transpose the upper right with lower left.
                SWAP(row4, alt0);
                SWAP(row5, alt1);
                SWAP(row6, alt2);
                SWAP(row7, alt3);

                // Now, transpose each block of four
                TRANSPOSE4(row0, row1, row2, row3);
                TRANSPOSE4(row4, row5, row6, row7);
                TRANSPOSE4(alt0, alt1, alt2, alt3);
                TRANSPOSE4(alt4, alt5, alt6, alt7);
            }
        }
    }

    // perform the quantize step, using the floating point data
    // still in the row/alt registers
    {
        const int* biasAddr;
        const vector signed int* qmat;
        vector float bias, negBias;

        if (s->mb_intra) {
            vector signed int baseVector;

            // We must cache element 0 in the intra case
            // (it needs special handling).
            baseVector = vec_cts(vec_splat(row0, 0), 0);
            vec_ste(baseVector, 0, &oldBaseValue);

            qmat = (vector signed int*)s->q_intra_matrix[qscale];
            biasAddr = &(s->intra_quant_bias);
        } else {
            qmat = (vector signed int*)s->q_inter_matrix[qscale];
            biasAddr = &(s->inter_quant_bias);
        }

        // Load the bias vector (We add 0.5 to the bias so that we're
                                // rounding when we convert to int, instead of flooring.)
        {
            vector signed int biasInt;
            const vector float negOneFloat = (vector float)FOUROF(-1.0f);
            LOAD4(biasInt, biasAddr);
            bias = vec_ctf(biasInt, QUANT_BIAS_SHIFT);
            negBias = vec_madd(bias, negOneFloat, zero);
        }

        {
            vector float q0, q1, q2, q3, q4, q5, q6, q7;

            q0 = vec_ctf(qmat[0], QMAT_SHIFT);
            q1 = vec_ctf(qmat[2], QMAT_SHIFT);
            q2 = vec_ctf(qmat[4], QMAT_SHIFT);
            q3 = vec_ctf(qmat[6], QMAT_SHIFT);
            q4 = vec_ctf(qmat[8], QMAT_SHIFT);
            q5 = vec_ctf(qmat[10], QMAT_SHIFT);
            q6 = vec_ctf(qmat[12], QMAT_SHIFT);
            q7 = vec_ctf(qmat[14], QMAT_SHIFT);

            row0 = vec_sel(vec_madd(row0, q0, negBias), vec_madd(row0, q0, bias),
                    vec_cmpgt(row0, zero));
            row1 = vec_sel(vec_madd(row1, q1, negBias), vec_madd(row1, q1, bias),
                    vec_cmpgt(row1, zero));
            row2 = vec_sel(vec_madd(row2, q2, negBias), vec_madd(row2, q2, bias),
                    vec_cmpgt(row2, zero));
            row3 = vec_sel(vec_madd(row3, q3, negBias), vec_madd(row3, q3, bias),
                    vec_cmpgt(row3, zero));
            row4 = vec_sel(vec_madd(row4, q4, negBias), vec_madd(row4, q4, bias),
                    vec_cmpgt(row4, zero));
            row5 = vec_sel(vec_madd(row5, q5, negBias), vec_madd(row5, q5, bias),
                    vec_cmpgt(row5, zero));
            row6 = vec_sel(vec_madd(row6, q6, negBias), vec_madd(row6, q6, bias),
                    vec_cmpgt(row6, zero));
            row7 = vec_sel(vec_madd(row7, q7, negBias), vec_madd(row7, q7, bias),
                    vec_cmpgt(row7, zero));

            q0 = vec_ctf(qmat[1], QMAT_SHIFT);
            q1 = vec_ctf(qmat[3], QMAT_SHIFT);
            q2 = vec_ctf(qmat[5], QMAT_SHIFT);
            q3 = vec_ctf(qmat[7], QMAT_SHIFT);
            q4 = vec_ctf(qmat[9], QMAT_SHIFT);
            q5 = vec_ctf(qmat[11], QMAT_SHIFT);
            q6 = vec_ctf(qmat[13], QMAT_SHIFT);
            q7 = vec_ctf(qmat[15], QMAT_SHIFT);

            alt0 = vec_sel(vec_madd(alt0, q0, negBias), vec_madd(alt0, q0, bias),
                    vec_cmpgt(alt0, zero));
            alt1 = vec_sel(vec_madd(alt1, q1, negBias), vec_madd(alt1, q1, bias),
                    vec_cmpgt(alt1, zero));
            alt2 = vec_sel(vec_madd(alt2, q2, negBias), vec_madd(alt2, q2, bias),
                    vec_cmpgt(alt2, zero));
            alt3 = vec_sel(vec_madd(alt3, q3, negBias), vec_madd(alt3, q3, bias),
                    vec_cmpgt(alt3, zero));
            alt4 = vec_sel(vec_madd(alt4, q4, negBias), vec_madd(alt4, q4, bias),
                    vec_cmpgt(alt4, zero));
            alt5 = vec_sel(vec_madd(alt5, q5, negBias), vec_madd(alt5, q5, bias),
                    vec_cmpgt(alt5, zero));
            alt6 = vec_sel(vec_madd(alt6, q6, negBias), vec_madd(alt6, q6, bias),
                    vec_cmpgt(alt6, zero));
            alt7 = vec_sel(vec_madd(alt7, q7, negBias), vec_madd(alt7, q7, bias),
                    vec_cmpgt(alt7, zero));
        }


