예제 #1
0
int
vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
    int fault_flags, vm_page_t *m_hold)
{
	vm_prot_t prot;
	long ahead, behind;
	int alloc_req, era, faultcount, nera, reqpage, result;
	boolean_t growstack, is_first_object_locked, wired;
	int map_generation;
	vm_object_t next_object;
	vm_page_t marray[VM_FAULT_READ_MAX];
	int hardfault;
	struct faultstate fs;
	struct vnode *vp;
	int locked, error;

	hardfault = 0;
	growstack = TRUE;
	PCPU_INC(cnt.v_vm_faults);
	fs.vp = NULL;
	faultcount = reqpage = 0;

RetryFault:;

	/*
	 * Find the backing store object and offset into it to begin the
	 * search.
	 */
	fs.map = map;
	result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
	    &fs.first_object, &fs.first_pindex, &prot, &wired);
	if (result != KERN_SUCCESS) {
		if (growstack && result == KERN_INVALID_ADDRESS &&
		    map != kernel_map) {
			result = vm_map_growstack(curproc, vaddr);
			if (result != KERN_SUCCESS)
				return (KERN_FAILURE);
			growstack = FALSE;
			goto RetryFault;
		}
		return (result);
	}

	map_generation = fs.map->timestamp;

	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
		panic("vm_fault: fault on nofault entry, addr: %lx",
		    (u_long)vaddr);
	}

	/*
	 * Make a reference to this object to prevent its disposal while we
	 * are messing with it.  Once we have the reference, the map is free
	 * to be diddled.  Since objects reference their shadows (and copies),
	 * they will stay around as well.
	 *
	 * Bump the paging-in-progress count to prevent size changes (e.g. 
	 * truncation operations) during I/O.  This must be done after
	 * obtaining the vnode lock in order to avoid possible deadlocks.
	 */
	VM_OBJECT_WLOCK(fs.first_object);
	vm_object_reference_locked(fs.first_object);
	vm_object_pip_add(fs.first_object, 1);

	fs.lookup_still_valid = TRUE;

	if (wired)
		fault_type = prot | (fault_type & VM_PROT_COPY);

	fs.first_m = NULL;

	/*
	 * Search for the page at object/offset.
	 */
	fs.object = fs.first_object;
	fs.pindex = fs.first_pindex;
	while (TRUE) {
		/*
		 * If the object is dead, we stop here
		 */
		if (fs.object->flags & OBJ_DEAD) {
			unlock_and_deallocate(&fs);
			return (KERN_PROTECTION_FAILURE);
		}

		/*
		 * See if page is resident
		 */
		fs.m = vm_page_lookup(fs.object, fs.pindex);
		if (fs.m != NULL) {
			/* 
			 * check for page-based copy on write.
			 * We check fs.object == fs.first_object so
			 * as to ensure the legacy COW mechanism is
			 * used when the page in question is part of
			 * a shadow object.  Otherwise, vm_page_cowfault()
			 * removes the page from the backing object, 
			 * which is not what we want.
			 */
			vm_page_lock(fs.m);
			if ((fs.m->cow) && 
			    (fault_type & VM_PROT_WRITE) &&
			    (fs.object == fs.first_object)) {
				vm_page_cowfault(fs.m);
				unlock_and_deallocate(&fs);
				goto RetryFault;
			}

