void PlaneGeometry::InitializePlane( const Point3D &origin, const Vector3D &normal ) { VnlVector rightVectorVnl(3), downVectorVnl; if( Equal( normal[1], 0.0f ) == false ) { FillVector3D( rightVectorVnl, 1.0f, -normal[0]/normal[1], 0.0f ); rightVectorVnl.normalize(); } else { FillVector3D( rightVectorVnl, 0.0f, 1.0f, 0.0f ); } downVectorVnl = vnl_cross_3d( normal.Get_vnl_vector(), rightVectorVnl ); downVectorVnl.normalize(); InitializeStandardPlane( rightVectorVnl, downVectorVnl ); SetOrigin(origin); }
void PlaneGeometry::InitializeStandardPlane( mitk::ScalarType width, ScalarType height, const VnlVector &rightVector, const VnlVector &downVector, const Vector3D *spacing ) { assert(width > 0); assert(height > 0); VnlVector rightDV = rightVector; rightDV.normalize(); VnlVector downDV = downVector; downDV.normalize(); VnlVector normal = vnl_cross_3d(rightVector, downVector); normal.normalize(); // Crossproduct vnl_cross_3d is always righthanded, but that is okay here // because in this method we create a new IndexToWorldTransform and // spacing with 1 or 3 negative components could still make it lefthanded. if(spacing!=nullptr) { rightDV *= (*spacing)[0]; downDV *= (*spacing)[1]; normal *= (*spacing)[2]; } AffineTransform3D::Pointer transform = AffineTransform3D::New(); Matrix3D matrix; matrix.GetVnlMatrix().set_column(0, rightDV); matrix.GetVnlMatrix().set_column(1, downDV); matrix.GetVnlMatrix().set_column(2, normal); transform->SetMatrix(matrix); transform->SetOffset(this->GetIndexToWorldTransform()->GetOffset()); ScalarType bounds[6] = { 0, width, 0, height, 0, 1 }; this->SetBounds( bounds ); this->SetIndexToWorldTransform( transform ); }
void mitk::ExtrudedContour::BuildGeometry() { if(m_Contour.IsNull()) return; // Initialize(1); Vector3D nullvector; nullvector.Fill(0.0); float xProj[3]; unsigned int i; unsigned int numPts = 20; //m_Contour->GetNumberOfPoints(); mitk::Contour::PathPointer path = m_Contour->GetContourPath(); mitk::Contour::PathType::InputType cstart = path->StartOfInput(); mitk::Contour::PathType::InputType cend = path->EndOfInput(); mitk::Contour::PathType::InputType cstep = (cend-cstart)/numPts; mitk::Contour::PathType::InputType ccur; // Part I: guarantee/calculate legal vectors m_Vector.Normalize(); itk2vtk(m_Vector, m_Normal); // check m_Vector if(mitk::Equal(m_Vector, nullvector) || m_AutomaticVectorGeneration) { if ( m_AutomaticVectorGeneration == false) itkWarningMacro("Extrusion vector is 0 ("<< m_Vector << "); trying to use normal of polygon"); vtkPoints *loopPoints = vtkPoints::New(); //mitk::Contour::PointsContainerIterator pointsIt = m_Contour->GetPoints()->Begin(); double vtkpoint[3]; unsigned int i=0; for(i=0, ccur=cstart; i<numPts; ++i, ccur+=cstep) { itk2vtk(path->Evaluate(ccur), vtkpoint); loopPoints->InsertNextPoint(vtkpoint); } // Make sure points define a loop with a m_Normal vtkPolygon::ComputeNormal(loopPoints, m_Normal); loopPoints->Delete(); vtk2itk(m_Normal, m_Vector); if(mitk::Equal(m_Vector, nullvector)) { itkExceptionMacro("Cannot calculate normal of polygon"); } } // check m_RightVector if((mitk::Equal(m_RightVector, nullvector)) || (mitk::Equal(m_RightVector*m_Vector, 0.0)==false)) { if(mitk::Equal(m_RightVector, nullvector)) { itkDebugMacro("Right vector is 