예제 #1
0
파일: initdata.c 프로젝트: juapebe/HPC
void centerData(float *x, int n, int takelog) {
  int i;
  float mean;
  if(takelog) {
    for(i=0;i<n;i++) x[i] = log(x[i] + 1.0);
  }
  mean = vec_mean(x, n);
  for(i=0;i<n;i++) x[i] -= mean;
}
예제 #2
0
파일: bayes_gfl.c 프로젝트: tansey/gfl
void bayes_gfl_gaussian_laplace_gamma (int n, double *y, double *w,
                                int dk_rows, int *dk_rowbreaks, int *dk_cols, double *deltak,
                                double lambda_hyperparam_a, double lambda_hyperparam_b,
                                double tau_hyperparameter,
                                long iterations, long burn, long thin,
                                double **beta_samples, double *lambda_samples)
{
    int i;
    double *s;
    double *beta;
    double *tau;
    int **coefs;
    int *coef_breaks;
    long iteration;
    int sample_idx;
    double ymean;
    const gsl_rng_type *T;
    gsl_rng *random;
    double lambda;

    gsl_rng_env_setup();
    T = gsl_rng_default;
    random = gsl_rng_alloc (T);

    s = (double *) malloc(dk_rows * sizeof(double));
    coefs = (int **) malloc(n * sizeof(int*));
    coef_breaks = (int *) malloc(n * sizeof(int));
    beta = (double *) malloc(n * sizeof(double));
    tau = (double *) malloc(dk_rows * sizeof(double));

    /* Cache a lookup table to map from deltak column to the set of rows with 
       non-zero entries for that column */
    calc_coefs(n, dk_rows, dk_rowbreaks, dk_cols, coefs, coef_breaks);

    /* Set all beta values to the mean to start */
    ymean = vec_mean(n, y);
    for (i = 0; i < n; i++){ beta[i] = ymean; }

    /* Set tau to 1 to start */
    for (i = 0; i < dk_rows; i++){ tau[i] = 1.0; }

    /* Run the Gibbs sampler */
    for (iteration = 0, sample_idx = 0; iteration < iterations; iteration++)
    {
        /* Sample the lambda penalty weight on the Laplace prior */
        lambda = gsl_ran_gamma(random, lambda_hyperparam_a + tau_hyperparameter * dk_rows, 1.0 / (lambda_hyperparam_b + vec_sum(dk_rows, tau)));

        /* Sample the local laplace penalty tau */
        sample_tau_laplace_gamma(random, beta, dk_rows, dk_rowbreaks, dk_cols, deltak, lambda, tau_hyperparameter, tau);
        
        /* Sample each of the auxillary variables (one per row of Dk) */
        sample_prior_aux_laplace_multilambda(random, beta, dk_rows, dk_rowbreaks, dk_cols, deltak, tau, s);
        
        /* Sample from the truncated Gaussian likelihood */
        sample_likelihood_gaussian(random, n, y, w, dk_rowbreaks, dk_cols, deltak, s, coefs, coef_breaks, beta);

        /* Add the sample */
        if (iteration >= burn && (iteration % thin) == 0){
            lambda_samples[sample_idx] = lambda;
            memcpy(beta_samples[sample_idx], beta, n * sizeof(double));
            sample_idx++;
        }
    }

    free(s);
    free(tau);
    free(beta);
    for (i = 0; i < n; i++){ free(coefs[i]); }
    free(coefs);
    free(coef_breaks);

    gsl_rng_free(random);
}
예제 #3
0
int vbap_zak_control(CSOUND *csound, VBAP_ZAK *p)
{
    CART_VEC spreaddir[16];
    CART_VEC spreadbase[16];
    ANG_VEC atmp;
    int32 i,j, spreaddirnum;
    int n = p->n;
    MYFLT tmp_gains[MAXCHNLS],sum = FL(0.0);
    if (UNLIKELY(p->dim == 2 && fabs(*p->ele) > 0.0)) {
      csound->Warning(csound,
                      Str("Warning: truncating elevation to 2-D plane\n"));
      *p->ele = FL(0.0);
    }
    if (*p->spread <FL(0.0))
      *p->spread=FL(0.0);
    else if (*p->spread >FL(100.0))
      *p->spread=FL(100.0);
    /* Current panning angles */
    p->ang_dir.azi = (MYFLT) *p->azi;
    p->ang_dir.ele = (MYFLT) *p->ele;
    p->ang_dir.length = FL(1.0);
    angle_to_cart(p->ang_dir, &(p->cart_dir));
    calc_vbap_gns(p->ls_set_am, p->dim,  p->ls_sets,
                  p->updated_gains, n, p->cart_dir);