			/*
			 * Wait/Retry if the page is busy.  We have to do this
			 * if the page is busy via either VPO_BUSY or 
			 * vm_page_t->busy because the vm_pager may be using
			 * vm_page_t->busy for pageouts ( and even pageins if
			 * it is the vnode pager ), and we could end up trying
			 * to pagein and pageout the same page simultaneously.
			 *
			 * We can theoretically allow the busy case on a read
			 * fault if the page is marked valid, but since such
			 * pages are typically already pmap'd, putting that
			 * special case in might be more effort then it is 
			 * worth.  We cannot under any circumstances mess
			 * around with a vm_page_t->busy page except, perhaps,
			 * to pmap it.
			 */
			if ((fs.m->oflags & VPO_BUSY) || fs.m->busy) {
				/*
				 * Reference the page before unlocking and
				 * sleeping so that the page daemon is less
				 * likely to reclaim it. 
				 */
				vm_page_aflag_set(fs.m, PGA_REFERENCED);
				vm_page_unlock(fs.m);
				if (fs.object != fs.first_object) {
					if (!VM_OBJECT_TRYWLOCK(
					    fs.first_object)) {
						VM_OBJECT_WUNLOCK(fs.object);
						VM_OBJECT_WLOCK(fs.first_object);
						VM_OBJECT_WLOCK(fs.object);
					}
					vm_page_lock(fs.first_m);
					vm_page_free(fs.first_m);
					vm_page_unlock(fs.first_m);
					vm_object_pip_wakeup(fs.first_object);
					VM_OBJECT_WUNLOCK(fs.first_object);
					fs.first_m = NULL;
				}
				unlock_map(&fs);
				if (fs.m == vm_page_lookup(fs.object,
				    fs.pindex)) {
					vm_page_sleep_if_busy(fs.m, TRUE,
					    "vmpfw");
				}
				vm_object_pip_wakeup(fs.object);
				VM_OBJECT_WUNLOCK(fs.object);
				PCPU_INC(cnt.v_intrans);
				vm_object_deallocate(fs.first_object);
				goto RetryFault;
			}
			vm_page_remque(fs.m);
			vm_page_unlock(fs.m);

			/*
			 * Mark page busy for other processes, and the 
			 * pagedaemon.  If it still isn't completely valid
			 * (readable), jump to readrest, else break-out ( we
			 * found the page ).
			 */
			vm_page_busy(fs.m);
			if (fs.m->valid != VM_PAGE_BITS_ALL)
				goto readrest;
			break;
		}

		/*
		 * Page is not resident, If this is the search termination
		 * or the pager might contain the page, allocate a new page.
		 */
		if (TRYPAGER || fs.object == fs.first_object) {
			if (fs.pindex >= fs.object->size) {
				unlock_and_deallocate(&fs);
				return (KERN_PROTECTION_FAILURE);
			}

			/*
			 * Allocate a new page for this object/offset pair.
			 *
			 * Unlocked read of the p_flag is harmless. At
			 * worst, the P_KILLED might be not observed
			 * there, and allocation can fail, causing
			 * restart and new reading of the p_flag.
			 */
			fs.m = NULL;
			if (!vm_page_count_severe() || P_KILLED(curproc)) {
#if VM_NRESERVLEVEL > 0
				if ((fs.object->flags & OBJ_COLORED) == 0) {
					fs.object->flags |= OBJ_COLORED;
					fs.object->pg_color = atop(vaddr) -
					    fs.pindex;
				}
#endif
				alloc_req = P_KILLED(curproc) ?
				    VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
				if (fs.object->type != OBJT_VNODE &&
				    fs.object->backing_object == NULL)
					alloc_req |= VM_ALLOC_ZERO;
				fs.m = vm_page_alloc(fs.object, fs.pindex,
				    alloc_req);
			}
			if (fs.m == NULL) {
				unlock_and_deallocate(&fs);
				VM_WAITPFAULT;
				goto RetryFault;
			} else if (fs.m->valid == VM_PAGE_BITS_ALL)
				break;
		}

readrest:
		/*
		 * We have found a valid page or we have allocated a new page.
		 * The page thus may not be valid or may not be entirely 
		 * valid.
		 *
		 * Attempt to fault-in the page if there is a chance that the
		 * pager has it, and potentially fault in additional pages
		 * at the same time.
		 */
		if (TRYPAGER) {
			int rv;
			u_char behavior = vm_map_entry_behavior(fs.entry);

			if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
			    P_KILLED(curproc)) {
				behind = 0;
				ahead = 0;
			} else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
				behind = 0;
				ahead = atop(fs.entry->end - vaddr) - 1;
				if (ahead > VM_FAULT_READ_AHEAD_MAX)
					ahead = VM_FAULT_READ_AHEAD_MAX;
				if (fs.pindex == fs.entry->next_read)
					vm_fault_cache_behind(&fs,
					    VM_FAULT_READ_MAX);
			} else {
				/*
				 * If this is a sequential page fault, then
				 * arithmetically increase the number of pages
				 * in the read-ahead window.  Otherwise, reset
				 * the read-ahead window to its smallest size.
				 */
				behind = atop(vaddr - fs.entry->start);
				if (behind > VM_FAULT_READ_BEHIND)
					behind = VM_FAULT_READ_BEHIND;
				ahead = atop(fs.entry->end - vaddr) - 1;
				era = fs.entry->read_ahead;
				if (fs.pindex == fs.entry->next_read) {
					nera = era + behind;
					if (nera > VM_FAULT_READ_AHEAD_MAX)
						nera = VM_FAULT_READ_AHEAD_MAX;
					behind = 0;
					if (ahead > nera)
						ahead = nera;
					if (era == VM_FAULT_READ_AHEAD_MAX)
						vm_fault_cache_behind(&fs,
						    VM_FAULT_CACHE_BEHIND);
				} else if (ahead > VM_FAULT_READ_AHEAD_MIN)
					ahead = VM_FAULT_READ_AHEAD_MIN;
				if (era != ahead)
					fs.entry->read_ahead = ahead;
			}