0. Calculating."); } else { itkWarningMacro("Right vector ("<<m_RightVector<<") not perpendicular to extrusion vector "<<m_Vector<<": "<<m_RightVector*m_Vector); } // calculate a legal m_RightVector if( mitk::Equal( m_Vector[1], 0.0f ) == false ) { FillVector3D( m_RightVector, 1.0f, -m_Vector[0]/m_Vector[1], 0.0f ); m_RightVector.Normalize(); } else { FillVector3D( m_RightVector, 0.0f, 1.0f, 0.0f ); } } // calculate down-vector VnlVector rightDV = m_RightVector.GetVnlVector(); rightDV.normalize(); vnl2vtk(rightDV, m_Right); VnlVector downDV = vnl_cross_3d( m_Vector.GetVnlVector(), rightDV ); downDV.normalize(); vnl2vtk(downDV, m_Down); // Part II: calculate plane as base for extrusion, project the contour // on this plane and store as polygon for IsInside test and BoundingBox calculation // initialize m_ProjectionPlane, yet with origin at 0 m_ProjectionPlane->InitializeStandardPlane(rightDV, downDV); // create vtkPolygon from contour and simultaneously determine 2D bounds of // contour projected on m_ProjectionPlane //mitk::Contour::PointsContainerIterator pointsIt = m_Contour->GetPoints()->Begin(); m_Polygon->Points->Reset(); m_Polygon->Points->SetNumberOfPoints(numPts); m_Polygon->PointIds->Reset(); m_Polygon->PointIds->SetNumberOfIds(numPts); mitk::Point2D pt2d; mitk::Point3D pt3d; mitk::Point2D min, max; min.Fill(ScalarTypeNumericTraits::max()); max.Fill(ScalarTypeNumericTraits::min()); xProj[2]=0.0; for(i=0, ccur=cstart; i<numPts; ++i, ccur+=cstep) { pt3d.CastFrom(path->Evaluate(ccur)); m_ProjectionPlane->Map(pt3d, pt2d); xProj[0]=pt2d[0]; if(pt2d[0]<min[0]) min[0]=pt2d[0]; if(pt2d[0]>max[0]) max[0]=pt2d[0]; xProj[1]=pt2d[1]; if(pt2d[1]<min[1]) min[1]=pt2d[1]; if(pt2d[1]>max[1]) max[1]=pt2d[1]; m_Polygon->Points->SetPoint(i, xProj); m_Polygon->PointIds->SetId(i, i); } // shift parametric origin to (0,0) for(i=0; i<numPts; ++i) { double * pt = this->m_Polygon->Points->GetPoint(i); pt[0]-=min[0]; pt[1]-=min[1]; itkDebugMacro( << i << ": (" << pt[0] << "," << pt[1] << "," << pt[2] << ")" ); } this->m_Polygon->GetBounds(m_ProjectedContourBounds); //m_ProjectedContourBounds[4]=-1.0; m_ProjectedContourBounds[5]=1.0; // calculate origin (except translation along the normal) and bounds // of m_ProjectionPlane: // origin is composed of the minimum x-/y-coordinates of the polygon, // bounds from the extent of the polygon, both after projecting on the plane mitk::Point3D origin; m_ProjectionPlane->Map(min, origin); ScalarType bounds[6]={0, max[0]-min[0], 0, max[1]-min[1], 0, 1}; m_ProjectionPlane->SetBounds(bounds); m_ProjectionPlane->SetOrigin(origin); // Part III: initialize geometry if(m_ClippingGeometry.IsNotNull()) { ScalarType min_dist=ScalarTypeNumericTraits::max(), max_dist=ScalarTypeNumericTraits::min(), dist; unsigned char i; for(i=0; i<8; ++i) { dist = m_ProjectionPlane->SignedDistance( m_ClippingGeometry->GetCornerPoint(i) ); if(dist<min_dist) min_dist=dist; if(dist>max_dist) max_dist=dist; } //incorporate translation along the normal into origin origin = origin+m_Vector*min_dist; m_ProjectionPlane->SetOrigin(origin); bounds[5]=max_dist-min_dist; } else bounds[5]=20; itk2vtk(origin, m_Origin); mitk::Geometry3D::Pointer g3d = GetGeometry( 0 ); assert( g3d.IsNotNull() ); g3d->SetBounds(bounds); g3d->SetIndexToWorldTransform(m_ProjectionPlane->GetIndexToWorldTransform()); g3d->TransferItkToVtkTransform(); ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); timeGeometry->Initialize(g3d,1); SetTimeGeometry(timeGeometry); }