    /* Calculated gain factors of a spreaded virtual source */
    if (*p->spread > FL(0.0)) {
      if (p->dim == 3) {
        spreaddirnum=16;
        /* four orthogonal dirs */
        new_spread_dir(&spreaddir[0], p->cart_dir,
                       p->spread_base, *p->azi, *p->spread);
        new_spread_base(spreaddir[0], p->cart_dir,*p->spread, &p->spread_base);
        cross_prod(p->spread_base, p->cart_dir, &spreadbase[1]);
        cross_prod(spreadbase[1], p->cart_dir, &spreadbase[2]);
        cross_prod(spreadbase[2], p->cart_dir, &spreadbase[3]);
        /* four between them */
        vec_mean(p->spread_base, spreadbase[1], &spreadbase[4]);
        vec_mean(spreadbase[1], spreadbase[2], &spreadbase[5]);
        vec_mean(spreadbase[2], spreadbase[3], &spreadbase[6]);
        vec_mean(spreadbase[3], p->spread_base, &spreadbase[7]);

        /* four at half spreadangle */
        vec_mean(p->cart_dir, p->spread_base, &spreadbase[8]);
        vec_mean(p->cart_dir, spreadbase[1], &spreadbase[9]);
        vec_mean(p->cart_dir, spreadbase[2], &spreadbase[10]);
        vec_mean(p->cart_dir, spreadbase[3], &spreadbase[11]);

        /* four at quarter spreadangle */
        vec_mean(p->cart_dir, spreadbase[8], &spreadbase[12]);
        vec_mean(p->cart_dir, spreadbase[9], &spreadbase[13]);
        vec_mean(p->cart_dir, spreadbase[10], &spreadbase[14]);
        vec_mean(p->cart_dir, spreadbase[11], &spreadbase[15]);

        for (i=1;i<spreaddirnum;i++) {
          new_spread_dir(&spreaddir[i], p->cart_dir,
                         spreadbase[i],*p->azi,*p->spread);
          calc_vbap_gns(p->ls_set_am, p->dim,  p->ls_sets,
                        tmp_gains, n, spreaddir[i]);
          for (j=0;j<n;j++) {
            p->updated_gains[j] += tmp_gains[j];
          }
        }
      }
      else if (p->dim == 2) {
        spreaddirnum = 6;
        atmp.ele = FL(0.0);
        atmp.azi = *p->azi - *p->spread;
        angle_to_cart(atmp, &spreaddir[0]);
        atmp.azi = *p->azi - *p->spread/2;
        angle_to_cart(atmp, &spreaddir[1]);
        atmp.azi = *p->azi - *p->spread/4;
        angle_to_cart(atmp, &spreaddir[2]);
        atmp.azi = *p->azi + *p->spread/4;
        angle_to_cart(atmp, &spreaddir[3]);
        atmp.azi = *p->azi + *p->spread/2;
        angle_to_cart(atmp, &spreaddir[4]);
        atmp.azi = *p->azi + *p->spread;
        angle_to_cart(atmp, &spreaddir[5]);

        for (i=0;i<spreaddirnum;i++) {
          calc_vbap_gns(p->ls_set_am, p->dim,  p->ls_sets,
                        tmp_gains, n, spreaddir[i]);
          for (j=0;j<n;j++) {
            p->updated_gains[j] += tmp_gains[j];
          }
        }
      }
    }
    if (*p->spread > FL(70.0))
      for (i=0;i<n ;i++) {
        p->updated_gains[i] +=(*p->spread - FL(70.0))/FL(30.0) *
          (*p->spread - FL(70.0))/FL(30.0)*FL(20.0);
      }

    /* normalization */
    for (i=0;i<n;i++) {
      sum = sum+(p->updated_gains[i]*p->updated_gains[i]);
    }

    sum = SQRT(sum);
    for (i=0;i<n;i++) {
      p->updated_gains[i] /= sum;
    }
    return OK;
}
예제 #4
0
int vbap_zak_moving_control(CSOUND *csound, VBAP_ZAK_MOVING *p)
{
    CART_VEC spreaddir[16];
    CART_VEC spreadbase[16];
    ANG_VEC atmp;
    int32 i,j, spreaddirnum;
    int n = p->n;
    CART_VEC tmp1, tmp2, tmp3;
    MYFLT coeff, angle;
    MYFLT tmp_gains[MAXCHNLS],sum = FL(0.0); /* Array long enough */
    if (UNLIKELY(p->dim == 2 && fabs(p->ang_dir.ele) > 0.0)) {
      csound->Warning(csound,
                      Str("Warning: truncating elevation to 2-D plane\n"));
      p->ang_dir.ele = FL(0.0);
    }