			/*
			 * Call the pager to retrieve the data, if any, after
			 * releasing the lock on the map.  We hold a ref on
			 * fs.object and the pages are VPO_BUSY'd.
			 */
			unlock_map(&fs);

			if (fs.object->type == OBJT_VNODE) {
				vp = fs.object->handle;
				if (vp == fs.vp)
					goto vnode_locked;
				else if (fs.vp != NULL) {
					vput(fs.vp);
					fs.vp = NULL;
				}
				locked = VOP_ISLOCKED(vp);

				if (locked != LK_EXCLUSIVE)
					locked = LK_SHARED;
				/* Do not sleep for vnode lock while fs.m is busy */
				error = vget(vp, locked | LK_CANRECURSE |
				    LK_NOWAIT, curthread);
				if (error != 0) {
					vhold(vp);
					release_page(&fs);
					unlock_and_deallocate(&fs);
					error = vget(vp, locked | LK_RETRY |
					    LK_CANRECURSE, curthread);
					vdrop(vp);
					fs.vp = vp;
					KASSERT(error == 0,
					    ("vm_fault: vget failed"));
					goto RetryFault;
				}
				fs.vp = vp;
			}
vnode_locked:
			KASSERT(fs.vp == NULL || !fs.map->system_map,
			    ("vm_fault: vnode-backed object mapped by system map"));

			/*
			 * now we find out if any other pages should be paged
			 * in at this time this routine checks to see if the
			 * pages surrounding this fault reside in the same
			 * object as the page for this fault.  If they do,
			 * then they are faulted in also into the object.  The
			 * array "marray" returned contains an array of
			 * vm_page_t structs where one of them is the
			 * vm_page_t passed to the routine.  The reqpage
			 * return value is the index into the marray for the
			 * vm_page_t passed to the routine.
			 *
			 * fs.m plus the additional pages are VPO_BUSY'd.
			 */
			faultcount = vm_fault_additional_pages(
			    fs.m, behind, ahead, marray, &reqpage);

			rv = faultcount ?
			    vm_pager_get_pages(fs.object, marray, faultcount,
				reqpage) : VM_PAGER_FAIL;

			if (rv == VM_PAGER_OK) {
				/*
				 * Found the page. Leave it busy while we play
				 * with it.
				 */

				/*
				 * Relookup in case pager changed page. Pager
				 * is responsible for disposition of old page
				 * if moved.
				 */
				fs.m = vm_page_lookup(fs.object, fs.pindex);
				if (!fs.m) {
					unlock_and_deallocate(&fs);
					goto RetryFault;
				}

				hardfault++;
				break; /* break to PAGE HAS BEEN FOUND */
			}
			/*
			 * Remove the bogus page (which does not exist at this
			 * object/offset); before doing so, we must get back
			 * our object lock to preserve our invariant.
			 *
			 * Also wake up any other process that may want to bring
			 * in this page.
			 *
			 * If this is the top-level object, we must leave the
			 * busy page to prevent another process from rushing
			 * past us, and inserting the page in that object at
			 * the same time that we are.
			 */
			if (rv == VM_PAGER_ERROR)
				printf("vm_fault: pager read error, pid %d (%s)\n",
				    curproc->p_pid, curproc->p_comm);
			/*
			 * Data outside the range of the pager or an I/O error
			 */
			/*
			 * XXX - the check for kernel_map is a kludge to work
			 * around having the machine panic on a kernel space
			 * fault w/ I/O error.
			 */
			if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
				(rv == VM_PAGER_BAD)) {
				vm_page_lock(fs.m);
				vm_page_free(fs.m);
				vm_page_unlock(fs.m);
				fs.m = NULL;
				unlock_and_deallocate(&fs);
				return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
			}
			if (fs.object != fs.first_object) {
				vm_page_lock(fs.m);
				vm_page_free(fs.m);
				vm_page_unlock(fs.m);
				fs.m = NULL;
				/*
				 * XXX - we cannot just fall out at this
				 * point, m has been freed and is invalid!
				 */
			}
		}

