예제 #1
0
파일: main.cpp 프로젝트: Unix4ever/engine
static void cleanup_vulkan()
{
    vkDestroyDescriptorPool(g_Device, g_DescriptorPool, g_Allocator);
    for (int i = 0; i < IMGUI_VK_QUEUED_FRAMES; i++)
    {
        vkDestroyFence(g_Device, g_Fence[i], g_Allocator);
        vkFreeCommandBuffers(g_Device, g_CommandPool[i], 1, &g_CommandBuffer[i]);
        vkDestroyCommandPool(g_Device, g_CommandPool[i], g_Allocator);
        vkDestroySemaphore(g_Device, g_PresentCompleteSemaphore[i], g_Allocator);
        vkDestroySemaphore(g_Device, g_RenderCompleteSemaphore[i], g_Allocator);
    }
    for (uint32_t i = 0; i < g_BackBufferCount; i++)
    {
        vkDestroyImageView(g_Device, g_BackBufferView[i], g_Allocator);
        vkDestroyFramebuffer(g_Device, g_Framebuffer[i], g_Allocator);
    }
    vkDestroyRenderPass(g_Device, g_RenderPass, g_Allocator);
    vkDestroySwapchainKHR(g_Device, g_Swapchain, g_Allocator);
    vkDestroySurfaceKHR(g_Instance, g_Surface, g_Allocator);

#ifdef IMGUI_VULKAN_DEBUG_REPORT
    // get the proc address of the function pointer, required for used extensions
    auto vkDestroyDebugReportCallbackEXT = (PFN_vkDestroyDebugReportCallbackEXT)vkGetInstanceProcAddr(g_Instance, "vkDestroyDebugReportCallbackEXT");
    vkDestroyDebugReportCallbackEXT(g_Instance, g_Debug_Report, g_Allocator);
#endif // IMGUI_VULKAN_DEBUG_REPORT

    vkDestroyDevice(g_Device, g_Allocator);
    vkDestroyInstance(g_Instance, g_Allocator);
}
  VulkanCommon::~VulkanCommon() {
    if( Vulkan.Device != VK_NULL_HANDLE ) {
      vkDeviceWaitIdle( Vulkan.Device );

      for( size_t i = 0; i < Vulkan.SwapChain.Images.size(); ++i ) {
        if( Vulkan.SwapChain.Images[i].ImageView != VK_NULL_HANDLE ) {
          vkDestroyImageView( GetDevice(), Vulkan.SwapChain.Images[i].ImageView, nullptr );
        }
      }

      if( Vulkan.SwapChain.Handle != VK_NULL_HANDLE ) {
        vkDestroySwapchainKHR( Vulkan.Device, Vulkan.SwapChain.Handle, nullptr );
      }
      vkDestroyDevice( Vulkan.Device, nullptr );
    }

    if( Vulkan.PresentationSurface != VK_NULL_HANDLE ) {
      vkDestroySurfaceKHR( Vulkan.Instance, Vulkan.PresentationSurface, nullptr );
    }

    if( Vulkan.Instance != VK_NULL_HANDLE ) {
      vkDestroyInstance( Vulkan.Instance, nullptr );
    }

    if( VulkanLibrary ) {
#if defined(VK_USE_PLATFORM_WIN32_KHR)
      FreeLibrary( VulkanLibrary );
#elif defined(VK_USE_PLATFORM_XCB_KHR) || defined(VK_USE_PLATFORM_XLIB_KHR)
      dlclose( VulkanLibrary );
#endif
    }
  }
예제 #3
0
	void VulkanSwapChain::clear(VkSwapchainKHR swapChain)
	{
		VkDevice logicalDevice = mDevice->getLogical();
		if (swapChain != VK_NULL_HANDLE)
		{
			for (auto& surface : mSurfaces)
			{
				surface.framebuffer->destroy();
				surface.framebuffer = nullptr;

				surface.image->destroy();
				surface.image = nullptr;

				surface.sync->destroy();
				surface.sync = nullptr;
			}

			vkDestroySwapchainKHR(logicalDevice, swapChain, gVulkanAllocator);
		}

		if (mDepthStencilImage != nullptr)
		{
			mDepthStencilImage->destroy();
			mDepthStencilImage = nullptr;
		}
	}
예제 #4
0
파일: Swapchain.cpp 프로젝트: Ryp/Reaper
void resize_vulkan_wm_swapchain(ReaperRoot& root, const VulkanBackend& backend, PresentationInfo& presentInfo,
                                VkExtent2D extent)
{
    REAPER_PROFILE_SCOPE("Vulkan", MP_RED);
    log_debug(root, "vulkan: resizing wm swapchain");

    // Destroy what needs to be
    Assert(vkDeviceWaitIdle(backend.device) == VK_SUCCESS);

    vkDestroySemaphore(backend.device, presentInfo.imageAvailableSemaphore, nullptr);
    vkDestroySemaphore(backend.device, presentInfo.renderingFinishedSemaphore, nullptr);

    destroy_swapchain_framebuffers(backend, presentInfo);
    destroy_swapchain_renderpass(backend, presentInfo);

    vkDestroySwapchainKHR(backend.device, presentInfo.swapchain, nullptr);
    presentInfo.swapchain = VK_NULL_HANDLE;

    // Reconfigure even if we know most of what we expect/need
    SwapchainDescriptor swapchainDesc;
    swapchainDesc.preferredImageCount = presentInfo.imageCount;
    swapchainDesc.preferredFormat = presentInfo.surfaceFormat;
    swapchainDesc.preferredExtent = {extent.width, extent.height}; // New extent

    configure_vulkan_wm_swapchain(root, backend, swapchainDesc, presentInfo);

    create_vulkan_wm_swapchain(root, backend, presentInfo);
}
예제 #5
0
void SwapChain::DestroySwapChain()
{
  if (m_swap_chain == VK_NULL_HANDLE)
    return;

  vkDestroySwapchainKHR(g_vulkan_context->GetDevice(), m_swap_chain, nullptr);
  m_swap_chain = VK_NULL_HANDLE;
}
예제 #6
0
void SurfaceWindow::resize(int w, int h) {
    mWidth = w;
    mHeight = h;

    vkDestroySwapchainKHR(mDevice, mSwapchain, nullptr);
    createSwapchain();
    mNeedToInit = true;
}
예제 #7
0
 void VulkanWindow::FinalizeSwapchain()
 {
     if ( mVkSwapchainKHR != VK_NULL_HANDLE )
     {
         vkDestroySwapchainKHR ( mVulkanRenderer.GetDevice(), mVkSwapchainKHR, nullptr );
         mVkSwapchainKHR = VK_NULL_HANDLE;
     }
 }
예제 #8
0
void VulkanContext::DestroyObjects() {
	ILOG("VulkanContext::DestroyObjects (including swapchain)");
	if (swapchain_ != VK_NULL_HANDLE)
		vkDestroySwapchainKHR(device_, swapchain_, nullptr);
	swapchain_ = VK_NULL_HANDLE;

	vkDestroySurfaceKHR(instance_, surface_, nullptr);
	surface_ = VK_NULL_HANDLE;
}
예제 #9
0
			void VkContext::Destroy() {
				vkDeviceWaitIdle(dev);

				// Free command buffers
				if (drawCmdBuffers.size() > 0) {
					vkFreeCommandBuffers(dev, cmdPool, (u32)drawCmdBuffers.size(),
						&drawCmdBuffers[0]);
				}

				// Destroy command pools
				vkDestroyCommandPool(dev, cmdPool, nullptr);

				// Destroy semaphores
				vkDestroySemaphore(dev, acquireCompleteSemaphore, nullptr);
				vkDestroySemaphore(dev, renderCompleteSemaphore, nullptr);

				// Destroy swapchain image views
				for (u32 i = 0; i < swapchainImageViews.size(); i++) {
					vkDestroyImageView(dev, swapchainImageViews[i], nullptr);
				}

				// Destroy swapchain
				if (swapchain) {
					vkDestroySwapchainKHR(dev, swapchain, nullptr);
				}

				// Destroy surface
				if (surf) {
					vkDestroySurfaceKHR(instance, surf, nullptr);
				}

				// Destroy device
				if (dev) {
					vkDestroyDevice(dev, nullptr);
				}

#ifdef VOXL_DEBUG
				// Destroy debug report callback
				if (msgCallback != VK_NULL_HANDLE) {
					vkDestroyDebugReportCallbackEXT(instance, msgCallback, nullptr);
				}
#endif

				// Destroy instance
				if (instance) {
					vkDestroyInstance(instance, nullptr);
				}

				// Terminate GLFW
				glfwTerminate();
			}
예제 #10
0
파일: Swapchain.cpp 프로젝트: Ryp/Reaper
void destroy_vulkan_wm_swapchain(ReaperRoot& root, const VulkanBackend& backend, PresentationInfo& presentInfo)
{
    REAPER_PROFILE_SCOPE("Vulkan", MP_RED);
    log_debug(root, "vulkan: destroying wm swapchain");

    vkDestroySemaphore(backend.device, presentInfo.imageAvailableSemaphore, nullptr);
    vkDestroySemaphore(backend.device, presentInfo.renderingFinishedSemaphore, nullptr);

    destroy_swapchain_framebuffers(backend, presentInfo);
    destroy_swapchain_renderpass(backend, presentInfo);

    vkDestroySwapchainKHR(backend.device, presentInfo.swapchain, nullptr);
    presentInfo.swapchain = VK_NULL_HANDLE;
}
MicroSwapchain::~MicroSwapchain()
{
	const VkDevice dev = m_factory->m_gr->getDevice();

	for(TexturePtr& tex : m_textures)
	{
		tex.reset(nullptr);
	}

	if(m_swapchain)
	{
		vkDestroySwapchainKHR(dev, m_swapchain, nullptr);
		m_swapchain = {};
	}
}
예제 #12
0
	SwapChain::~SwapChain()
	{
		if (VK_NULL_HANDLE != mVkSurfaceKHR)
		{
			const VulkanRenderer& vulkanRenderer = static_cast<VulkanRenderer&>(getRenderer());
			const VkDevice vkDevice = vulkanRenderer.getContext().getVkDevice();
			for (uint32_t i = 0; i < mSwapchainImageCount; ++i)
			{
				vkDestroyImageView(vkDevice, mSwapChainBuffer[i].view, nullptr);
			}
			if (VK_NULL_HANDLE != mVkSwapchainKHR)
			{
				vkDestroySwapchainKHR(vkDevice, mVkSwapchainKHR, nullptr);
			}
			vkDestroySurfaceKHR(vulkanRenderer.getVulkanRuntimeLinking().getVkInstance(), mVkSurfaceKHR, nullptr);
		}
	}
예제 #13
0
    void cleanup() {
        vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
        vkDestroyRenderPass(device, renderPass, nullptr);

        for (auto imageView : swapChainImageViews) {
            vkDestroyImageView(device, imageView, nullptr);
        }

        vkDestroySwapchainKHR(device, swapChain, nullptr);
        vkDestroyDevice(device, nullptr);
        DestroyDebugReportCallbackEXT(instance, callback, nullptr);
        vkDestroySurfaceKHR(instance, surface, nullptr);
        vkDestroyInstance(instance, nullptr);

        glfwDestroyWindow(window);

        glfwTerminate();
    }
예제 #14
0
void _agpu_swap_chain::lostReferences()
{
    if (graphicsQueue)
        graphicsQueue->release();
    if (presentationQueue)
        presentationQueue->release();

    for (auto fb : framebuffers)
    {
        if(fb)
            fb->release();
    }

    for(auto semaphore : semaphores)
    {
        if(semaphore)
            vkDestroySemaphore(device->device, semaphore, nullptr);
    }

    if (handle)
        vkDestroySwapchainKHR(device->device, handle, nullptr);
    if(surface)
        vkDestroySurfaceKHR(device->vulkanInstance, surface, nullptr);
}
예제 #15
0
void Window::_DeInitSwapchain()
{
	vkDestroySwapchainKHR( _renderer->GetVulkanDevice(), _swapchain, nullptr );
}
예제 #16
0
	int XdevLSwapChainVulkan::destroy() {
		vkDestroySwapchainKHR(m_device, m_swapChain, nullptr);
		return 0;
	}
예제 #17
0
파일: main.cpp 프로젝트: Unix4ever/engine
static void resize_vulkan(GLFWwindow* /*window*/, int w, int h)
{
    VkResult err;
    VkSwapchainKHR old_swapchain = g_Swapchain;
    err = vkDeviceWaitIdle(g_Device);
    check_vk_result(err);

    // Destroy old Framebuffer:
    for (uint32_t i = 0; i < g_BackBufferCount; i++)
        if (g_BackBufferView[i])
            vkDestroyImageView(g_Device, g_BackBufferView[i], g_Allocator);
    for (uint32_t i = 0; i < g_BackBufferCount; i++)
        if (g_Framebuffer[i])
            vkDestroyFramebuffer(g_Device, g_Framebuffer[i], g_Allocator);
    if (g_RenderPass)
        vkDestroyRenderPass(g_Device, g_RenderPass, g_Allocator);

    // Create Swapchain:
    {
        VkSwapchainCreateInfoKHR info = {};
        info.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
        info.surface = g_Surface;
        info.imageFormat = g_SurfaceFormat.format;
        info.imageColorSpace = g_SurfaceFormat.colorSpace;
        info.imageArrayLayers = 1;
        info.imageUsage |= VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
        info.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
        info.preTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
        info.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
        info.presentMode = g_PresentMode;
        info.clipped = VK_TRUE;
        info.oldSwapchain = old_swapchain;
        VkSurfaceCapabilitiesKHR cap;
        err = vkGetPhysicalDeviceSurfaceCapabilitiesKHR(g_Gpu, g_Surface, &cap);
        check_vk_result(err);
        if (cap.maxImageCount > 0)
            info.minImageCount = (cap.minImageCount + 2 < cap.maxImageCount) ? (cap.minImageCount + 2) : cap.maxImageCount;
        else
            info.minImageCount = cap.minImageCount + 2;

        if (cap.currentExtent.width == 0xffffffff)
        {
            fb_width = w;
            fb_height = h;
            info.imageExtent.width = fb_width;
            info.imageExtent.height = fb_height;
        }
        else
        {
            fb_width = cap.currentExtent.width;
            fb_height = cap.currentExtent.height;
            info.imageExtent.width = fb_width;
            info.imageExtent.height = fb_height;
        }
        err = vkCreateSwapchainKHR(g_Device, &info, g_Allocator, &g_Swapchain);
        check_vk_result(err);
        err = vkGetSwapchainImagesKHR(g_Device, g_Swapchain, &g_BackBufferCount, NULL);
        check_vk_result(err);
        err = vkGetSwapchainImagesKHR(g_Device, g_Swapchain, &g_BackBufferCount, g_BackBuffer);
        check_vk_result(err);
    }
    if (old_swapchain)
        vkDestroySwapchainKHR(g_Device, old_swapchain, g_Allocator);