    if (*p->spread <FL(0.0))
      *p->spread = FL(0.0);
    else if (*p->spread >FL(100.0))
      *p->spread = FL(100.0);
    if (p->point_change_counter++ >= p->point_change_interval) {
      p->point_change_counter = 0;
      p->curr_fld = p->next_fld;
      if (++p->next_fld >= (int) fabs(*p->field_am)) {
        if (*p->field_am >= FL(0.0)) /* point-to-point */
          p->next_fld = 0;
        else
          p->next_fld = 1;
      }
      if (p->dim == 3) { /* jumping over second field */
        p->curr_fld = p->next_fld;
        if (++p->next_fld >= ((int) fabs(*p->field_am))) {
          if (*p->field_am >= FL(0.0)) /* point-to-point */
            p->next_fld = 0;
          else
            p->next_fld = 1;
        }
      }
      if (UNLIKELY((p->fld[abs(p->next_fld)]==NULL)))
        return csound->PerfError(csound, p->h.insdshead,
                                 Str("Missing fields in vbapzmove\n"));
      if (*p->field_am >= FL(0.0) && p->dim == 2) /* point-to-point */
        if (UNLIKELY(fabs(fabs(*p->fld[p->next_fld] - *p->fld[p->curr_fld])
                          - 180.0) < 1.0))
          csound->Warning(csound,
                          Str("Warning: Ambiguous transition 180 degrees.\n"));
    }
    if (*p->field_am >= FL(0.0)) { /* point-to-point */
      if (p->dim == 3) { /* 3-D */
        p->prev_ang_dir.azi =  *p->fld[p->curr_fld-1];
        p->next_ang_dir.azi =  *p->fld[p->next_fld];
        p->prev_ang_dir.ele = *p->fld[p->curr_fld];
        p->next_ang_dir.ele = *p->fld[p->next_fld+1];
        coeff = ((MYFLT) p->point_change_counter) /
          ((MYFLT) p->point_change_interval);
        angle_to_cart( p->prev_ang_dir,&tmp1);
        angle_to_cart( p->next_ang_dir,&tmp2);
        tmp3.x = (FL(1.0)-coeff) * tmp1.x + coeff * tmp2.x;
        tmp3.y = (FL(1.0)-coeff) * tmp1.y + coeff * tmp2.y;
        tmp3.z = (FL(1.0)-coeff) * tmp1.z + coeff * tmp2.z;
        coeff = (MYFLT)sqrt((double)(tmp3.x * tmp3.x +
                                     tmp3.y * tmp3.y +
                                     tmp3.z * tmp3.z));
        tmp3.x /= coeff; tmp3.y /= coeff; tmp3.z /= coeff;
        cart_to_angle(tmp3,&(p->ang_dir));
      }
      else if (p->dim == 2) { /* 2-D */
        p->prev_ang_dir.azi =  *p->fld[p->curr_fld];
        p->next_ang_dir.azi =  *p->fld[p->next_fld ];
        p->prev_ang_dir.ele = p->next_ang_dir.ele =  FL(0.0);
        scale_angles(&(p->prev_ang_dir));
        scale_angles(&(p->next_ang_dir));
        angle = (p->prev_ang_dir.azi - p->next_ang_dir.azi);
        while(angle > FL(180.0))
          angle -= FL(360.0);
        while(angle < -FL(180.0))
          angle += FL(360.0);
        coeff = ((MYFLT) p->point_change_counter) /
          ((MYFLT) p->point_change_interval);
        angle  *=  (coeff);
        p->ang_dir.azi = p->prev_ang_dir.azi -  angle;
        p->ang_dir.ele = FL(0.0);
      }
      else {
        return csound->PerfError(csound, p->h.insdshead,
                                 Str("Missing fields in vbapzmove\n"));
      }
    }
    else { /* angular velocities */
      if (p->dim == 2) {
        p->ang_dir.azi = p->ang_dir.azi +
          (*p->fld[p->next_fld] * CS_ONEDKR);
        scale_angles(&(p->ang_dir));
      }
      else { /* 3D angular */
        p->ang_dir.azi = p->ang_dir.azi +
          (*p->fld[p->next_fld] * CS_ONEDKR);
        p->ang_dir.ele = p->ang_dir.ele +
          p->ele_vel * (*p->fld[p->next_fld+1] * CS_ONEDKR);
        if (p->ang_dir.ele > FL(90.0)) {
          p->ang_dir.ele = FL(90.0);
          p->ele_vel = -p->ele_vel;
        }
        if (p->ang_dir.ele < FL(0.0)) {
          p->ang_dir.ele = FL(0.0);
          p->ele_vel =  -p->ele_vel;
        }
        scale_angles(&(p->ang_dir));
      }
    }
    angle_to_cart(p->ang_dir, &(p->cart_dir));
    calc_vbap_gns(p->ls_set_am, p->dim,  p->ls_sets,
                  p->updated_gains, n, p->cart_dir);
    if (*p->spread > FL(0.0)) {
      if (p->dim == 3) {
        spreaddirnum=16;
        /* four orthogonal dirs */
        new_spread_dir(&spreaddir[0], p->cart_dir,
                       p->spread_base, p->ang_dir.azi, *p->spread);