		/*
		 * We get here if the object has default pager (or unwiring) 
		 * or the pager doesn't have the page.
		 */
		if (fs.object == fs.first_object)
			fs.first_m = fs.m;

		/*
		 * Move on to the next object.  Lock the next object before
		 * unlocking the current one.
		 */
		fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
		next_object = fs.object->backing_object;
		if (next_object == NULL) {
			/*
			 * If there's no object left, fill the page in the top
			 * object with zeros.
			 */
			if (fs.object != fs.first_object) {
				vm_object_pip_wakeup(fs.object);
				VM_OBJECT_WUNLOCK(fs.object);

				fs.object = fs.first_object;
				fs.pindex = fs.first_pindex;
				fs.m = fs.first_m;
				VM_OBJECT_WLOCK(fs.object);
			}
			fs.first_m = NULL;

			/*
			 * Zero the page if necessary and mark it valid.
			 */
			if ((fs.m->flags & PG_ZERO) == 0) {
				pmap_zero_page(fs.m);
			} else {
				PCPU_INC(cnt.v_ozfod);
			}
			PCPU_INC(cnt.v_zfod);
			fs.m->valid = VM_PAGE_BITS_ALL;
			break;	/* break to PAGE HAS BEEN FOUND */
		} else {
			KASSERT(fs.object != next_object,
			    ("object loop %p", next_object));
			VM_OBJECT_WLOCK(next_object);
			vm_object_pip_add(next_object, 1);
			if (fs.object != fs.first_object)
				vm_object_pip_wakeup(fs.object);
			VM_OBJECT_WUNLOCK(fs.object);
			fs.object = next_object;
		}
	}

	KASSERT((fs.m->oflags & VPO_BUSY) != 0,
	    ("vm_fault: not busy after main loop"));

	/*
	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
	 * is held.]
	 */

	/*
	 * If the page is being written, but isn't already owned by the
	 * top-level object, we have to copy it into a new page owned by the
	 * top-level object.
	 */
	if (fs.object != fs.first_object) {
		/*
		 * We only really need to copy if we want to write it.
		 */
		if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
			/*
			 * This allows pages to be virtually copied from a 
			 * backing_object into the first_object, where the 
			 * backing object has no other refs to it, and cannot
			 * gain any more refs.  Instead of a bcopy, we just 
			 * move the page from the backing object to the 
			 * first object.  Note that we must mark the page 
			 * dirty in the first object so that it will go out 
			 * to swap when needed.
			 */
			is_first_object_locked = FALSE;
			if (
				/*
				 * Only one shadow object
				 */
				(fs.object->shadow_count == 1) &&
				/*
				 * No COW refs, except us
				 */
				(fs.object->ref_count == 1) &&
				/*
				 * No one else can look this object up
				 */
				(fs.object->handle == NULL) &&
				/*
				 * No other ways to look the object up
				 */
				((fs.object->type == OBJT_DEFAULT) ||
				 (fs.object->type == OBJT_SWAP)) &&
			    (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
				/*
				 * We don't chase down the shadow chain
				 */
			    fs.object == fs.first_object->backing_object) {
				/*
				 * get rid of the unnecessary page
				 */
				vm_page_lock(fs.first_m);
				vm_page_free(fs.first_m);
				vm_page_unlock(fs.first_m);
				/*
				 * grab the page and put it into the 
				 * process'es object.  The page is 
				 * automatically made dirty.
				 */
				vm_page_lock(fs.m);
				vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
				vm_page_unlock(fs.m);
				vm_page_busy(fs.m);
				fs.first_m = fs.m;
				fs.m = NULL;
				PCPU_INC(cnt.v_cow_optim);
			} else {
				/*
				 * Oh, well, lets copy it.
				 */
				pmap_copy_page(fs.m, fs.first_m);
				fs.first_m->valid = VM_PAGE_BITS_ALL;
				if (wired && (fault_flags &
				    VM_FAULT_CHANGE_WIRING) == 0) {
					vm_page_lock(fs.first_m);
					vm_page_wire(fs.first_m);
					vm_page_unlock(fs.first_m);
					