    // Create the Render Pass:
    {
        VkAttachmentDescription attachment = {};
        attachment.format = g_SurfaceFormat.format;
        attachment.samples = VK_SAMPLE_COUNT_1_BIT;
        attachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
        attachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
        attachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
        attachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
        attachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
        attachment.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
        VkAttachmentReference color_attachment = {};
        color_attachment.attachment = 0;
        color_attachment.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
        VkSubpassDescription subpass = {};
        subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
        subpass.colorAttachmentCount = 1;
        subpass.pColorAttachments = &color_attachment;
        VkRenderPassCreateInfo info = {};
        info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
        info.attachmentCount = 1;
        info.pAttachments = &attachment;
        info.subpassCount = 1;
        info.pSubpasses = &subpass;
        err = vkCreateRenderPass(g_Device, &info, g_Allocator, &g_RenderPass);
        check_vk_result(err);
    }

    // Create The Image Views
    {
        VkImageViewCreateInfo info = {};
        info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
        info.viewType = VK_IMAGE_VIEW_TYPE_2D;
        info.format = g_SurfaceFormat.format;
        info.components.r = VK_COMPONENT_SWIZZLE_R;
        info.components.g = VK_COMPONENT_SWIZZLE_G;
        info.components.b = VK_COMPONENT_SWIZZLE_B;
        info.components.a = VK_COMPONENT_SWIZZLE_A;
        info.subresourceRange = g_ImageRange;
        for (uint32_t i = 0; i < g_BackBufferCount; i++)
        {
            info.image = g_BackBuffer[i];
            err = vkCreateImageView(g_Device, &info, g_Allocator, &g_BackBufferView[i]);
            check_vk_result(err);
        }
    }

    // Create Framebuffer:
    {
        VkImageView attachment[1];
        VkFramebufferCreateInfo info = {};
        info.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
        info.renderPass = g_RenderPass;
        info.attachmentCount = 1;
        info.pAttachments = attachment;
        info.width = fb_width;
        info.height = fb_height;
        info.layers = 1;
        for (uint32_t i = 0; i < g_BackBufferCount; i++)
        {
            attachment[0] = g_BackBufferView[i];
            err = vkCreateFramebuffer(g_Device, &info, g_Allocator, &g_Framebuffer[i]);
            check_vk_result(err);
        }
    }
}
예제 #18
0
void createSwapChainAndImages(VulkanContext& context, VulkanSurfaceContext& surfaceContext) {
    // Pick an image count and format.  According to section 30.5 of VK 1.1, maxImageCount of zero
    // apparently means "that there is no limit on the number of images, though there may be limits
    // related to the total amount of memory used by presentable images."
    uint32_t desiredImageCount = 2;
    const uint32_t maxImageCount = surfaceContext.surfaceCapabilities.maxImageCount;
    if (desiredImageCount < surfaceContext.surfaceCapabilities.minImageCount ||
            (maxImageCount != 0 && desiredImageCount > maxImageCount)) {
        utils::slog.e << "Swap chain does not support " << desiredImageCount << " images.\n";
        desiredImageCount = surfaceContext.surfaceCapabilities.minImageCount;
    }
    surfaceContext.surfaceFormat = surfaceContext.surfaceFormats[0];
    for (const VkSurfaceFormatKHR& format : surfaceContext.surfaceFormats) {
        if (format.format == VK_FORMAT_R8G8B8A8_UNORM) {
            surfaceContext.surfaceFormat = format;
            break;
        }
    }
    const auto compositionCaps = surfaceContext.surfaceCapabilities.supportedCompositeAlpha;
    const auto compositeAlpha = (compositionCaps & VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR) ?
            VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR : VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;

    // Create the low-level swap chain.
    const auto size = surfaceContext.surfaceCapabilities.currentExtent;
    VkSwapchainCreateInfoKHR createInfo {
        .sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR,
        .surface = surfaceContext.surface,
        .minImageCount = desiredImageCount,
        .imageFormat = surfaceContext.surfaceFormat.format,
        .imageColorSpace = surfaceContext.surfaceFormat.colorSpace,
        .imageExtent = size,
        .imageArrayLayers = 1,
        .imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT,
        .preTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR,
        .compositeAlpha = compositeAlpha,
        .presentMode = VK_PRESENT_MODE_FIFO_KHR,
        .clipped = VK_TRUE
    };
    VkSwapchainKHR swapchain;
    VkResult result = vkCreateSwapchainKHR(context.device, &createInfo, VKALLOC, &swapchain);
    ASSERT_POSTCONDITION(result == VK_SUCCESS, "vkGetPhysicalDeviceSurfaceFormatsKHR error.");
    surfaceContext.swapchain = swapchain;

    // Extract the VkImage handles from the swap chain.
    uint32_t imageCount;
    result = vkGetSwapchainImagesKHR(context.device, swapchain, &imageCount, nullptr);
    ASSERT_POSTCONDITION(result == VK_SUCCESS, "vkGetSwapchainImagesKHR count error.");
    surfaceContext.swapContexts.resize(imageCount);
    std::vector<VkImage> images(imageCount);
    result = vkGetSwapchainImagesKHR(context.device, swapchain, &imageCount,
            images.data());
    ASSERT_POSTCONDITION(result == VK_SUCCESS, "vkGetSwapchainImagesKHR error.");
    for (size_t i = 0; i < images.size(); ++i) {
        surfaceContext.swapContexts[i].attachment = {
            .image = images[i],
            .format = surfaceContext.surfaceFormat.format
        };
    }
    utils::slog.i
            << "vkCreateSwapchain"
            << ": " << size.width << "x" << size.height
            << ", " << surfaceContext.surfaceFormat.format
            << ", " << surfaceContext.surfaceFormat.colorSpace
            << ", " << imageCount
            << utils::io::endl;

    // Create image views.
    VkImageViewCreateInfo ivCreateInfo = {};
    ivCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
    ivCreateInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
    ivCreateInfo.format = surfaceContext.surfaceFormat.format;
    ivCreateInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
    ivCreateInfo.subresourceRange.levelCount = 1;
    ivCreateInfo.subresourceRange.layerCount = 1;
    for (size_t i = 0; i < images.size(); ++i) {
        ivCreateInfo.image = images[i];
        result = vkCreateImageView(context.device, &ivCreateInfo, VKALLOC,
                &surfaceContext.swapContexts[i].attachment.view);
        ASSERT_POSTCONDITION(result == VK_SUCCESS, "vkCreateImageView error.");
    }

    createSemaphore(context.device, &surfaceContext.imageAvailable);
    createSemaphore(context.device, &surfaceContext.renderingFinished);

    surfaceContext.depth = {};
}

void createDepthBuffer(VulkanContext& context, VulkanSurfaceContext& surfaceContext,
        VkFormat depthFormat) {
    assert(context.cmdbuffer);

    // Create an appropriately-sized device-only VkImage.
    const auto size = surfaceContext.surfaceCapabilities.currentExtent;
    VkImage depthImage;
    VkImageCreateInfo imageInfo {
        .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
        .imageType = VK_IMAGE_TYPE_2D,
        .extent = { size.width, size.height, 1 },
        .format = depthFormat,
        .mipLevels = 1,
        .arrayLayers = 1,
        .usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
        .samples = VK_SAMPLE_COUNT_1_BIT,
    };
    VkResult error = vkCreateImage(context.device, &imageInfo, VKALLOC, &depthImage);
    ASSERT_POSTCONDITION(!error, "Unable to create depth image.");

    // Allocate memory for the VkImage and bind it.
    VkMemoryRequirements memReqs;
    vkGetImageMemoryRequirements(context.device, depthImage, &memReqs);
    VkMemoryAllocateInfo allocInfo {
        .sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO,
        .allocationSize = memReqs.size,
        .memoryTypeIndex = selectMemoryType(context, memReqs.memoryTypeBits,
                VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT)
    };
    error = vkAllocateMemory(context.device, &allocInfo, nullptr,
            &surfaceContext.depth.memory);
    ASSERT_POSTCONDITION(!error, "Unable to allocate depth memory.");
    error = vkBindImageMemory(context.device, depthImage, surfaceContext.depth.memory, 0);
    ASSERT_POSTCONDITION(!error, "Unable to bind depth memory.");

    // Create a VkImageView so that we can attach depth to the framebuffer.
    VkImageView depthView;
    VkImageViewCreateInfo viewInfo {
        .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
        .image = depthImage,
        .viewType = VK_IMAGE_VIEW_TYPE_2D,
        .format = depthFormat,
        .subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT,
        .subresourceRange.levelCount = 1,
        .subresourceRange.layerCount = 1,
    };
    error = vkCreateImageView(context.device, &viewInfo, VKALLOC, &depthView);
    ASSERT_POSTCONDITION(!error, "Unable to create depth view.");

    // Transition the depth image into an optimal layout.
    VkImageMemoryBarrier barrier {
        .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
        .newLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
        .srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
        .dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
        .image = depthImage,
        .subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT,
        .subresourceRange.levelCount = 1,
        .subresourceRange.layerCount = 1,
        .dstAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT
    };
    vkCmdPipelineBarrier(context.cmdbuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
            VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT, 0, 0, nullptr, 0, nullptr, 1, &barrier);

    // Go ahead and set the depth attachment fields, which serves as a signal to VulkanDriver that
    // it is now ready.
    surfaceContext.depth.view = depthView;
    surfaceContext.depth.image = depthImage;
    surfaceContext.depth.format = depthFormat;
}

void transitionDepthBuffer(VulkanContext& context, VulkanSurfaceContext& sc, VkFormat depthFormat) {
    // Begin a new command buffer solely for the purpose of transitioning the image layout.
    SwapContext& swap = getSwapContext(context);
    VkResult result = vkWaitForFences(context.device, 1, &swap.fence, VK_FALSE, UINT64_MAX);
    ASSERT_POSTCONDITION(result == VK_SUCCESS, "vkWaitForFences error.");
    result = vkResetFences(context.device, 1, &swap.fence);
    ASSERT_POSTCONDITION(result == VK_SUCCESS, "vkResetFences error.");
    VkCommandBuffer cmdbuffer = swap.cmdbuffer;
    result = vkResetCommandBuffer(cmdbuffer, 0);
    ASSERT_POSTCONDITION(result == VK_SUCCESS, "vkResetCommandBuffer error.");
    VkCommandBufferBeginInfo beginInfo = {
        .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
        .flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT,
    };
    result = vkBeginCommandBuffer(cmdbuffer, &beginInfo);
    ASSERT_POSTCONDITION(result == VK_SUCCESS, "vkBeginCommandBuffer error.");
    context.cmdbuffer = cmdbuffer;

    // Create the depth buffer and issue a pipeline barrier command.
    createDepthBuffer(context, sc, depthFormat);

    // Flush the command buffer.
    result = vkEndCommandBuffer(context.cmdbuffer);
    ASSERT_POSTCONDITION(result == VK_SUCCESS, "vkEndCommandBuffer error.");
    context.cmdbuffer = nullptr;
    VkSubmitInfo submitInfo {
        .sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
        .commandBufferCount = 1,
        .pCommandBuffers = &swap.cmdbuffer,
    };
    result = vkQueueSubmit(context.graphicsQueue, 1, &submitInfo, swap.fence);
    ASSERT_POSTCONDITION(result == VK_SUCCESS, "vkQueueSubmit error.");
    swap.submitted = false;
}

void createCommandBuffersAndFences(VulkanContext& context, VulkanSurfaceContext& surfaceContext) {
    // Allocate command buffers.
    VkCommandBufferAllocateInfo allocateInfo = {};
    allocateInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
    allocateInfo.commandPool = context.commandPool;
    allocateInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
    allocateInfo.commandBufferCount = (uint32_t) surfaceContext.swapContexts.size();
    std::vector<VkCommandBuffer> cmdbufs(allocateInfo.commandBufferCount);
    VkResult result = vkAllocateCommandBuffers(context.device, &allocateInfo, cmdbufs.data());
    ASSERT_POSTCONDITION(result == VK_SUCCESS, "vkAllocateCommandBuffers error.");
    for (uint32_t i = 0; i < allocateInfo.commandBufferCount; ++i) {
        surfaceContext.swapContexts[i].cmdbuffer = cmdbufs[i];
    }

    // Create fences.
    VkFenceCreateInfo fenceCreateInfo = {};
    fenceCreateInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
    fenceCreateInfo.flags = VK_FENCE_CREATE_SIGNALED_BIT;
    for (uint32_t i = 0; i < allocateInfo.commandBufferCount; i++) {
        result = vkCreateFence(context.device, &fenceCreateInfo, VKALLOC,
                &surfaceContext.swapContexts[i].fence);
        ASSERT_POSTCONDITION(result == VK_SUCCESS, "vkCreateFence error.");
    }
}

void destroySurfaceContext(VulkanContext& context, VulkanSurfaceContext& surfaceContext) {
    for (SwapContext& swapContext : surfaceContext.swapContexts) {
        vkFreeCommandBuffers(context.device, context.commandPool, 1, &swapContext.cmdbuffer);
        vkDestroyFence(context.device, swapContext.fence, VKALLOC);
        vkDestroyImageView(context.device, swapContext.attachment.view, VKALLOC);
        swapContext.fence = VK_NULL_HANDLE;
        swapContext.attachment.view = VK_NULL_HANDLE;
    }
    vkDestroySwapchainKHR(context.device, surfaceContext.swapchain, VKALLOC);
    vkDestroySemaphore(context.device, surfaceContext.imageAvailable, VKALLOC);
    vkDestroySemaphore(context.device, surfaceContext.renderingFinished, VKALLOC);
    vkDestroySurfaceKHR(context.instance, surfaceContext.surface, VKALLOC);
    vkDestroyImageView(context.device, surfaceContext.depth.view, VKALLOC);
    vkDestroyImage(context.device, surfaceContext.depth.image, VKALLOC);
    vkFreeMemory(context.device, surfaceContext.depth.memory, VKALLOC);
    if (context.currentSurface == &surfaceContext) {
        context.currentSurface = nullptr;
    }
}

uint32_t selectMemoryType(VulkanContext& context, uint32_t flags, VkFlags reqs) {
    for (uint32_t i = 0; i < VK_MAX_MEMORY_TYPES; i++) {
        if (flags & 1) {
            if ((context.memoryProperties.memoryTypes[i].propertyFlags & reqs) == reqs) {
                return i;
            }
        }
        flags >>= 1;
    }
    ASSERT_POSTCONDITION(false, "Unable to find a memory type that meets requirements.");
    return (uint32_t) ~0ul;
}