    }

    // Store the data back into the original block
    {
        vector signed short data0, data1, data2, data3, data4, data5, data6, data7;

        data0 = vec_pack(vec_cts(row0, 0), vec_cts(alt0, 0));
        data1 = vec_pack(vec_cts(row1, 0), vec_cts(alt1, 0));
        data2 = vec_pack(vec_cts(row2, 0), vec_cts(alt2, 0));
        data3 = vec_pack(vec_cts(row3, 0), vec_cts(alt3, 0));
        data4 = vec_pack(vec_cts(row4, 0), vec_cts(alt4, 0));
        data5 = vec_pack(vec_cts(row5, 0), vec_cts(alt5, 0));
        data6 = vec_pack(vec_cts(row6, 0), vec_cts(alt6, 0));
        data7 = vec_pack(vec_cts(row7, 0), vec_cts(alt7, 0));

        {
            // Clamp for overflow
            vector signed int max_q_int, min_q_int;
            vector signed short max_q, min_q;

            LOAD4(max_q_int, &(s->max_qcoeff));
            LOAD4(min_q_int, &(s->min_qcoeff));

            max_q = vec_pack(max_q_int, max_q_int);
            min_q = vec_pack(min_q_int, min_q_int);

            data0 = vec_max(vec_min(data0, max_q), min_q);
            data1 = vec_max(vec_min(data1, max_q), min_q);
            data2 = vec_max(vec_min(data2, max_q), min_q);
            data4 = vec_max(vec_min(data4, max_q), min_q);
            data5 = vec_max(vec_min(data5, max_q), min_q);
            data6 = vec_max(vec_min(data6, max_q), min_q);
            data7 = vec_max(vec_min(data7, max_q), min_q);
        }

        {
        vector bool char zero_01, zero_23, zero_45, zero_67;
        vector signed char scanIndexes_01, scanIndexes_23, scanIndexes_45, scanIndexes_67;
        vector signed char negOne = vec_splat_s8(-1);
        vector signed char* scanPtr =
                (vector signed char*)(s->intra_scantable.inverse);
        signed char lastNonZeroChar;

        // Determine the largest non-zero index.
        zero_01 = vec_pack(vec_cmpeq(data0, (vector signed short)zero),
                vec_cmpeq(data1, (vector signed short)zero));
        zero_23 = vec_pack(vec_cmpeq(data2, (vector signed short)zero),
                vec_cmpeq(data3, (vector signed short)zero));
        zero_45 = vec_pack(vec_cmpeq(data4, (vector signed short)zero),
                vec_cmpeq(data5, (vector signed short)zero));
        zero_67 = vec_pack(vec_cmpeq(data6, (vector signed short)zero),
                vec_cmpeq(data7, (vector signed short)zero));

        // 64 biggest values
        scanIndexes_01 = vec_sel(scanPtr[0], negOne, zero_01);
        scanIndexes_23 = vec_sel(scanPtr[1], negOne, zero_23);
        scanIndexes_45 = vec_sel(scanPtr[2], negOne, zero_45);
        scanIndexes_67 = vec_sel(scanPtr[3], negOne, zero_67);

        // 32 largest values
        scanIndexes_01 = vec_max(scanIndexes_01, scanIndexes_23);
        scanIndexes_45 = vec_max(scanIndexes_45, scanIndexes_67);

        // 16 largest values
        scanIndexes_01 = vec_max(scanIndexes_01, scanIndexes_45);

        // 8 largest values
        scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
                vec_mergel(scanIndexes_01, negOne));

        // 4 largest values
        scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
                vec_mergel(scanIndexes_01, negOne));

        // 2 largest values
        scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
                vec_mergel(scanIndexes_01, negOne));

        // largest value
        scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
                vec_mergel(scanIndexes_01, negOne));

        scanIndexes_01 = vec_splat(scanIndexes_01, 0);


        vec_ste(scanIndexes_01, 0, &lastNonZeroChar);

        lastNonZero = lastNonZeroChar;

        // While the data is still in vectors we check for the transpose IDCT permute
        // and handle it using the vector unit if we can.  This is the permute used
        // by the altivec idct, so it is common when using the altivec dct.

        if ((lastNonZero > 0) && (s->dsp.idct_permutation_type == FF_TRANSPOSE_IDCT_PERM)) {
            TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7);
        }

        vec_st(data0, 0, data);
        vec_st(data1, 16, data);
        vec_st(data2, 32, data);
        vec_st(data3, 48, data);
        vec_st(data4, 64, data);
        vec_st(data5, 80, data);
        vec_st(data6, 96, data);
        vec_st(data7, 112, data);
        }
    }

    // special handling of block[0]
    if (s->mb_intra) {
        if (!s->h263_aic) {
            if (n < 4)
                oldBaseValue /= s->y_dc_scale;
            else
                oldBaseValue /= s->c_dc_scale;
        }

        // Divide by 8, rounding the result
        data[0] = (oldBaseValue + 4) >> 3;
    }

    // We handled the transpose permutation above and we don't
    // need to permute the "no" permutation case.
    if ((lastNonZero > 0) &&
        (s->dsp.idct_permutation_type != FF_TRANSPOSE_IDCT_PERM) &&
        (s->dsp.idct_permutation_type != FF_NO_IDCT_PERM)) {
        ff_block_permute(data, s->dsp.idct_permutation,
                s->intra_scantable.scantable, lastNonZero);
    }

    return lastNonZero;
}