					vm_page_lock(fs.m);
					vm_page_unwire(fs.m, FALSE);
					vm_page_unlock(fs.m);
				}
				/*
				 * We no longer need the old page or object.
				 */
				release_page(&fs);
			}
			/*
			 * fs.object != fs.first_object due to above 
			 * conditional
			 */
			vm_object_pip_wakeup(fs.object);
			VM_OBJECT_WUNLOCK(fs.object);
			/*
			 * Only use the new page below...
			 */
			fs.object = fs.first_object;
			fs.pindex = fs.first_pindex;
			fs.m = fs.first_m;
			if (!is_first_object_locked)
				VM_OBJECT_WLOCK(fs.object);
			PCPU_INC(cnt.v_cow_faults);
			curthread->td_cow++;
		} else {
			prot &= ~VM_PROT_WRITE;
		}
	}

	/*
	 * We must verify that the maps have not changed since our last
	 * lookup.
	 */
	if (!fs.lookup_still_valid) {
		vm_object_t retry_object;
		vm_pindex_t retry_pindex;
		vm_prot_t retry_prot;

		if (!vm_map_trylock_read(fs.map)) {
			release_page(&fs);
			unlock_and_deallocate(&fs);
			goto RetryFault;
		}
		fs.lookup_still_valid = TRUE;
		if (fs.map->timestamp != map_generation) {
			result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
			    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);

			/*
			 * If we don't need the page any longer, put it on the inactive
			 * list (the easiest thing to do here).  If no one needs it,
			 * pageout will grab it eventually.
			 */
			if (result != KERN_SUCCESS) {
				release_page(&fs);
				unlock_and_deallocate(&fs);

				/*
				 * If retry of map lookup would have blocked then
				 * retry fault from start.
				 */
				if (result == KERN_FAILURE)
					goto RetryFault;
				return (result);
			}
			if ((retry_object != fs.first_object) ||
			    (retry_pindex != fs.first_pindex)) {
				release_page(&fs);
				unlock_and_deallocate(&fs);
				goto RetryFault;
			}

			/*
			 * Check whether the protection has changed or the object has
			 * been copied while we left the map unlocked. Changing from
			 * read to write permission is OK - we leave the page
			 * write-protected, and catch the write fault. Changing from
			 * write to read permission means that we can't mark the page
			 * write-enabled after all.
			 */
			prot &= retry_prot;
		}
	}
	/*
	 * If the page was filled by a pager, update the map entry's
	 * last read offset.  Since the pager does not return the
	 * actual set of pages that it read, this update is based on
	 * the requested set.  Typically, the requested and actual
	 * sets are the same.
	 *
	 * XXX The following assignment modifies the map
	 * without holding a write lock on it.
	 */
	if (hardfault)
		fs.entry->next_read = fs.pindex + faultcount - reqpage;

	if ((prot & VM_PROT_WRITE) != 0 ||
	    (fault_flags & VM_FAULT_DIRTY) != 0) {
		vm_object_set_writeable_dirty(fs.object);

		/*
		 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
		 * if the page is already dirty to prevent data written with
		 * the expectation of being synced from not being synced.
		 * Likewise if this entry does not request NOSYNC then make
		 * sure the page isn't marked NOSYNC.  Applications sharing
		 * data should use the same flags to avoid ping ponging.
		 */
		if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
			if (fs.m->dirty == 0)
				fs.m->oflags |= VPO_NOSYNC;
		} else {
			fs.m->oflags &= ~VPO_NOSYNC;
		}

		/*
		 * If the fault is a write, we know that this page is being
		 * written NOW so dirty it explicitly to save on 
		 * pmap_is_modified() calls later.
		 *
		 * Also tell the backing pager, if any, that it should remove
		 * any swap backing since the page is now dirty.
		 */
		if (((fault_type & VM_PROT_WRITE) != 0 &&
		    (fault_flags & VM_FAULT_CHANGE_WIRING) == 0) ||
		    (fault_flags & VM_FAULT_DIRTY) != 0) {
			vm_page_dirty(fs.m);
			vm_pager_page_unswapped(fs.m);
		}
	}