VkFormat getVkFormat(ElementType type, bool normalized) {
    using ElementType = ElementType;
    if (normalized) {
        switch (type) {
            // Single Component Types
            case ElementType::BYTE: return VK_FORMAT_R8_SNORM;
            case ElementType::UBYTE: return VK_FORMAT_R8_UNORM;
            case ElementType::SHORT: return VK_FORMAT_R16_SNORM;
            case ElementType::USHORT: return VK_FORMAT_R16_UNORM;
            // Two Component Types
            case ElementType::BYTE2: return VK_FORMAT_R8G8_SNORM;
            case ElementType::UBYTE2: return VK_FORMAT_R8G8_UNORM;
            case ElementType::SHORT2: return VK_FORMAT_R16G16_SNORM;
            case ElementType::USHORT2: return VK_FORMAT_R16G16_UNORM;
            // Three Component Types
            case ElementType::BYTE3: return VK_FORMAT_R8G8B8_SNORM;
            case ElementType::UBYTE3: return VK_FORMAT_R8G8B8_UNORM;
            case ElementType::SHORT3: return VK_FORMAT_R16G16B16_SNORM;
            case ElementType::USHORT3: return VK_FORMAT_R16G16B16_UNORM;
            // Four Component Types
            case ElementType::BYTE4: return VK_FORMAT_R8G8B8A8_SNORM;
            case ElementType::UBYTE4: return VK_FORMAT_R8G8B8A8_UNORM;
            case ElementType::SHORT4: return VK_FORMAT_R16G16B16A16_SNORM;
            case ElementType::USHORT4: return VK_FORMAT_R16G16B16A16_UNORM;
            default:
                ASSERT_POSTCONDITION(false, "Normalized format does not exist.");
                return VK_FORMAT_UNDEFINED;
        }
    }
    switch (type) {
        // Single Component Types
        case ElementType::BYTE: return VK_FORMAT_R8_SINT;
        case ElementType::UBYTE: return VK_FORMAT_R8_UINT;
        case ElementType::SHORT: return VK_FORMAT_R16_SINT;
        case ElementType::USHORT: return VK_FORMAT_R16_UINT;
        case ElementType::HALF: return VK_FORMAT_R16_SFLOAT;
        case ElementType::INT: return VK_FORMAT_R32_SINT;
        case ElementType::UINT: return VK_FORMAT_R32_UINT;
        case ElementType::FLOAT: return VK_FORMAT_R32_SFLOAT;
        // Two Component Types
        case ElementType::BYTE2: return VK_FORMAT_R8G8_SINT;
        case ElementType::UBYTE2: return VK_FORMAT_R8G8_UINT;
        case ElementType::SHORT2: return VK_FORMAT_R16G16_SINT;
        case ElementType::USHORT2: return VK_FORMAT_R16G16_UINT;
        case ElementType::HALF2: return VK_FORMAT_R16G16_SFLOAT;
        case ElementType::FLOAT2: return VK_FORMAT_R32G32_SFLOAT;
        // Three Component Types
        case ElementType::BYTE3: return VK_FORMAT_R8G8B8_SINT;
        case ElementType::UBYTE3: return VK_FORMAT_R8G8B8_UINT;
        case ElementType::SHORT3: return VK_FORMAT_R16G16B16_SINT;
        case ElementType::USHORT3: return VK_FORMAT_R16G16B16_UINT;
        case ElementType::HALF3: return VK_FORMAT_R16G16B16_SFLOAT;
        case ElementType::FLOAT3: return VK_FORMAT_R32G32B32_SFLOAT;
        // Four Component Types
        case ElementType::BYTE4: return VK_FORMAT_R8G8B8A8_SINT;
        case ElementType::UBYTE4: return VK_FORMAT_R8G8B8A8_UINT;
        case ElementType::SHORT4: return VK_FORMAT_R16G16B16A16_SINT;
        case ElementType::USHORT4: return VK_FORMAT_R16G16B16A16_UINT;
        case ElementType::HALF4: return VK_FORMAT_R16G16B16A16_SFLOAT;
        case ElementType::FLOAT4: return VK_FORMAT_R32G32B32A32_SFLOAT;
    }
    return VK_FORMAT_UNDEFINED;
}

VkFormat getVkFormat(TextureFormat format) {
    using TextureFormat = TextureFormat;
    switch (format) {
        // 8 bits per element.
        case TextureFormat::R8:                return VK_FORMAT_R8_UNORM;
        case TextureFormat::R8_SNORM:          return VK_FORMAT_R8_SNORM;
        case TextureFormat::R8UI:              return VK_FORMAT_R8_UINT;
        case TextureFormat::R8I:               return VK_FORMAT_R8_SINT;
        case TextureFormat::STENCIL8:          return VK_FORMAT_S8_UINT;

        // 16 bits per element.
        case TextureFormat::R16F:              return VK_FORMAT_R16_SFLOAT;
        case TextureFormat::R16UI:             return VK_FORMAT_R16_UINT;
        case TextureFormat::R16I:              return VK_FORMAT_R16_SINT;
        case TextureFormat::RG8:               return VK_FORMAT_R8G8_UNORM;
        case TextureFormat::RG8_SNORM:         return VK_FORMAT_R8G8_SNORM;
        case TextureFormat::RG8UI:             return VK_FORMAT_R8G8_UINT;
        case TextureFormat::RG8I:              return VK_FORMAT_R8G8_SINT;
        case TextureFormat::RGB565:            return VK_FORMAT_R5G6B5_UNORM_PACK16;
        case TextureFormat::RGB5_A1:           return VK_FORMAT_R5G5B5A1_UNORM_PACK16;
        case TextureFormat::RGBA4:             return VK_FORMAT_R4G4B4A4_UNORM_PACK16;
        case TextureFormat::DEPTH16:           return VK_FORMAT_D16_UNORM;

        // 24 bits per element. In practice, very few GPU vendors support these. For simplicity
        // we just assume they are not supported, not bothering to query the device capabilities.
        // Note that VK_FORMAT_ enums for 24-bit formats exist, but are meant for vertex attributes.
        case TextureFormat::RGB8:
        case TextureFormat::SRGB8:
        case TextureFormat::RGB8_SNORM:
        case TextureFormat::RGB8UI:
        case TextureFormat::RGB8I:
        case TextureFormat::DEPTH24:
            return VK_FORMAT_UNDEFINED;

        // 32 bits per element.
        case TextureFormat::R32F:              return VK_FORMAT_R32_SFLOAT;
        case TextureFormat::R32UI:             return VK_FORMAT_R32_UINT;
        case TextureFormat::R32I:              return VK_FORMAT_R32_SINT;
        case TextureFormat::RG16F:             return VK_FORMAT_R16G16_SFLOAT;
        case TextureFormat::RG16UI:            return VK_FORMAT_R16G16_UINT;
        case TextureFormat::RG16I:             return VK_FORMAT_R16G16_SINT;
        case TextureFormat::R11F_G11F_B10F:    return VK_FORMAT_B10G11R11_UFLOAT_PACK32;
        case TextureFormat::RGB9_E5:           return VK_FORMAT_E5B9G9R9_UFLOAT_PACK32;
        case TextureFormat::RGBA8:             return VK_FORMAT_R8G8B8A8_UNORM;
        case TextureFormat::SRGB8_A8:          return VK_FORMAT_R8G8B8A8_SRGB;
        case TextureFormat::RGBA8_SNORM:       return VK_FORMAT_R8G8B8A8_SNORM;
        case TextureFormat::RGBM:              return VK_FORMAT_R8G8B8A8_UNORM;
        case TextureFormat::RGB10_A2:          return VK_FORMAT_A2R10G10B10_UNORM_PACK32;
        case TextureFormat::RGBA8UI:           return VK_FORMAT_R8G8B8A8_UINT;
        case TextureFormat::RGBA8I:            return VK_FORMAT_R8G8B8A8_SINT;
        case TextureFormat::DEPTH32F:          return VK_FORMAT_D32_SFLOAT;
        case TextureFormat::DEPTH24_STENCIL8:  return VK_FORMAT_D24_UNORM_S8_UINT;
        case TextureFormat::DEPTH32F_STENCIL8: return VK_FORMAT_D32_SFLOAT_S8_UINT;

        // 48 bits per element. Note that many GPU vendors do not support these.
        case TextureFormat::RGB16F:            return VK_FORMAT_R16G16B16_SFLOAT;
        case TextureFormat::RGB16UI:           return VK_FORMAT_R16G16B16_UINT;
        case TextureFormat::RGB16I:            return VK_FORMAT_R16G16B16_SINT;

        // 64 bits per element.
        case TextureFormat::RG32F:             return VK_FORMAT_R32G32_SFLOAT;
        case TextureFormat::RG32UI:            return VK_FORMAT_R32G32_UINT;
        case TextureFormat::RG32I:             return VK_FORMAT_R32G32_SINT;
        case TextureFormat::RGBA16F:           return VK_FORMAT_R16G16B16A16_SFLOAT;
        case TextureFormat::RGBA16UI:          return VK_FORMAT_R16G16B16A16_UINT;
        case TextureFormat::RGBA16I:           return VK_FORMAT_R16G16B16A16_SINT;

        // 96-bits per element.
        case TextureFormat::RGB32F:            return VK_FORMAT_R32G32B32_SFLOAT;
        case TextureFormat::RGB32UI:           return VK_FORMAT_R32G32B32_UINT;
        case TextureFormat::RGB32I:            return VK_FORMAT_R32G32B32_SINT;

        // 128-bits per element
        case TextureFormat::RGBA32F:           return VK_FORMAT_R32G32B32A32_SFLOAT;
        case TextureFormat::RGBA32UI:          return VK_FORMAT_R32G32B32A32_UINT;
        case TextureFormat::RGBA32I:           return VK_FORMAT_R32G32B32A32_SINT;

        default:
            return VK_FORMAT_UNDEFINED;
    }
}

uint32_t getBytesPerPixel(TextureFormat format) {
    return details::FTexture::getFormatSize(format);
}

// See also FTexture::computeTextureDataSize, which takes a public-facing Texture format rather
// than a driver-level Texture format, and can account for a specified byte alignment.
uint32_t computeSize(TextureFormat format, uint32_t w, uint32_t h, uint32_t d) {
    const size_t bytesPerTexel = details::FTexture::getFormatSize(format);
    return bytesPerTexel * w * h * d;
}

SwapContext& getSwapContext(VulkanContext& context) {
    VulkanSurfaceContext& surface = *context.currentSurface;
    return surface.swapContexts[surface.currentSwapIndex];
}

bool hasPendingWork(VulkanContext& context) {
    if (context.pendingWork.size() > 0) {
        return true;
    }
    if (context.currentSurface) {
        for (auto& swapContext : context.currentSurface->swapContexts) {
            if (swapContext.pendingWork.size() > 0) {
                return true;
            }
        }
    }
    return false;
}

VkCompareOp getCompareOp(SamplerCompareFunc func) {
    using Compare = driver::SamplerCompareFunc;
    switch (func) {
        case Compare::LE: return VK_COMPARE_OP_LESS_OR_EQUAL;
        case Compare::GE: return VK_COMPARE_OP_GREATER_OR_EQUAL;
        case Compare::L:  return VK_COMPARE_OP_LESS;
        case Compare::G:  return VK_COMPARE_OP_GREATER;
        case Compare::E:  return VK_COMPARE_OP_EQUAL;
        case Compare::NE: return VK_COMPARE_OP_NOT_EQUAL;
        case Compare::A:  return VK_COMPARE_OP_ALWAYS;
        case Compare::N:  return VK_COMPARE_OP_NEVER;
    }
}

VkBlendFactor getBlendFactor(BlendFunction mode) {
    using BlendFunction = filament::driver::BlendFunction;
    switch (mode) {
        case BlendFunction::ZERO:                  return VK_BLEND_FACTOR_ZERO;
        case BlendFunction::ONE:                   return VK_BLEND_FACTOR_ONE;
        case BlendFunction::SRC_COLOR:             return VK_BLEND_FACTOR_SRC_COLOR;
        case BlendFunction::ONE_MINUS_SRC_COLOR:   return VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR;
        case BlendFunction::DST_COLOR:             return VK_BLEND_FACTOR_DST_COLOR;
        case BlendFunction::ONE_MINUS_DST_COLOR:   return VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR;
        case BlendFunction::SRC_ALPHA:             return VK_BLEND_FACTOR_SRC_ALPHA;
        case BlendFunction::ONE_MINUS_SRC_ALPHA:   return VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
        case BlendFunction::DST_ALPHA:             return VK_BLEND_FACTOR_DST_ALPHA;
        case BlendFunction::ONE_MINUS_DST_ALPHA:   return VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA;
        case BlendFunction::SRC_ALPHA_SATURATE:    return VK_BLEND_FACTOR_SRC_ALPHA_SATURATE;
    }
}

void waitForIdle(VulkanContext& context) {
    // If there's no valid GPU then we have nothing to do.
    if (!context.device) {
        return;
    }

    // If there's no surface, then there's no command buffer.
    if (!context.currentSurface) {
        return;
    }