        new_spread_base(spreaddir[0], p->cart_dir,*p->spread, &p->spread_base);
        cross_prod(p->spread_base, p->cart_dir, &spreadbase[1]);
        cross_prod(spreadbase[1], p->cart_dir, &spreadbase[2]);
        cross_prod(spreadbase[2], p->cart_dir, &spreadbase[3]);
        /* four between them */
        vec_mean(p->spread_base, spreadbase[1], &spreadbase[4]);
        vec_mean(spreadbase[1], spreadbase[2], &spreadbase[5]);
        vec_mean(spreadbase[2], spreadbase[3], &spreadbase[6]);
        vec_mean(spreadbase[3], p->spread_base, &spreadbase[7]);

        /* four at half spreadangle */
        vec_mean(p->cart_dir, p->spread_base, &spreadbase[8]);
        vec_mean(p->cart_dir, spreadbase[1], &spreadbase[9]);
        vec_mean(p->cart_dir, spreadbase[2], &spreadbase[10]);
        vec_mean(p->cart_dir, spreadbase[3], &spreadbase[11]);

        /* four at quarter spreadangle */
        vec_mean(p->cart_dir, spreadbase[8], &spreadbase[12]);
        vec_mean(p->cart_dir, spreadbase[9], &spreadbase[13]);
        vec_mean(p->cart_dir, spreadbase[10], &spreadbase[14]);
        vec_mean(p->cart_dir, spreadbase[11], &spreadbase[15]);

        for (i=1;i<spreaddirnum;i++) {
          new_spread_dir(&spreaddir[i], p->cart_dir,
                         spreadbase[i],p->ang_dir.azi,*p->spread);
          calc_vbap_gns(p->ls_set_am, p->dim,  p->ls_sets,
                        tmp_gains, n, spreaddir[i]);
          for (j=0;j<n;j++) {
            p->updated_gains[j] += tmp_gains[j];
          }
        }
      }
      else if (p->dim == 2) {
        spreaddirnum=6;
        atmp.ele=FL(0.0);
        atmp.azi=p->ang_dir.azi - *p->spread;
        angle_to_cart(atmp, &spreaddir[0]);
        atmp.azi=p->ang_dir.azi - *p->spread/2;
        angle_to_cart(atmp, &spreaddir[1]);
        atmp.azi=p->ang_dir.azi - *p->spread/4;
        angle_to_cart(atmp, &spreaddir[2]);
        atmp.azi=p->ang_dir.azi + *p->spread/4;
        angle_to_cart(atmp, &spreaddir[3]);
        atmp.azi=p->ang_dir.azi + *p->spread/2;
        angle_to_cart(atmp, &spreaddir[4]);
        atmp.azi=p->ang_dir.azi + *p->spread;
        angle_to_cart(atmp, &spreaddir[5]);

        for (i=0;i<spreaddirnum;i++) {
          calc_vbap_gns(p->ls_set_am, p->dim,  p->ls_sets,
                        tmp_gains, n, spreaddir[i]);
          for (j=0;j<n;j++) {
            p->updated_gains[j] += tmp_gains[j];
          }
        }
      }
    }
    if (*p->spread > FL(70.0))
      for (i=0;i<n ;i++) {
        p->updated_gains[i] += (*p->spread - FL(70.0))/FL(30.0) *
          (*p->spread - FL(70.0))/FL(30.0)*FL(10.0);
      }
    /* normalization */
    for (i=0;i<n;i++) {
      sum += (p->updated_gains[i]*p->updated_gains[i]);
  }

  sum = SQRT(sum);
  for (i=0;i<n;i++) {
    p->updated_gains[i] /= sum;
  }
  return OK;
}