	/*
	 * Page had better still be busy
	 */
	KASSERT(fs.m->oflags & VPO_BUSY,
		("vm_fault: page %p not busy!", fs.m));
	/*
	 * Page must be completely valid or it is not fit to
	 * map into user space.  vm_pager_get_pages() ensures this.
	 */
	KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
	    ("vm_fault: page %p partially invalid", fs.m));
	VM_OBJECT_WUNLOCK(fs.object);

	/*
	 * Put this page into the physical map.  We had to do the unlock above
	 * because pmap_enter() may sleep.  We don't put the page
	 * back on the active queue until later so that the pageout daemon
	 * won't find it (yet).
	 */
	pmap_enter(fs.map->pmap, vaddr, fault_type, fs.m, prot, wired);
	if ((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 && wired == 0)
		vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
	VM_OBJECT_WLOCK(fs.object);
	vm_page_lock(fs.m);

	/*
	 * If the page is not wired down, then put it where the pageout daemon
	 * can find it.
	 */
	if (fault_flags & VM_FAULT_CHANGE_WIRING) {
		if (wired)
			vm_page_wire(fs.m);
		else
			vm_page_unwire(fs.m, 1);
	} else
		vm_page_activate(fs.m);
	if (m_hold != NULL) {
		*m_hold = fs.m;
		vm_page_hold(fs.m);
	}
	vm_page_unlock(fs.m);
	vm_page_wakeup(fs.m);

	/*
	 * Unlock everything, and return
	 */
	unlock_and_deallocate(&fs);
	if (hardfault) {
		PCPU_INC(cnt.v_io_faults);
		curthread->td_ru.ru_majflt++;
	} else 
		curthread->td_ru.ru_minflt++;

	return (KERN_SUCCESS);
}
예제 #2
0
/*
* Original vm_pageout_oom, will be called if LRU pageout_oom will fail
*/
static void
original_vm_pageout_oom(int shortage)
{
	struct proc *p, *bigproc;
	vm_offset_t size, bigsize;
	struct thread *td;
	struct vmspace *vm;

	/*
	 * We keep the process bigproc locked once we find it to keep anyone
	 * from messing with it; however, there is a possibility of
	 * deadlock if process B is bigproc and one of it's child processes
	 * attempts to propagate a signal to B while we are waiting for A's
	 * lock while walking this list.  To avoid this, we don't block on
	 * the process lock but just skip a process if it is already locked.
	 */
	bigproc = NULL;
	bigsize = 0;
	sx_slock(&allproc_lock);
	FOREACH_PROC_IN_SYSTEM(p) {
		int breakout;

		if (PROC_TRYLOCK(p) == 0)
			continue;
		/*
		 * If this is a system, protected or killed process, skip it.
		 */
		if (p->p_state != PRS_NORMAL ||
		    (p->p_flag & (P_INEXEC | P_PROTECTED | P_SYSTEM)) ||
		    (p->p_pid == 1) || P_KILLED(p) ||
		    ((p->p_pid < 48) && (swap_pager_avail != 0))) {
			PROC_UNLOCK(p);
			continue;
		}
		/*
		 * If the process is in a non-running type state,
		 * don't touch it.  Check all the threads individually.
		 */
		breakout = 0;
		FOREACH_THREAD_IN_PROC(p, td) {
			thread_lock(td);
			if (!TD_ON_RUNQ(td) &&
			    !TD_IS_RUNNING(td) &&
			    !TD_IS_SLEEPING(td)) {
				thread_unlock(td);
				breakout = 1;
				break;
			}
			thread_unlock(td);
		}
		if (breakout) {
			PROC_UNLOCK(p);
			continue;
		}
		/*
		 * get the process size
		 */
		vm = vmspace_acquire_ref(p);
		if (vm == NULL) {
			PROC_UNLOCK(p);
			continue;
		}
		if (!vm_map_trylock_read(&vm->vm_map)) {
			vmspace_free(vm);
			PROC_UNLOCK(p);
			continue;
		}
		size = vmspace_swap_count(vm);
		vm_map_unlock_read(&vm->vm_map);
		if (shortage == VM_OOM_MEM)
			size += vmspace_resident_count(vm);
		vmspace_free(vm);
		/*
		 * if the this process is bigger than the biggest one
		 * remember it.
		 */
		if (size > bigsize) {
			if (bigproc != NULL)
				PROC_UNLOCK(bigproc);
			bigproc = p;
			bigsize = size;
		} else
			PROC_UNLOCK(p);
	}