    // First, wait for submitted command buffer(s) to finish.
    VkFence fences[2];
    uint32_t nfences = 0;
    auto& surfaceContext = *context.currentSurface;
    for (auto& swapContext : surfaceContext.swapContexts) {
        assert(nfences < 2);
        if (swapContext.submitted && swapContext.fence) {
            fences[nfences++] = swapContext.fence;
            swapContext.submitted = false;
        }
    }
    if (nfences > 0) {
        vkWaitForFences(context.device, nfences, fences, VK_FALSE, ~0ull);
    }

    // If we don't have any pending work, we're done.
    if (!hasPendingWork(context)) {
        return;
    }

    // We cannot invoke arbitrary commands inside a render pass.
    assert(context.currentRenderPass.renderPass == VK_NULL_HANDLE);

    // Create a one-off command buffer to avoid the cost of swap chain acquisition and to avoid
    // the possibility of SURFACE_LOST. Note that Vulkan command buffers use the Allocate/Free
    // model instead of Create/Destroy and are therefore okay to create at a high frequency.
    VkCommandBuffer cmdbuffer;
    VkFence fence;
    VkCommandBufferBeginInfo beginInfo { .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO };
    VkCommandBufferAllocateInfo allocateInfo = {
        .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,
        .commandPool = context.commandPool,
        .level = VK_COMMAND_BUFFER_LEVEL_PRIMARY,
        .commandBufferCount = 1
    };
    VkFenceCreateInfo fenceCreateInfo { .sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO, };
    vkAllocateCommandBuffers(context.device, &allocateInfo, &cmdbuffer);
    vkCreateFence(context.device, &fenceCreateInfo, VKALLOC, &fence);

    // Keep performing work until there's nothing queued up. This should never iterate more than
    // a couple times because the only work we queue up is for resource transition / reclamation.
    VkPipelineStageFlags waitDestStageMask = VK_PIPELINE_STAGE_TRANSFER_BIT;
    VkSubmitInfo submitInfo {
        .sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
        .pWaitDstStageMask = &waitDestStageMask,
        .commandBufferCount = 1,
        .pCommandBuffers = &cmdbuffer,
    };
    int cycles = 0;
    while (hasPendingWork(context)) {
        if (cycles++ > 2) {
            utils::slog.e << "Unexpected daisychaining of pending work." << utils::io::endl;
            break;
        }
        for (auto& swapContext : context.currentSurface->swapContexts) {
            vkBeginCommandBuffer(cmdbuffer, &beginInfo);
            performPendingWork(context, swapContext, cmdbuffer);
            vkEndCommandBuffer(cmdbuffer);
            vkQueueSubmit(context.graphicsQueue, 1, &submitInfo, fence);
            vkWaitForFences(context.device, 1, &fence, VK_FALSE, UINT64_MAX);
            vkResetFences(context.device, 1, &fence);
            vkResetCommandBuffer(cmdbuffer, 0);
        }
    }
    vkFreeCommandBuffers(context.device, context.commandPool, 1, &cmdbuffer);
    vkDestroyFence(context.device, fence, VKALLOC);
}

void acquireCommandBuffer(VulkanContext& context) {
    // Ask Vulkan for the next image in the swap chain and update the currentSwapIndex.
    VulkanSurfaceContext& surface = *context.currentSurface;
    VkResult result = vkAcquireNextImageKHR(context.device, surface.swapchain,
            UINT64_MAX, surface.imageAvailable, VK_NULL_HANDLE, &surface.currentSwapIndex);
    ASSERT_POSTCONDITION(result != VK_ERROR_OUT_OF_DATE_KHR,
            "Stale / resized swap chain not yet supported.");
    ASSERT_POSTCONDITION(result == VK_SUBOPTIMAL_KHR || result == VK_SUCCESS,
            "vkAcquireNextImageKHR error.");
    SwapContext& swap = getSwapContext(context);

    // Ensure that the previous submission of this command buffer has finished.
    result = vkWaitForFences(context.device, 1, &swap.fence, VK_FALSE, UINT64_MAX);
    ASSERT_POSTCONDITION(result == VK_SUCCESS, "vkWaitForFences error.");

    // Restart the command buffer.
    result = vkResetFences(context.device, 1, &swap.fence);
    ASSERT_POSTCONDITION(result == VK_SUCCESS, "vkResetFences error.");
    VkCommandBuffer cmdbuffer = swap.cmdbuffer;
    VkResult error = vkResetCommandBuffer(cmdbuffer, 0);
    ASSERT_POSTCONDITION(not error, "vkResetCommandBuffer error.");
    VkCommandBufferBeginInfo beginInfo {
        .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
        .flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT,
    };
    error = vkBeginCommandBuffer(cmdbuffer, &beginInfo);
    ASSERT_POSTCONDITION(not error, "vkBeginCommandBuffer error.");
    context.cmdbuffer = cmdbuffer;
    swap.submitted = false;
}

void releaseCommandBuffer(VulkanContext& context) {
    // Finalize the command buffer and set the cmdbuffer pointer to null.
    VkResult result = vkEndCommandBuffer(context.cmdbuffer);
    ASSERT_POSTCONDITION(result == VK_SUCCESS, "vkEndCommandBuffer error.");
    context.cmdbuffer = nullptr;

    // Submit the command buffer.
    VkPipelineStageFlags waitDestStageMask = VK_PIPELINE_STAGE_TRANSFER_BIT;
    VulkanSurfaceContext& surfaceContext = *context.currentSurface;
    SwapContext& swapContext = getSwapContext(context);
    VkSubmitInfo submitInfo {
        .sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
        .waitSemaphoreCount = 1u,
        .pWaitSemaphores = &surfaceContext.imageAvailable,
        .pWaitDstStageMask = &waitDestStageMask,
        .commandBufferCount = 1,
        .pCommandBuffers = &swapContext.cmdbuffer,
        .signalSemaphoreCount = 1u,
        .pSignalSemaphores = &surfaceContext.renderingFinished,
    };
    result = vkQueueSubmit(context.graphicsQueue, 1, &submitInfo, swapContext.fence);
    ASSERT_POSTCONDITION(result == VK_SUCCESS, "vkQueueSubmit error.");
    swapContext.submitted = true;
}

void performPendingWork(VulkanContext& context, SwapContext& swapContext, VkCommandBuffer cmdbuf) {
    // First, execute pending tasks that are specific to this swap context. Copy the tasks into a
    // local queue first, which allows newly added tasks to be deferred until the next frame.
    decltype(swapContext.pendingWork) tasks;
    tasks.swap(swapContext.pendingWork);
    for (auto& callback : tasks) {
        callback(cmdbuf);
    }
    // Next, execute the global pending work. Again, we copy the work queue into a local queue
    // to allow tasks to re-add themselves.
    tasks.clear();
    tasks.swap(context.pendingWork);
    for (auto& callback : tasks) {
        callback(cmdbuf);
    }
}

// Flushes the command buffer and waits for it to finish executing. Useful for diagnosing
// sychronization issues.
void flushCommandBuffer(VulkanContext& context) {
    VulkanSurfaceContext& surface = *context.currentSurface;
    const SwapContext& sc = surface.swapContexts[surface.currentSwapIndex];

    // Submit the command buffer.
    VkResult error = vkEndCommandBuffer(context.cmdbuffer);
    ASSERT_POSTCONDITION(!error, "vkEndCommandBuffer error.");
    VkPipelineStageFlags waitDestStageMask = VK_PIPELINE_STAGE_TRANSFER_BIT;
    VkSubmitInfo submitInfo {
        .sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
        .pWaitDstStageMask = &waitDestStageMask,
        .commandBufferCount = 1,
        .pCommandBuffers = &context.cmdbuffer,
    };
    error = vkQueueSubmit(context.graphicsQueue, 1, &submitInfo, sc.fence);
    ASSERT_POSTCONDITION(!error, "vkQueueSubmit error.");

    // Restart the command buffer.
    error = vkWaitForFences(context.device, 1, &sc.fence, VK_FALSE, UINT64_MAX);
    ASSERT_POSTCONDITION(!error, "vkWaitForFences error.");
    error = vkResetFences(context.device, 1, &sc.fence);
    ASSERT_POSTCONDITION(!error, "vkResetFences error.");
    error = vkResetCommandBuffer(context.cmdbuffer, 0);
    ASSERT_POSTCONDITION(!error, "vkResetCommandBuffer error.");
    VkCommandBufferBeginInfo beginInfo {
        .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
        .flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT,
    };
    error = vkBeginCommandBuffer(context.cmdbuffer, &beginInfo);
    ASSERT_POSTCONDITION(!error, "vkBeginCommandBuffer error.");
}

VkFormat findSupportedFormat(VulkanContext& context, const std::vector<VkFormat>& candidates,
        VkImageTiling tiling, VkFormatFeatureFlags features) {
    for (VkFormat format : candidates) {
        VkFormatProperties props;
        vkGetPhysicalDeviceFormatProperties(context.physicalDevice, format, &props);
        if (tiling == VK_IMAGE_TILING_LINEAR &&
                (props.linearTilingFeatures & features) == features) {
            return format;
        } else if (tiling == VK_IMAGE_TILING_OPTIMAL &&
                (props.optimalTilingFeatures & features) == features) {
            return format;
        }
    }
    return VK_FORMAT_UNDEFINED;
}

} // namespace filament
} // namespace driver
예제 #19
0
SurfaceWindow::~SurfaceWindow() {
    vkDestroySwapchainKHR(mDevice, mSwapchain, nullptr);
    vkDestroySurfaceKHR(mInstance, mSurface, nullptr);
}
  bool VulkanCommon::CreateSwapChain() {
    if( Vulkan.Device != VK_NULL_HANDLE ) {
      vkDeviceWaitIdle( Vulkan.Device );
    }

    for( size_t i = 0; i < Vulkan.SwapChain.Images.size(); ++i ) {
      if( Vulkan.SwapChain.Images[i].ImageView != VK_NULL_HANDLE ) {
        vkDestroyImageView( GetDevice(), Vulkan.SwapChain.Images[i].ImageView, nullptr );
        Vulkan.SwapChain.Images[i].ImageView = VK_NULL_HANDLE;
      }
    }
    Vulkan.SwapChain.Images.clear();

    VkSurfaceCapabilitiesKHR surface_capabilities;
    if( vkGetPhysicalDeviceSurfaceCapabilitiesKHR( Vulkan.PhysicalDevice, Vulkan.PresentationSurface, &surface_capabilities ) != VK_SUCCESS ) {
      std::cout << "Could not check presentation surface capabilities!" << std::endl;
      return false;
    }

    uint32_t formats_count;
    if( (vkGetPhysicalDeviceSurfaceFormatsKHR( Vulkan.PhysicalDevice, Vulkan.PresentationSurface, &formats_count, nullptr ) != VK_SUCCESS) ||
        (formats_count == 0) ) {
      std::cout << "Error occurred during presentation surface formats enumeration!" << std::endl;
      return false;
    }

    std::vector<VkSurfaceFormatKHR> surface_formats( formats_count );
    if( vkGetPhysicalDeviceSurfaceFormatsKHR( Vulkan.PhysicalDevice, Vulkan.PresentationSurface, &formats_count, &surface_formats[0] ) != VK_SUCCESS ) {
      std::cout << "Error occurred during presentation surface formats enumeration!" << std::endl;
      return false;
    }

    uint32_t present_modes_count;
    if( (vkGetPhysicalDeviceSurfacePresentModesKHR( Vulkan.PhysicalDevice, Vulkan.PresentationSurface, &present_modes_count, nullptr ) != VK_SUCCESS) ||
        (present_modes_count == 0) ) {
      std::cout << "Error occurred during presentation surface present modes enumeration!" << std::endl;
      return false;
    }

    std::vector<VkPresentModeKHR> present_modes( present_modes_count );
    if( vkGetPhysicalDeviceSurfacePresentModesKHR( Vulkan.PhysicalDevice, Vulkan.PresentationSurface, &present_modes_count, &present_modes[0] ) != VK_SUCCESS ) {
      std::cout << "Error occurred during presentation surface present modes enumeration!" << std::endl;
      return false;
    }

    uint32_t                      desired_number_of_images = GetSwapChainNumImages( surface_capabilities );
    VkSurfaceFormatKHR            desired_format = GetSwapChainFormat( surface_formats );
    VkExtent2D                    desired_extent = GetSwapChainExtent( surface_capabilities );
    VkImageUsageFlags             desired_usage = GetSwapChainUsageFlags( surface_capabilities );
    VkSurfaceTransformFlagBitsKHR desired_transform = GetSwapChainTransform( surface_capabilities );
    VkPresentModeKHR              desired_present_mode = GetSwapChainPresentMode( present_modes );
    VkSwapchainKHR                old_swap_chain = Vulkan.SwapChain.Handle;

    if( static_cast<int>(desired_usage) == -1 ) {
      return false;
    }
    if( static_cast<int>(desired_present_mode) == -1 ) {
      return false;
    }

    VkSwapchainCreateInfoKHR swap_chain_create_info = {
      VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR,  // VkStructureType                sType
      nullptr,                                      // const void                    *pNext
      0,                                            // VkSwapchainCreateFlagsKHR      flags
      Vulkan.PresentationSurface,                   // VkSurfaceKHR                   surface
      desired_number_of_images,                     // uint32_t                       minImageCount
      desired_format.format,                        // VkFormat                       imageFormat
      desired_format.colorSpace,                    // VkColorSpaceKHR                imageColorSpace
      desired_extent,                               // VkExtent2D                     imageExtent
      1,                                            // uint32_t                       imageArrayLayers
      desired_usage,                                // VkImageUsageFlags              imageUsage
      VK_SHARING_MODE_EXCLUSIVE,                    // VkSharingMode                  imageSharingMode
      0,                                            // uint32_t                       queueFamilyIndexCount
      nullptr,                                      // const uint32_t                *pQueueFamilyIndices
      desired_transform,                            // VkSurfaceTransformFlagBitsKHR  preTransform
      VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR,            // VkCompositeAlphaFlagBitsKHR    compositeAlpha
      desired_present_mode,                         // VkPresentModeKHR               presentMode
      VK_TRUE,                                      // VkBool32                       clipped
      old_swap_chain                                // VkSwapchainKHR                 oldSwapchain
    };

    if( vkCreateSwapchainKHR( Vulkan.Device, &swap_chain_create_info, nullptr, &Vulkan.SwapChain.Handle ) != VK_SUCCESS ) {
      std::cout << "Could not create swap chain!" << std::endl;
      return false;
    }
    if( old_swap_chain != VK_NULL_HANDLE ) {
      vkDestroySwapchainKHR( Vulkan.Device, old_swap_chain, nullptr );
    }

    Vulkan.SwapChain.Format = desired_format.format;

    uint32_t image_count = 0;
    if( (vkGetSwapchainImagesKHR( Vulkan.Device, Vulkan.SwapChain.Handle, &image_count, nullptr ) != VK_SUCCESS) ||
        (image_count == 0) ) {
      std::cout << "Could not get swap chain images!" << std::endl;
      return false;
    }
    Vulkan.SwapChain.Images.resize( image_count );

    std::vector<VkImage> images( image_count );
    if( vkGetSwapchainImagesKHR( Vulkan.Device, Vulkan.SwapChain.Handle, &image_count, &images[0] ) != VK_SUCCESS ) {
      std::cout << "Could not get swap chain images!" << std::endl;
      return false;
    }

    for( size_t i = 0; i < Vulkan.SwapChain.Images.size(); ++i ) {
      Vulkan.SwapChain.Images[i].Handle = images[i];
    }
    Vulkan.SwapChain.Extent = desired_extent;

    return CreateSwapChainImageViews();
  }
예제 #21
0
bool SwapChain::CreateSwapChain()
{
  // Look up surface properties to determine image count and dimensions
  VkSurfaceCapabilitiesKHR surface_capabilities;
  VkResult res = vkGetPhysicalDeviceSurfaceCapabilitiesKHR(g_vulkan_context->GetPhysicalDevice(),
                                                           m_surface, &surface_capabilities);
  if (res != VK_SUCCESS)
  {
    LOG_VULKAN_ERROR(res, "vkGetPhysicalDeviceSurfaceCapabilitiesKHR failed: ");
    return false;
  }

  // Select swap chain format and present mode
  if (!SelectSurfaceFormat() || !SelectPresentMode())
    return false;

  // Select number of images in swap chain, we prefer one buffer in the background to work on
  uint32_t image_count = surface_capabilities.minImageCount + 1;

  // maxImageCount can be zero, in which case there isn't an upper limit on the number of buffers.
  if (surface_capabilities.maxImageCount > 0)
    image_count = std::min(image_count, surface_capabilities.maxImageCount);

  // Determine the dimensions of the swap chain. Values of -1 indicate the size we specify here
  // determines window size?
  VkExtent2D size = surface_capabilities.currentExtent;
  if (size.width == UINT32_MAX)
  {
    size.width = std::min(std::max(surface_capabilities.minImageExtent.width, 640u),
                          surface_capabilities.maxImageExtent.width);
    size.height = std::min(std::max(surface_capabilities.minImageExtent.height, 480u),
                           surface_capabilities.maxImageExtent.height);
  }

  // Prefer identity transform if possible
  VkSurfaceTransformFlagBitsKHR transform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
  if (!(surface_capabilities.supportedTransforms & VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR))
    transform = surface_capabilities.currentTransform;

  // Select swap chain flags, we only need a colour attachment
  VkImageUsageFlags image_usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
  if (!(surface_capabilities.supportedUsageFlags & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT))
  {
    ERROR_LOG(VIDEO, "Vulkan: Swap chain does not support usage as color attachment");
    return false;
  }

  // Store the old/current swap chain when recreating for resize
  VkSwapchainKHR old_swap_chain = m_swap_chain;

  // Now we can actually create the swap chain
  // TODO: Handle case where the present queue is not the graphics queue.
  VkSwapchainCreateInfoKHR swap_chain_info = {VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR,
                                              nullptr,
                                              0,
                                              m_surface,
                                              image_count,
                                              m_surface_format.format,
                                              m_surface_format.colorSpace,
                                              size,
                                              1,
                                              image_usage,
                                              VK_SHARING_MODE_EXCLUSIVE,
                                              0,
                                              nullptr,
                                              transform,
                                              VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR,
                                              m_present_mode,
                                              VK_TRUE,
                                              old_swap_chain};

  res =
      vkCreateSwapchainKHR(g_vulkan_context->GetDevice(), &swap_chain_info, nullptr, &m_swap_chain);
  if (res != VK_SUCCESS)
  {
    LOG_VULKAN_ERROR(res, "vkCreateSwapchainKHR failed: ");
    return false;
  }

  // Now destroy the old swap chain, since it's been recreated.
  // We can do this immediately since all work should have been completed before calling resize.
  if (old_swap_chain != VK_NULL_HANDLE)
    vkDestroySwapchainKHR(g_vulkan_context->GetDevice(), old_swap_chain, nullptr);

  m_width = size.width;
  m_height = size.height;
  return true;
}
예제 #22
0
/**
 *
 * @ThreadSafe
 */
ISwapchainSP VKTS_APIENTRY wsiSwapchainCreate(const VkPhysicalDevice physicalDevice, const VkDevice device, const VkSwapchainCreateFlagsKHR flags, const VkSurfaceKHR surface, const uint32_t minImageCount, const uint32_t imageArrayLayers, const VkImageUsageFlags imageUsage, const VkSharingMode imageSharingMode, const uint32_t queueFamilyIndexCount, const uint32_t* queueFamilyIndices, const VkCompositeAlphaFlagBitsKHR compositeAlpha, const VkBool32 clipped, const VkSwapchainKHR oldSwapchain)
{
    if (!physicalDevice || !device)
    {
        return ISwapchainSP();
    }

    VkResult result;

    //

    VkSurfaceCapabilitiesKHR surfaceCapabilities;

    result = vkGetPhysicalDeviceSurfaceCapabilitiesKHR(physicalDevice, surface, &surfaceCapabilities);

    if (result != VK_SUCCESS)
    {
        vkts::logPrint(VKTS_LOG_ERROR, "Wsi: Could not get surface properties.");

        return ISwapchainSP();
    }

    VkSurfaceTransformFlagBitsKHR preTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;

    if (!(surfaceCapabilities.supportedTransforms & VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR))
    {
        preTransform = surfaceCapabilities.currentTransform;
    }

    uint32_t surfacePresentModesCount;

    result = vkGetPhysicalDeviceSurfacePresentModesKHR(physicalDevice, surface, &surfacePresentModesCount, nullptr);

    if (result != VK_SUCCESS)
    {
        vkts::logPrint(VKTS_LOG_ERROR, "Wsi: Could not get surface present mode count.");

        return ISwapchainSP();
    }

    std::unique_ptr<VkPresentModeKHR[]> surfacePresentModes = std::unique_ptr<VkPresentModeKHR[]> (new VkPresentModeKHR[surfacePresentModesCount]);

    if (!surfacePresentModes.get())
    {
        vkts::logPrint(VKTS_LOG_ERROR, "Wsi: Could not create surface present modes.");

        return ISwapchainSP();
    }

    result = vkGetPhysicalDeviceSurfacePresentModesKHR(physicalDevice, surface, &surfacePresentModesCount, &surfacePresentModes[0]);

    if (result != VK_SUCCESS)
    {
        vkts::logPrint(VKTS_LOG_ERROR, "Wsi: Could not get surface present modes.");

        return ISwapchainSP();
    }

	// Regarding specification, this present mode has to be supported.
	VkPresentModeKHR presentMode = VK_PRESENT_MODE_FIFO_KHR;

    uint32_t surfaceFormatsCount;

    result = vkGetPhysicalDeviceSurfaceFormatsKHR(physicalDevice, surface, &surfaceFormatsCount, nullptr);

    if (result != VK_SUCCESS || surfaceFormatsCount == 0)
    {
        vkts::logPrint(VKTS_LOG_ERROR, "Wsi: Could not get surface formats count.");

        return ISwapchainSP();
    }

    std::unique_ptr<VkSurfaceFormatKHR[]> surfaceFormats = std::unique_ptr <VkSurfaceFormatKHR[]>(new VkSurfaceFormatKHR[surfaceFormatsCount]);

    if (!surfaceFormats.get())
    {
        vkts::logPrint(VKTS_LOG_ERROR, "Wsi: Could not create surface formats.");

        return ISwapchainSP();
    }

    result = vkGetPhysicalDeviceSurfaceFormatsKHR(physicalDevice, surface, &surfaceFormatsCount, &surfaceFormats[0]);

    if (result != VK_SUCCESS)
    {
        vkts::logPrint(VKTS_LOG_ERROR, "Wsi: Could not get surface formats.");

        return ISwapchainSP();
    }

    VkFormat imageFormat = surfaceFormats[0].format;
    VkColorSpaceKHR imageColorSpace = surfaceFormats[0].colorSpace;

    VkSwapchainCreateInfoKHR swapchainCreateInfo;

    memset(&swapchainCreateInfo, 0, sizeof(VkSwapchainCreateInfoKHR));

    swapchainCreateInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;

    swapchainCreateInfo.flags = flags;
    swapchainCreateInfo.surface = surface;
    swapchainCreateInfo.minImageCount = minImageCount;
    swapchainCreateInfo.imageFormat = imageFormat;
    swapchainCreateInfo.imageColorSpace = imageColorSpace;
    swapchainCreateInfo.imageExtent = surfaceCapabilities.currentExtent;
    swapchainCreateInfo.imageArrayLayers = imageArrayLayers;
    swapchainCreateInfo.imageUsage = imageUsage;
    swapchainCreateInfo.imageSharingMode = imageSharingMode;
    swapchainCreateInfo.queueFamilyIndexCount = queueFamilyIndexCount;
    swapchainCreateInfo.pQueueFamilyIndices = queueFamilyIndices;
    swapchainCreateInfo.preTransform = preTransform;
    swapchainCreateInfo.compositeAlpha = compositeAlpha;
    swapchainCreateInfo.presentMode = presentMode;
    swapchainCreateInfo.clipped = clipped;
    swapchainCreateInfo.oldSwapchain = oldSwapchain;

    VkSwapchainKHR swapchain;

    result = vkCreateSwapchainKHR(device, &swapchainCreateInfo, nullptr, &swapchain);

    if (result != VK_SUCCESS)
    {
        logPrint(VKTS_LOG_ERROR, "Wsi: Could not create swapchain.");

        return ISwapchainSP();
    }

    auto newInstance = new Swapchain(device, flags, surface, minImageCount, imageFormat, imageColorSpace, surfaceCapabilities.currentExtent, imageArrayLayers, imageUsage, imageSharingMode, queueFamilyIndexCount, queueFamilyIndices, preTransform, compositeAlpha, presentMode, clipped, oldSwapchain, swapchain);

    if (!newInstance)
    {
        vkDestroySwapchainKHR(device, swapchain, nullptr);

        return ISwapchainSP();
    }

    return ISwapchainSP(newInstance);
}
예제 #23
0
파일: main.cpp 프로젝트: Z80Fan/VulkanDemos
/**
 * Good ol' main function.
 */
int main(int argc, char* argv[])
{
	static int windowWidth = 800;
	static int windowHeight = 600;
	static const char * applicationName = "SdlVulkanDemo_03_double_buffering";
	static const char * engineName = applicationName;

	bool boolResult;
	VkResult result;

	/*
	 * SDL2 Initialization
	 */
	SDL_Window *mySdlWindow;
	SDL_SysWMinfo mySdlSysWmInfo;

	boolResult = vkdemos::utils::sdl2Initialization(applicationName, windowWidth, windowHeight, mySdlWindow, mySdlSysWmInfo);
	assert(boolResult);

	/*
	 * Vulkan initialization.
	 */
	std::vector<const char *> layersNamesToEnable;
	layersNamesToEnable.push_back("VK_LAYER_LUNARG_standard_validation");

	std::vector<const char *> extensionsNamesToEnable;
	extensionsNamesToEnable.push_back(VK_KHR_SURFACE_EXTENSION_NAME);
	extensionsNamesToEnable.push_back(VK_EXT_DEBUG_REPORT_EXTENSION_NAME);
	extensionsNamesToEnable.push_back(VK_KHR_XCB_SURFACE_EXTENSION_NAME); // TODO: add support for other windowing systems

	VkInstance myInstance;
	boolResult = vkdemos::createVkInstance(layersNamesToEnable, extensionsNamesToEnable, applicationName, engineName, myInstance);
	assert(boolResult);

	VkDebugReportCallbackEXT myDebugReportCallback;
	vkdemos::createDebugReportCallback(myInstance,
		VK_DEBUG_REPORT_ERROR_BIT_EXT | VK_DEBUG_REPORT_WARNING_BIT_EXT | VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT | VK_DEBUG_REPORT_DEBUG_BIT_EXT,
		vkdemos::debugCallback,
		myDebugReportCallback
	);

	VkPhysicalDevice myPhysicalDevice;
	boolResult = vkdemos::chooseVkPhysicalDevice(myInstance, 0, myPhysicalDevice);
	assert(boolResult);

	VkSurfaceKHR mySurface;
	boolResult = vkdemos::createVkSurface(myInstance, mySdlSysWmInfo, mySurface);
	assert(boolResult);

	VkDevice myDevice;
	VkQueue myQueue;
	uint32_t myQueueFamilyIndex;
	boolResult = vkdemos::createVkDeviceAndVkQueue(myPhysicalDevice, mySurface, layersNamesToEnable, myDevice, myQueue, myQueueFamilyIndex);
	assert(boolResult);

	VkSwapchainKHR mySwapchain;
	VkFormat mySurfaceFormat;
	boolResult = vkdemos::createVkSwapchain(myPhysicalDevice, myDevice, mySurface, windowWidth, windowHeight, FRAME_LAG, VK_NULL_HANDLE, mySwapchain, mySurfaceFormat);
	assert(boolResult);

	std::vector<VkImage> mySwapchainImagesVector;
	std::vector<VkImageView> mySwapchainImageViewsVector;
	boolResult = vkdemos::getSwapchainImagesAndViews(myDevice, mySwapchain, mySurfaceFormat, mySwapchainImagesVector, mySwapchainImageViewsVector);
	assert(boolResult);

	VkCommandPool myCommandPool;
	boolResult = vkdemos::createCommandPool(myDevice, myQueueFamilyIndex, VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT, myCommandPool);
	assert(boolResult);

	VkCommandBuffer myCmdBufferInitialization;
	boolResult = vkdemos::allocateCommandBuffer(myDevice, myCommandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY, myCmdBufferInitialization);
	assert(boolResult);


	/*
	 * Initializations from Demo 02 (Triangle).
	 */
	VkPhysicalDeviceMemoryProperties myMemoryProperties;
	vkGetPhysicalDeviceMemoryProperties(myPhysicalDevice, &myMemoryProperties);

	// Create the Depth Buffer's Image and View.
	const VkFormat myDepthBufferFormat = VK_FORMAT_D16_UNORM;

	VkImage myDepthImage;
	VkImageView myDepthImageView;
	VkDeviceMemory myDepthMemory;
	boolResult = vkdemos::createAndAllocateImage(myDevice,
	                                    myMemoryProperties,
	                                    VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
	                                    0,
	                                    myDepthBufferFormat,
	                                    windowWidth,
	                                    windowHeight,
	                                    myDepthImage,
	                                    myDepthMemory,
	                                    &myDepthImageView,
	                                    VK_IMAGE_ASPECT_DEPTH_BIT
	                                    );
	assert(boolResult);


	// Create the renderpass.
	VkRenderPass myRenderPass;
	boolResult = demo02CreateRenderPass(myDevice, mySurfaceFormat, myDepthBufferFormat, myRenderPass);
	assert(boolResult);

	// Create the Framebuffers, based on the number of swapchain images.
	std::vector<VkFramebuffer> myFramebuffersVector;
	myFramebuffersVector.reserve(mySwapchainImageViewsVector.size());

	for(const auto view : mySwapchainImageViewsVector) {
		VkFramebuffer fb;
		boolResult = vkdemos::utils::createFramebuffer(myDevice, myRenderPass, {view, myDepthImageView}, windowWidth, windowHeight, fb);
		assert(boolResult);
		myFramebuffersVector.push_back(fb);
	}


	// Create a buffer to use as the vertex buffer.
	const size_t vertexBufferSize = sizeof(TriangleDemoVertex)*NUM_DEMO_VERTICES;
	VkBuffer myVertexBuffer;
	VkDeviceMemory myVertexBufferMemory;
	boolResult = vkdemos::createAndAllocateBuffer(myDevice,
	                                     myMemoryProperties,
	                                     VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
	                                     VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
	                                     vertexBufferSize,
	                                     myVertexBuffer,
	                                     myVertexBufferMemory
	                                     );
	assert(boolResult);

	// Map vertex buffer and insert data
	{
		void *mappedBuffer;
		result = vkMapMemory(myDevice, myVertexBufferMemory, 0, VK_WHOLE_SIZE, 0, &mappedBuffer);
		assert(result == VK_SUCCESS);

		memcpy(mappedBuffer, vertices, vertexBufferSize);

		vkUnmapMemory(myDevice, myVertexBufferMemory);
	}


	// Create the pipeline.
	const VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = {
		.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
		.pNext = nullptr,
		.flags = 0,
		.setLayoutCount = 0,
		.pSetLayouts = nullptr,
		.pushConstantRangeCount = 0,
		.pPushConstantRanges = nullptr,
	};

	VkPipelineLayout myPipelineLayout;
	result = vkCreatePipelineLayout(myDevice, &pipelineLayoutCreateInfo, nullptr, &myPipelineLayout);
	assert(result == VK_SUCCESS);


	// Create Pipeline.
	VkPipeline myGraphicsPipeline;
	boolResult = demo02CreatePipeline(myDevice, myRenderPass, myPipelineLayout, VERTEX_SHADER_FILENAME, FRAGMENT_SHADER_FILENAME, VERTEX_INPUT_BINDING, myGraphicsPipeline);
	assert(boolResult);


	/*
	 * In the PerFrameData struct we group all the objects that are used in a single frame, and that
	 * must remain valid for the duration of that frame.
	 *
	 */
	PerFrameData perFrameDataVector[FRAME_LAG];

	for(int i = 0; i < FRAME_LAG; i++)
	{
		boolResult = vkdemos::allocateCommandBuffer(myDevice, myCommandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY, perFrameDataVector[i].presentCmdBuffer);
		assert(boolResult);

		result = vkdemos::utils::createFence(myDevice, perFrameDataVector[i].presentFence);
		assert(result == VK_SUCCESS);

		result = vkdemos::utils::createSemaphore(myDevice, perFrameDataVector[i].imageAcquiredSemaphore);
		assert(result == VK_SUCCESS);

		result = vkdemos::utils::createSemaphore(myDevice, perFrameDataVector[i].renderingCompletedSemaphore);
		assert(result == VK_SUCCESS);

		perFrameDataVector[i].fenceInitialized = false;
	}


	/*
	 * Generation and submission of the initialization commands' command buffer.
	 */
	// We fill the initialization command buffer with... the initialization commands.
	boolResult = demo02FillInitializationCommandBuffer(myCmdBufferInitialization, myDepthImage);
	assert(boolResult);

	// We now submit the command buffer to the queue we created before, and we wait
	// for its completition.
	VkSubmitInfo submitInfo = {
		.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
		.pNext = nullptr,
		.waitSemaphoreCount = 0,
		.pWaitSemaphores = nullptr,
		.pWaitDstStageMask = nullptr,
		.commandBufferCount = 1,
		.pCommandBuffers = &myCmdBufferInitialization,
		.signalSemaphoreCount = 0,
		.pSignalSemaphores = nullptr
	};

	result = vkQueueSubmit(myQueue, 1, &submitInfo, VK_NULL_HANDLE);
	assert(result == VK_SUCCESS);

	// Wait for the queue to complete its work.
	result = vkQueueWaitIdle(myQueue);
	assert(result == VK_SUCCESS);


	/*
	 * Event loop
	 */
	SDL_Event sdlEvent;
	bool quit = false;

	// Just some variables for frame statistics
	long frameNumber = 0;
	long frameMaxTime = LONG_MIN;
	long frameMinTime = LONG_MAX;
	long frameAvgTimeSum = 0;
	long frameAvgTimeSumSquare = 0;
	constexpr long FRAMES_PER_STAT = 120;	// How many frames to wait before printing frame time statistics.

	// The main event/render loop.
	while(!quit)
	{
		// Process events for this frame
		while(SDL_PollEvent(&sdlEvent))
		{
			if (sdlEvent.type == SDL_QUIT) {
				quit = true;
			}
			if (sdlEvent.type == SDL_KEYDOWN && sdlEvent.key.keysym.sym == SDLK_ESCAPE) {
				quit = true;
			}
		}

		// Rendering code
		if(!quit)
		{
			// Render a single frame
			auto renderStartTime = std::chrono::high_resolution_clock::now();
			quit = !demo03RenderSingleFrame(myDevice, myQueue, mySwapchain, myFramebuffersVector, myRenderPass, myGraphicsPipeline, myVertexBuffer, VERTEX_INPUT_BINDING, perFrameDataVector[frameNumber % FRAME_LAG], windowWidth, windowHeight);
			auto renderStopTime = std::chrono::high_resolution_clock::now();

			// Compute frame time statistics
			auto elapsedTimeUs = std::chrono::duration_cast<std::chrono::microseconds>(renderStopTime - renderStartTime).count();

			frameMaxTime = std::max(frameMaxTime, elapsedTimeUs);
			frameMinTime = std::min(frameMinTime, elapsedTimeUs);
			frameAvgTimeSum += elapsedTimeUs;
			frameAvgTimeSumSquare += elapsedTimeUs*elapsedTimeUs;

			// Print statistics if necessary
			if(frameNumber % FRAMES_PER_STAT == 0)
			{
				auto average = frameAvgTimeSum/FRAMES_PER_STAT;
				auto stddev = std::sqrt(frameAvgTimeSumSquare/FRAMES_PER_STAT - average*average);
				std::cout << "Frame time: average " << std::setw(6) << average
				          << " us, maximum " << std::setw(6) << frameMaxTime
				          << " us, minimum " << std::setw(6) << frameMinTime
				          << " us, stddev " << (long)stddev
				          << " (" << std::fixed << std::setprecision(2) << (stddev/average * 100.0f) << "%)"
				          << std::endl;

				frameMaxTime = LONG_MIN;
				frameMinTime = LONG_MAX;
				frameAvgTimeSum = 0;
				frameAvgTimeSumSquare = 0;
			}

			frameNumber++;
		}
	}


	/*
	 * Deinitialization
	 */
	// We wait for pending operations to complete before starting to destroy stuff.
	result = vkQueueWaitIdle(myQueue);
	assert(result == VK_SUCCESS);

	// Destroy the objects in the perFrameDataVector array.
	for(int i = 0; i < FRAME_LAG; i++)
	{
		vkDestroyFence(myDevice, perFrameDataVector[i].presentFence, nullptr);
		vkDestroySemaphore(myDevice, perFrameDataVector[i].imageAcquiredSemaphore, nullptr);
		vkDestroySemaphore(myDevice, perFrameDataVector[i].renderingCompletedSemaphore, nullptr);
	}

	/*
	 * For more informations on the following commands, refer to Demo 02.
	 */
	vkDestroyPipeline(myDevice, myGraphicsPipeline, nullptr);
	vkDestroyPipelineLayout(myDevice, myPipelineLayout, nullptr);
	vkDestroyBuffer(myDevice, myVertexBuffer, nullptr);
	vkFreeMemory(myDevice, myVertexBufferMemory, nullptr);

	for(auto framebuffer : myFramebuffersVector)
		vkDestroyFramebuffer(myDevice, framebuffer, nullptr);

	vkDestroyRenderPass(myDevice, myRenderPass, nullptr);
	vkDestroyImageView(myDevice, myDepthImageView, nullptr);
	vkDestroyImage(myDevice, myDepthImage, nullptr);
	vkFreeMemory(myDevice, myDepthMemory, nullptr);

	/*
	 * For more informations on the following commands, refer to Demo 01.
	 */
	vkDestroyCommandPool(myDevice, myCommandPool, nullptr);

	for(auto imgView : mySwapchainImageViewsVector)
		vkDestroyImageView(myDevice, imgView, nullptr);

	vkDestroySwapchainKHR(myDevice, mySwapchain, nullptr);
	vkDestroyDevice(myDevice, nullptr);
	vkDestroySurfaceKHR(myInstance, mySurface, nullptr);
	vkdemos::destroyDebugReportCallback(myInstance, myDebugReportCallback);
	vkDestroyInstance(myInstance, nullptr);

	SDL_DestroyWindow(mySdlWindow);
	SDL_Quit();

	return 0;
}
예제 #24
0
//==============================================================================
// Vulkan破棄
//==============================================================================
void destroyVulkan()
{
	for(auto& frameBuffer : g_frameBuffers)
	{
		vkDestroyFramebuffer(g_VulkanDevice, frameBuffer, nullptr);
	}

	if(g_depthBufferTexture.view)
	{
		vkDestroyImageView(g_VulkanDevice, g_depthBufferTexture.view, nullptr);
	}

	if(g_depthBufferTexture.image)
	{
		vkDestroyImage(g_VulkanDevice, g_depthBufferTexture.image, nullptr);
	}

	if(g_depthBufferTexture.memory)
	{
		vkFreeMemory(g_VulkanDevice, g_depthBufferTexture.memory, nullptr);
	}

	if(g_commandBuffers.empty() == false)
	{
		vkFreeCommandBuffers(g_VulkanDevice, g_VulkanCommandPool, SWAP_CHAIN_COUNT, g_commandBuffers.data());
	}

	if(g_VulkanCommandPool)
	{
		vkDestroyCommandPool(g_VulkanDevice, g_VulkanCommandPool, nullptr);
	}

	if(g_VulkanSemahoreRenderComplete)
	{
		vkDestroySemaphore(g_VulkanDevice, g_VulkanSemahoreRenderComplete, nullptr);
	}

	if(g_VulkanFence)
	{
		vkDestroyFence(g_VulkanDevice, g_VulkanFence, nullptr);
	}

	if(g_VulkanSwapChain)
	{
		vkDestroySwapchainKHR(g_VulkanDevice, g_VulkanSwapChain, nullptr);
	}

	if(g_VulkanSurface)
	{
		vkDestroySurfaceKHR(g_VulkanInstance, g_VulkanSurface, nullptr);
	}

	if(g_VulkanDevice)
	{
		vkDestroyDevice(g_VulkanDevice, nullptr);
	}

	if(g_VulkanInstance)
	{
		vkDestroyInstance(g_VulkanInstance, nullptr);
	}

	g_frameBuffers.clear();
	g_commandBuffers.clear();

	g_VulkanSurface = nullptr;
	g_VulkanSwapChain = nullptr;
	g_VulkanCommandPool = nullptr;
	g_VulkanSemahoreRenderComplete = nullptr;
	g_VulkanFence = nullptr;
	g_VulkanQueue = nullptr;
	g_VulkanDevice = nullptr;
	g_VulkanInstance = nullptr;
}
예제 #25
0
    void VulkanWindow::InitializeSwapchain()
    {
        vkGetPhysicalDeviceSurfaceCapabilitiesKHR ( mVulkanRenderer.GetPhysicalDevice(), mVkSurfaceKHR, &mVkSurfaceCapabilitiesKHR );
        uint32_t surface_format_count = 0;
        vkGetPhysicalDeviceSurfaceFormatsKHR ( mVulkanRenderer.GetPhysicalDevice(), mVkSurfaceKHR, &surface_format_count, nullptr );
        if ( surface_format_count == 0 )
        {
            std::ostringstream stream;
            stream << "Physical device reports no surface formats.";
            throw std::runtime_error ( stream.str().c_str() );
        }

        VkSurfaceFormatKHR surface_format_khr;
        std::vector<VkSurfaceFormatKHR> surface_format_list ( surface_format_count );
        vkGetPhysicalDeviceSurfaceFormatsKHR ( mVulkanRenderer.GetPhysicalDevice(), mVkSurfaceKHR, &surface_format_count, surface_format_list.data() );
        if ( surface_format_list[0].format == VK_FORMAT_UNDEFINED )
        {
            surface_format_khr = mVulkanRenderer.GetSurfaceFormatKHR();
        }
        else
        {
            surface_format_khr = surface_format_list[0];
        }

        if ( mSwapchainImageCount < mVkSurfaceCapabilitiesKHR.minImageCount )
        {
            mSwapchainImageCount = mVkSurfaceCapabilitiesKHR.minImageCount;
        }
        if ( ( mVkSurfaceCapabilitiesKHR.maxImageCount > 0 ) &&
             ( mSwapchainImageCount > mVkSurfaceCapabilitiesKHR.maxImageCount ) )
        {
            mSwapchainImageCount = mVkSurfaceCapabilitiesKHR.maxImageCount;
        }
        VkSwapchainCreateInfoKHR swapchain_create_info{};
        swapchain_create_info.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
        swapchain_create_info.surface = mVkSurfaceKHR;
        swapchain_create_info.minImageCount = mSwapchainImageCount;
        swapchain_create_info.imageFormat = surface_format_khr.format;
        swapchain_create_info.imageColorSpace = surface_format_khr.colorSpace;
        swapchain_create_info.imageExtent.width = mVkSurfaceCapabilitiesKHR.currentExtent.width;
        swapchain_create_info.imageExtent.height = mVkSurfaceCapabilitiesKHR.currentExtent.height;
        swapchain_create_info.imageArrayLayers = 1;
        swapchain_create_info.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
        swapchain_create_info.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
        swapchain_create_info.queueFamilyIndexCount = 0;
        swapchain_create_info.pQueueFamilyIndices = nullptr;
        swapchain_create_info.preTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
        swapchain_create_info.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
        swapchain_create_info.presentMode = VK_PRESENT_MODE_FIFO_KHR; // This may be reset below.
        swapchain_create_info.clipped = VK_TRUE;
        swapchain_create_info.oldSwapchain = mVkSwapchainKHR; // Used for Resising.
        {
            uint32_t present_mode_count = 0;
            vkGetPhysicalDeviceSurfacePresentModesKHR ( mVulkanRenderer.GetPhysicalDevice(), mVkSurfaceKHR, &present_mode_count, nullptr );
            std::vector<VkPresentModeKHR> present_mode_list ( present_mode_count );
            vkGetPhysicalDeviceSurfacePresentModesKHR ( mVulkanRenderer.GetPhysicalDevice(), mVkSurfaceKHR, &present_mode_count, present_mode_list.data() );
            for ( auto& i : present_mode_list )
            {
                if ( i == VK_PRESENT_MODE_MAILBOX_KHR )
                {
                    swapchain_create_info.presentMode = i;
                    break;
                }
            }
        }
        if ( VkResult result = vkCreateSwapchainKHR ( mVulkanRenderer.GetDevice(), &swapchain_create_info, nullptr, &mVkSwapchainKHR ) )
        {
            std::ostringstream stream;
            stream << "Call to vkCreateSwapchainKHR failed: ( " << GetVulkanResultString ( result ) << " )";
            throw std::runtime_error ( stream.str().c_str() );
        }
        if ( swapchain_create_info.oldSwapchain != VK_NULL_HANDLE )
        {
            vkDestroySwapchainKHR ( mVulkanRenderer.GetDevice(), swapchain_create_info.oldSwapchain, nullptr );
        }
    }
예제 #26
0
	//[-------------------------------------------------------]
	//[ Public methods                                        ]
	//[-------------------------------------------------------]
	SwapChain::SwapChain(VulkanRenderer &vulkanRenderer, handle nativeWindowHandle) :
		ISwapChain(vulkanRenderer),
		mNativeWindowHandle(nativeWindowHandle),
		mVkSurfaceKHR(VK_NULL_HANDLE),
		mVkSwapchainKHR(VK_NULL_HANDLE),
		mSwapchainImageCount(0)
	{
		// Get the Vulkan instance and the Vulkan physical device
		const VkInstance vkInstance = vulkanRenderer.getVulkanRuntimeLinking().getVkInstance();
		const IContext& context = vulkanRenderer.getContext();
		const VkPhysicalDevice vkPhysicalDevice = context.getVkPhysicalDevice();
		const VkDevice vkDevice = context.getVkDevice();

		// Create Vulkan surface instance depending on OS
		#ifdef _WIN32
			VkWin32SurfaceCreateInfoKHR vkWin32SurfaceCreateInfoKHR = {};
			vkWin32SurfaceCreateInfoKHR.sType	  = VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR;
			vkWin32SurfaceCreateInfoKHR.hinstance = reinterpret_cast<HINSTANCE>(::GetWindowLong(reinterpret_cast<HWND>(nativeWindowHandle), GWL_HINSTANCE));
			vkWin32SurfaceCreateInfoKHR.hwnd	  = reinterpret_cast<HWND>(nativeWindowHandle);
			VkResult vkResult = vkCreateWin32SurfaceKHR(vkInstance, &vkWin32SurfaceCreateInfoKHR, nullptr, &mVkSurfaceKHR);
		#else
			#ifdef __ANDROID__
				// TODO(co) Not tested - see https://github.com/SaschaWillems/Vulkan
				VkAndroidSurfaceCreateInfoKHR vkAndroidSurfaceCreateInfoKHR = {};
				vkAndroidSurfaceCreateInfoKHR.sType  = VK_STRUCTURE_TYPE_ANDROID_SURFACE_CREATE_INFO_KHR;
				vkAndroidSurfaceCreateInfoKHR.window = window;
				VkResult vkResult = vkCreateAndroidSurfaceKHR(vkInstance, &vkAndroidSurfaceCreateInfoKHR, nullptr, &mVkSurfaceKHR);
			#else
				// TODO(co) Not tested - see https://github.com/SaschaWillems/Vulkan
				VkXcbSurfaceCreateInfoKHR vkXcbSurfaceCreateInfoKHR = {};
				vkXcbSurfaceCreateInfoKHR.sType		 = VK_STRUCTURE_TYPE_XCB_SURFACE_CREATE_INFO_KHR;
				vkXcbSurfaceCreateInfoKHR.connection = connection;
				vkXcbSurfaceCreateInfoKHR.window	 = window;
				VkResult vkResult = vkCreateXcbSurfaceKHR(vkInstance, &vkXcbSurfaceCreateInfoKHR, nullptr, &mVkSurfaceKHR);
			#endif
		#endif

		// Get list of supported surface formats
		uint32_t surfaceFormatCount = 0;
		vkResult = vkGetPhysicalDeviceSurfaceFormatsKHR(vkPhysicalDevice, mVkSurfaceKHR, &surfaceFormatCount, nullptr);
	//	assert(!vkResult);
	//	assert(surfaceFormatCount > 0);

		std::vector<VkSurfaceFormatKHR> vkSurfaceFormatKHRs(surfaceFormatCount);
		vkResult = vkGetPhysicalDeviceSurfaceFormatsKHR(vkPhysicalDevice, mVkSurfaceKHR, &surfaceFormatCount, vkSurfaceFormatKHRs.data());
	//	assert(!vkResult);

		// If the surface format list only includes one entry with VK_FORMAT_UNDEFINED,
		// there is no preferred format, so we assume VK_FORMAT_B8G8R8A8_UNORM
		VkFormat colorVkFormat;
		if ((surfaceFormatCount == 1) && (vkSurfaceFormatKHRs[0].format == VK_FORMAT_UNDEFINED))
		{
			colorVkFormat = VK_FORMAT_B8G8R8A8_UNORM;
		}
		else
		{
			// Always select the first available color format
			// If you need a specific format (e.g. SRGB) you'd need to
			// iterate over the list of available surface format and
			// check for it's presence
			colorVkFormat = vkSurfaceFormatKHRs[0].format;
		}
		VkColorSpaceKHR vkColorSpaceKHR = vkSurfaceFormatKHRs[0].colorSpace;

		// Get the width and height of the given native window and ensure they are never ever zero
		// -> See "getSafeWidthAndHeight()"-method comments for details
		uint32_t width  = 1;
		uint32_t height = 1;
		#ifdef _WIN32
		{
			// Get the client rectangle of the given native window
			RECT rect;
			::GetClientRect(reinterpret_cast<HWND>(nativeWindowHandle), &rect);

			// Get the width and height...
			width  = static_cast<uint32_t>(rect.right  - rect.left);
			height = static_cast<uint32_t>(rect.bottom - rect.top);

			// ... and ensure that none of them is ever zero
			if (width < 1)
			{
				width = 1;
			}
			if (height < 1)
			{
				height = 1;
			}
		}
		#endif




		// TODO(co) Move the rest into a method
		VkSwapchainKHR oldVkSwapchainKHR = mVkSwapchainKHR;

		// Get physical device surface properties and formats
		VkSurfaceCapabilitiesKHR vkSurfaceCapabilitiesKHR;
		vkResult = vkGetPhysicalDeviceSurfaceCapabilitiesKHR(vkPhysicalDevice, mVkSurfaceKHR, &vkSurfaceCapabilitiesKHR);
	//	assert(!vkResult);

		// Get available present modes
		uint32_t presentModeCount = 0;
		vkResult = vkGetPhysicalDeviceSurfacePresentModesKHR(vkPhysicalDevice, mVkSurfaceKHR, &presentModeCount, nullptr);
	//	assert(!vkResult);
	//	assert(presentModeCount > 0);

		std::vector<VkPresentModeKHR> vkPresentModeKHRs(presentModeCount);
		vkResult = vkGetPhysicalDeviceSurfacePresentModesKHR(vkPhysicalDevice, mVkSurfaceKHR, &presentModeCount, vkPresentModeKHRs.data());
	//	assert(!vkResult);

		// Width and height are either both -1, or both not -1.
		VkExtent2D swapchainExtent = {};
		if (vkSurfaceCapabilitiesKHR.currentExtent.width == -1)
		{
			// If the surface size is undefined, the size is set to
			// the size of the images requested.
			swapchainExtent.width = width;
			swapchainExtent.height = height;
		}
		else
		{
			// If the surface size is defined, the swap chain size must match
			swapchainExtent = vkSurfaceCapabilitiesKHR.currentExtent;
			width = vkSurfaceCapabilitiesKHR.currentExtent.width;
			height = vkSurfaceCapabilitiesKHR.currentExtent.height;
		}

		// Prefer mailbox mode if present, it's the lowest latency non-tearing present  mode
		VkPresentModeKHR swapchainPresentMode = VK_PRESENT_MODE_FIFO_KHR;
		for (size_t i = 0; i < presentModeCount; ++i)
		{
			if (vkPresentModeKHRs[i] == VK_PRESENT_MODE_MAILBOX_KHR)
			{
				swapchainPresentMode = VK_PRESENT_MODE_MAILBOX_KHR;
				break;
			}
			if ((swapchainPresentMode != VK_PRESENT_MODE_MAILBOX_KHR) && (vkPresentModeKHRs[i] == VK_PRESENT_MODE_IMMEDIATE_KHR))
			{
				swapchainPresentMode = VK_PRESENT_MODE_IMMEDIATE_KHR;
			}
		}

		// Determine the number of images
		uint32_t desiredNumberOfSwapchainImages = vkSurfaceCapabilitiesKHR.minImageCount + 1;
		if ((vkSurfaceCapabilitiesKHR.maxImageCount > 0) && (desiredNumberOfSwapchainImages > vkSurfaceCapabilitiesKHR.maxImageCount))
		{
			desiredNumberOfSwapchainImages = vkSurfaceCapabilitiesKHR.maxImageCount;
		}

		VkSurfaceTransformFlagsKHR vkSurfaceTransformFlagsKHR;
		if (vkSurfaceCapabilitiesKHR.supportedTransforms & VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR)
		{
			vkSurfaceTransformFlagsKHR = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
		}
		else 
		{
			vkSurfaceTransformFlagsKHR = vkSurfaceCapabilitiesKHR.currentTransform;
		}

		VkSwapchainCreateInfoKHR vkSwapchainCreateInfoKHR = {};
		vkSwapchainCreateInfoKHR.sType			  = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
		vkSwapchainCreateInfoKHR.surface		  = mVkSurfaceKHR;
		vkSwapchainCreateInfoKHR.minImageCount	  = desiredNumberOfSwapchainImages;
		vkSwapchainCreateInfoKHR.imageFormat	  = colorVkFormat;
		vkSwapchainCreateInfoKHR.imageColorSpace  = vkColorSpaceKHR;
		vkSwapchainCreateInfoKHR.imageExtent	  = { swapchainExtent.width, swapchainExtent.height };
		vkSwapchainCreateInfoKHR.imageUsage		  = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
		vkSwapchainCreateInfoKHR.preTransform	  = static_cast<VkSurfaceTransformFlagBitsKHR>(vkSurfaceTransformFlagsKHR);
		vkSwapchainCreateInfoKHR.imageArrayLayers = 1;
		vkSwapchainCreateInfoKHR.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
		vkSwapchainCreateInfoKHR.presentMode	  = swapchainPresentMode;
		vkSwapchainCreateInfoKHR.oldSwapchain	  = oldVkSwapchainKHR;
		vkSwapchainCreateInfoKHR.clipped		  = true;
		vkSwapchainCreateInfoKHR.compositeAlpha   = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;

		vkResult = vkCreateSwapchainKHR(vkDevice, &vkSwapchainCreateInfoKHR, nullptr, &mVkSwapchainKHR);
	//	assert(!vkResult);

		// If an existing swap chain is re-created, destroy the old swap chain
		// This also cleans up all the presentable images
		if (VK_NULL_HANDLE != oldVkSwapchainKHR)
		{
			for (uint32_t i = 0; i < mSwapchainImageCount; ++i)
			{
				vkDestroyImageView(vkDevice, mSwapChainBuffer[i].view, nullptr);
			}
			vkDestroySwapchainKHR(vkDevice, oldVkSwapchainKHR, nullptr);
		}

		vkResult = vkGetSwapchainImagesKHR(vkDevice, mVkSwapchainKHR, &mSwapchainImageCount, nullptr);
	//	assert(!vkResult);

		// Get the swap chain images
		mVkImages.resize(mSwapchainImageCount);
		vkResult = vkGetSwapchainImagesKHR(vkDevice, mVkSwapchainKHR, &mSwapchainImageCount, mVkImages.data());
	//	assert(!vkResult);

		// Get the swap chain buffers containing the image and image view
		mSwapChainBuffer.resize(mSwapchainImageCount);
		for (uint32_t i = 0; i < mSwapchainImageCount; ++i)
		{
			VkImageViewCreateInfo colorAttachmentView = {};
			colorAttachmentView.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
			colorAttachmentView.format = colorVkFormat;
			colorAttachmentView.components = {
				VK_COMPONENT_SWIZZLE_R,
				VK_COMPONENT_SWIZZLE_G,
				VK_COMPONENT_SWIZZLE_B,
				VK_COMPONENT_SWIZZLE_A
			};
			colorAttachmentView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
			colorAttachmentView.subresourceRange.levelCount = 1;
			colorAttachmentView.subresourceRange.layerCount = 1;
			colorAttachmentView.viewType = VK_IMAGE_VIEW_TYPE_2D;

			mSwapChainBuffer[i].image = mVkImages[i];

			// Transform images from initial (undefined) to present layout
			Helper::setImageLayout(context.getSetupVkCommandBuffer(), mSwapChainBuffer[i].image, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, VK_IMAGE_ASPECT_COLOR_BIT);

			colorAttachmentView.image = mSwapChainBuffer[i].image;

			vkResult = vkCreateImageView(vkDevice, &colorAttachmentView, nullptr, &mSwapChainBuffer[i].view);
		//	assert(!vkResult);
		}
	}
예제 #27
0
int main(int argc, char *argv[]) {
    VkResult U_ASSERT_ONLY res;
    struct sample_info info = {};
    char sample_title[] = "Swapchain Initialization Sample";

    /*
     * Set up swapchain:
     * - Get supported uses for all queues
     * - Try to find a queue that supports both graphics and present
     * - If no queue supports both, find a present queue and make sure we have a
     *   graphics queue
     * - Get a list of supported formats and use the first one
     * - Get surface properties and present modes and use them to create a swap
     *   chain
     * - Create swap chain buffers
     * - For each buffer, create a color attachment view and set its layout to
     *   color attachment
     */

    init_global_layer_properties(info);
    init_instance_extension_names(info);
    init_device_extension_names(info);
    init_instance(info, sample_title);
    init_enumerate_device(info);
    init_connection(info);
    init_window_size(info, 50, 50);
    init_window(info);

/* VULKAN_KEY_START */
// Construct the surface description:
#ifdef _WIN32
    VkWin32SurfaceCreateInfoKHR createInfo = {};
    createInfo.sType = VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR;
    createInfo.pNext = NULL;
    createInfo.hinstance = info.connection;
    createInfo.hwnd = info.window;
    res = vkCreateWin32SurfaceKHR(info.inst, &createInfo, NULL, &info.surface);
#else  // _WIN32
    VkXcbSurfaceCreateInfoKHR createInfo = {};
    createInfo.sType = VK_STRUCTURE_TYPE_XCB_SURFACE_CREATE_INFO_KHR;
    createInfo.pNext = NULL;
    createInfo.connection = info.connection;
    createInfo.window = info.window;
    res = vkCreateXcbSurfaceKHR(info.inst, &createInfo, NULL, &info.surface);
#endif // _WIN32
    assert(res == VK_SUCCESS);

    // Iterate over each queue to learn whether it supports presenting:
    VkBool32 *supportsPresent =
        (VkBool32 *)malloc(info.queue_count * sizeof(VkBool32));
    for (uint32_t i = 0; i < info.queue_count; i++) {
        vkGetPhysicalDeviceSurfaceSupportKHR(info.gpus[0], i, info.surface,
                                             &supportsPresent[i]);
    }

    // Search for a graphics queue and a present queue in the array of queue
    // families, try to find one that supports both
    uint32_t graphicsQueueNodeIndex = UINT32_MAX;
    for (uint32_t i = 0; i < info.queue_count; i++) {
        if ((info.queue_props[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) != 0) {
            if (supportsPresent[i] == VK_TRUE) {
                graphicsQueueNodeIndex = i;
                break;
            }
        }
    }
    free(supportsPresent);

    // Generate error if could not find a queue that supports both a graphics
    // and present
    if (graphicsQueueNodeIndex == UINT32_MAX) {
        std::cout << "Could not find a queue that supports both graphics and "
                     "present\n";
        exit(-1);
    }

    info.graphics_queue_family_index = graphicsQueueNodeIndex;

    init_device(info);

    // Get the list of VkFormats that are supported:
    uint32_t formatCount;
    res = vkGetPhysicalDeviceSurfaceFormatsKHR(info.gpus[0], info.surface,
                                               &formatCount, NULL);
    assert(res == VK_SUCCESS);
    VkSurfaceFormatKHR *surfFormats =
        (VkSurfaceFormatKHR *)malloc(formatCount * sizeof(VkSurfaceFormatKHR));
    res = vkGetPhysicalDeviceSurfaceFormatsKHR(info.gpus[0], info.surface,
                                               &formatCount, surfFormats);
    assert(res == VK_SUCCESS);
    // If the format list includes just one entry of VK_FORMAT_UNDEFINED,
    // the surface has no preferred format.  Otherwise, at least one
    // supported format will be returned.
    if (formatCount == 1 && surfFormats[0].format == VK_FORMAT_UNDEFINED) {
        info.format = VK_FORMAT_B8G8R8A8_UNORM;
    } else {
        assert(formatCount >= 1);
        info.format = surfFormats[0].format;
    }

    VkSurfaceCapabilitiesKHR surfCapabilities;

    res = vkGetPhysicalDeviceSurfaceCapabilitiesKHR(info.gpus[0], info.surface,
                                                    &surfCapabilities);
    assert(res == VK_SUCCESS);

    uint32_t presentModeCount;
    res = vkGetPhysicalDeviceSurfacePresentModesKHR(info.gpus[0], info.surface,
                                                    &presentModeCount, NULL);
    assert(res == VK_SUCCESS);
    VkPresentModeKHR *presentModes =
        (VkPresentModeKHR *)malloc(presentModeCount * sizeof(VkPresentModeKHR));

    res = vkGetPhysicalDeviceSurfacePresentModesKHR(
        info.gpus[0], info.surface, &presentModeCount, presentModes);
    assert(res == VK_SUCCESS);

    VkExtent2D swapChainExtent;
    // width and height are either both -1, or both not -1.
    if (surfCapabilities.currentExtent.width == (uint32_t)-1) {
        // If the surface size is undefined, the size is set to
        // the size of the images requested.
        swapChainExtent.width = info.width;
        swapChainExtent.height = info.height;
    } else {
        // If the surface size is defined, the swap chain size must match
        swapChainExtent = surfCapabilities.currentExtent;
    }

    // If mailbox mode is available, use it, as is the lowest-latency non-
    // tearing mode.  If not, try IMMEDIATE which will usually be available,
    // and is fastest (though it tears).  If not, fall back to FIFO which is
    // always available.
    VkPresentModeKHR swapchainPresentMode = VK_PRESENT_MODE_FIFO_KHR;
    for (size_t i = 0; i < presentModeCount; i++) {
        if (presentModes[i] == VK_PRESENT_MODE_MAILBOX_KHR) {
            swapchainPresentMode = VK_PRESENT_MODE_MAILBOX_KHR;
            break;
        }
        if ((swapchainPresentMode != VK_PRESENT_MODE_MAILBOX_KHR) &&
            (presentModes[i] == VK_PRESENT_MODE_IMMEDIATE_KHR)) {
            swapchainPresentMode = VK_PRESENT_MODE_IMMEDIATE_KHR;
        }
    }

    // Determine the number of VkImage's to use in the swap chain (we desire to
    // own only 1 image at a time, besides the images being displayed and
    // queued for display):
    uint32_t desiredNumberOfSwapChainImages =
        surfCapabilities.minImageCount + 1;
    if ((surfCapabilities.maxImageCount > 0) &&
        (desiredNumberOfSwapChainImages > surfCapabilities.maxImageCount)) {
        // Application must settle for fewer images than desired:
        desiredNumberOfSwapChainImages = surfCapabilities.maxImageCount;
    }

    VkSurfaceTransformFlagBitsKHR preTransform;
    if (surfCapabilities.supportedTransforms &
        VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR) {
        preTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
    } else {
        preTransform = surfCapabilities.currentTransform;
    }

    VkSwapchainCreateInfoKHR swap_chain = {};
    swap_chain.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
    swap_chain.pNext = NULL;
    swap_chain.surface = info.surface;
    swap_chain.minImageCount = desiredNumberOfSwapChainImages;
    swap_chain.imageFormat = info.format;
    swap_chain.imageExtent.width = swapChainExtent.width;
    swap_chain.imageExtent.height = swapChainExtent.height;
    swap_chain.preTransform = preTransform;
    swap_chain.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
    swap_chain.imageArrayLayers = 1;
    swap_chain.presentMode = swapchainPresentMode;
    swap_chain.oldSwapchain = NULL;
    swap_chain.clipped = true;
    swap_chain.imageColorSpace = VK_COLORSPACE_SRGB_NONLINEAR_KHR;
    swap_chain.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
    swap_chain.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
    swap_chain.queueFamilyIndexCount = 0;
    swap_chain.pQueueFamilyIndices = NULL;

    res =
        vkCreateSwapchainKHR(info.device, &swap_chain, NULL, &info.swap_chain);
    assert(res == VK_SUCCESS);

    res = vkGetSwapchainImagesKHR(info.device, info.swap_chain,
                                  &info.swapchainImageCount, NULL);
    assert(res == VK_SUCCESS);

    VkImage *swapchainImages =
        (VkImage *)malloc(info.swapchainImageCount * sizeof(VkImage));
    assert(swapchainImages);
    res = vkGetSwapchainImagesKHR(info.device, info.swap_chain,
                                  &info.swapchainImageCount, swapchainImages);
    assert(res == VK_SUCCESS);

    info.buffers.resize(info.swapchainImageCount);

    // Going to need a command buffer to send the memory barriers in
    // set_image_layout but we couldn't have created one before we knew
    // what our graphics_queue_family_index is, but now that we have it,
    // create the command buffer

    init_command_pool(info);
    init_command_buffer(info);
    execute_begin_command_buffer(info);
    vkGetDeviceQueue(info.device, info.graphics_queue_family_index, 0,
                     &info.queue);

    for (uint32_t i = 0; i < info.swapchainImageCount; i++) {
        VkImageViewCreateInfo color_image_view = {};
        color_image_view.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
        color_image_view.pNext = NULL;
        color_image_view.format = info.format;
        color_image_view.components.r = VK_COMPONENT_SWIZZLE_R;
        color_image_view.components.g = VK_COMPONENT_SWIZZLE_G;
        color_image_view.components.b = VK_COMPONENT_SWIZZLE_B;
        color_image_view.components.a = VK_COMPONENT_SWIZZLE_A;
        color_image_view.subresourceRange.aspectMask =
            VK_IMAGE_ASPECT_COLOR_BIT;
        color_image_view.subresourceRange.baseMipLevel = 0;
        color_image_view.subresourceRange.levelCount = 1;
        color_image_view.subresourceRange.baseArrayLayer = 0;
        color_image_view.subresourceRange.layerCount = 1;
        color_image_view.viewType = VK_IMAGE_VIEW_TYPE_2D;
        color_image_view.flags = 0;

        info.buffers[i].image = swapchainImages[i];

        set_image_layout(info, info.buffers[i].image, VK_IMAGE_ASPECT_COLOR_BIT,
                         VK_IMAGE_LAYOUT_UNDEFINED,
                         VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);

        color_image_view.image = info.buffers[i].image;

        res = vkCreateImageView(info.device, &color_image_view, NULL,
                                &info.buffers[i].view);
        assert(res == VK_SUCCESS);
    }
    free(swapchainImages);
    execute_end_command_buffer(info);
    execute_queue_command_buffer(info);
    /* VULKAN_KEY_END */

    /* Clean Up */
    VkCommandBuffer cmd_bufs[1] = {info.cmd};
    vkFreeCommandBuffers(info.device, info.cmd_pool, 1, cmd_bufs);
    vkDestroyCommandPool(info.device, info.cmd_pool, NULL);
    for (uint32_t i = 0; i < info.swapchainImageCount; i++) {
        vkDestroyImageView(info.device, info.buffers[i].view, NULL);
    }
    vkDestroySwapchainKHR(info.device, info.swap_chain, NULL);
    destroy_device(info);
    destroy_window(info);
    destroy_instance(info);

    return 0;
}
예제 #28
0
GrManagerImpl::~GrManagerImpl()
{
	// FIRST THING: wait for the GPU
	if(m_queue)
	{
		LockGuard<Mutex> lock(m_globalMtx);
		vkQueueWaitIdle(m_queue);
		m_queue = VK_NULL_HANDLE;
	}

	// SECOND THING: The destroy everything that has a reference to GrObjects.
	for(auto& x : m_backbuffers)
	{
		if(x.m_imageView)
		{
			vkDestroyImageView(m_device, x.m_imageView, nullptr);
			x.m_imageView = VK_NULL_HANDLE;
		}
	}

	for(auto& x : m_perFrame)
	{
		x.m_presentFence.reset(nullptr);
		x.m_acquireSemaphore.reset(nullptr);
		x.m_renderSemaphore.reset(nullptr);

		x.m_cmdbsSubmitted.destroy(getAllocator());
	}

	m_perThread.destroy(getAllocator());

	if(m_samplerCache)
	{
		getAllocator().deleteInstance(m_samplerCache);
	}

	// THIRD THING: Continue with the rest
	m_rpCreator.destroy();

	m_pplineLayFactory.destroy();
	m_dsetAlloc.destroy();
	m_transientMem.destroy();
	m_gpuMemManager.destroy();

	m_semaphores.destroy(); // Destroy before fences
	m_fences.destroy();

	if(m_swapchain)
	{
		vkDestroySwapchainKHR(m_device, m_swapchain, nullptr);
	}

	if(m_pplineCache)
	{
		vkDestroyPipelineCache(m_device, m_pplineCache, nullptr);
	}

	if(m_device)
	{
		vkDestroyDevice(m_device, nullptr);
	}

	if(m_surface)
	{
		vkDestroySurfaceKHR(m_instance, m_surface, nullptr);
	}

	if(m_instance)
	{
		vkDestroyInstance(m_instance, nullptr);
	}
}