SEXP invariantSimilarityHelper( typename itk::Image< float , ImageDimension >::Pointer image1, typename itk::Image< float , ImageDimension >::Pointer image2, SEXP r_thetas, SEXP r_lsits, SEXP r_WM, SEXP r_scale, SEXP r_doreflection, SEXP r_txfn ) { unsigned int mibins = 20; unsigned int localSearchIterations = Rcpp::as< unsigned int >( r_lsits ) ; std::string whichMetric = Rcpp::as< std::string >( r_WM ); std::string txfn = Rcpp::as< std::string >( r_txfn ); bool useprincaxis = true; typedef typename itk::ImageMaskSpatialObject<ImageDimension>::ImageType maskimagetype; typename maskimagetype::Pointer mask = ITK_NULLPTR; Rcpp::NumericVector thetas( r_thetas ); Rcpp::NumericVector vector_r( r_thetas ) ; Rcpp::IntegerVector dims( 1 ); Rcpp::IntegerVector doReflection( r_doreflection ); unsigned int vecsize = thetas.size(); dims[0]=0; typedef float PixelType; typedef double RealType; RealType bestscale = Rcpp::as< RealType >( r_scale ) ; typedef itk::Image< PixelType , ImageDimension > ImageType; if( image1.IsNotNull() & image2.IsNotNull() ) { typedef typename itk::ImageMomentsCalculator<ImageType> ImageCalculatorType; typedef itk::AffineTransform<RealType, ImageDimension> AffineType0; typedef itk::AffineTransform<RealType, ImageDimension> AffineType; typedef typename ImageCalculatorType::MatrixType MatrixType; typedef itk::Vector<float, ImageDimension> VectorType; VectorType ccg1; VectorType cpm1; MatrixType cpa1; VectorType ccg2; VectorType cpm2; MatrixType cpa2; typename ImageCalculatorType::Pointer calculator1 = ImageCalculatorType::New(); typename ImageCalculatorType::Pointer calculator2 = ImageCalculatorType::New(); calculator1->SetImage( image1 ); calculator2->SetImage( image2 ); typename ImageCalculatorType::VectorType fixed_center; fixed_center.Fill(0); typename ImageCalculatorType::VectorType moving_center; moving_center.Fill(0); try { calculator1->Compute(); fixed_center = calculator1->GetCenterOfGravity(); ccg1 = calculator1->GetCenterOfGravity(); cpm1 = calculator1->GetPrincipalMoments(); cpa1 = calculator1->GetPrincipalAxes(); try { calculator2->Compute(); moving_center = calculator2->GetCenterOfGravity(); ccg2 = calculator2->GetCenterOfGravity(); cpm2 = calculator2->GetPrincipalMoments(); cpa2 = calculator2->GetPrincipalAxes(); } catch( ... ) { fixed_center.Fill(0); } } catch( ... ) { // Rcpp::Rcerr << " zero image1 error "; } if ( vnl_math_abs( bestscale - 1.0 ) < 1.e-6 ) { RealType volelt1 = 1; RealType volelt2 = 1; for ( unsigned int d=0; d<ImageDimension; d++) { volelt1 *= image1->GetSpacing()[d]; volelt2 *= image2->GetSpacing()[d]; } bestscale = ( calculator2->GetTotalMass() * volelt2 )/ ( calculator1->GetTotalMass() * volelt1 ); RealType powlev = 1.0 / static_cast<RealType>(ImageDimension); bestscale = vcl_pow( bestscale , powlev ); } unsigned int eigind1 = 1; unsigned int eigind2 = 1; if( ImageDimension == 3 ) { eigind1 = 2; } typedef vnl_vector<RealType> EVectorType; typedef vnl_matrix<RealType> EMatrixType; EVectorType evec1_2ndary = cpa1.GetVnlMatrix().get_row( eigind2 ); EVectorType evec1_primary = cpa1.GetVnlMatrix().get_row( eigind1 ); EVectorType evec2_2ndary = cpa2.GetVnlMatrix().get_row( eigind2 ); EVectorType evec2_primary = cpa2.GetVnlMatrix().get_row( eigind1 ); /** Solve Wahba's problem http://en.wikipedia.org/wiki/Wahba%27s_problem */ EMatrixType B = outer_product( evec2_primary, evec1_primary ); if( ImageDimension == 3 ) { B = outer_product( evec2_2ndary, evec1_2ndary ) + outer_product( evec2_primary, evec1_primary ); } vnl_svd<RealType> wahba( B ); vnl_matrix<RealType> A_solution = wahba.V() * wahba.U().transpose(); A_solution = vnl_inverse( A_solution ); RealType det = vnl_determinant( A_solution ); if( ( det < 0 ) ) { vnl_matrix<RealType> id( A_solution ); id.set_identity(); for( unsigned int i = 0; i < ImageDimension; i++ ) { if( A_solution( i, i ) < 0 ) { id( i, i ) = -1.0; } } A_solution = A_solution * id.transpose(); } if ( doReflection[0] == 1 || doReflection[0] == 3 ) { vnl_matrix<RealType> id( A_solution ); id.set_identity(); id = id - 2.0 * outer_product( evec2_primary , evec2_primary ); A_solution = A_solution * id; } if ( doReflection[0] > 1 ) { vnl_matrix<RealType> id( A_solution ); id.set_identity(); id = id - 2.0 * outer_product( evec1_primary , evec1_primary ); A_solution = A_solution * id; } typename AffineType::Pointer affine1 = AffineType::New(); typename AffineType::OffsetType trans = affine1->GetOffset(); itk::Point<RealType, ImageDimension> trans2; for( unsigned int i = 0; i < ImageDimension; i++ ) { trans[i] = moving_center[i] - fixed_center[i]; trans2[i] = fixed_center[i] * ( 1 ); } affine1->SetIdentity(); affine1->SetOffset( trans ); if( useprincaxis ) { affine1->SetMatrix( A_solution ); } affine1->SetCenter( trans2 ); if( ImageDimension > 3 ) { return EXIT_SUCCESS; } vnl_vector<RealType> evec_tert; if( ImageDimension == 3 ) { // try to rotate around tertiary and secondary axis evec_tert = vnl_cross_3d( evec1_primary, evec1_2ndary ); } if( ImageDimension == 2 ) { // try to rotate around tertiary and secondary axis evec_tert = evec1_2ndary; evec1_2ndary = evec1_primary; } itk::Vector<RealType, ImageDimension> axis2; itk::Vector<RealType, ImageDimension> axis1; for( unsigned int d = 0; d < ImageDimension; d++ ) { axis1[d] = evec_tert[d]; axis2[d] = evec1_2ndary[d]; } typename AffineType::Pointer simmer = AffineType::New(); simmer->SetIdentity(); simmer->SetCenter( trans2 ); simmer->SetOffset( trans ); typename AffineType0::Pointer affinesearch = AffineType0::New(); affinesearch->SetIdentity(); affinesearch->SetCenter( trans2 ); typedef itk::MultiStartOptimizerv4 OptimizerType; typename OptimizerType::MetricValuesListType metricvalues; typename OptimizerType::Pointer mstartOptimizer = OptimizerType::New(); typedef itk::CorrelationImageToImageMetricv4 <ImageType, ImageType, ImageType> GCMetricType; typedef itk::MattesMutualInformationImageToImageMetricv4 <ImageType, ImageType, ImageType> MetricType; typename MetricType::ParametersType newparams( affine1->GetParameters() ); typename GCMetricType::Pointer gcmetric = GCMetricType::New(); gcmetric->SetFixedImage( image1 ); gcmetric->SetVirtualDomainFromImage( image1 ); gcmetric->SetMovingImage( image2 ); gcmetric->SetMovingTransform( simmer ); gcmetric->SetParameters( newparams ); typename MetricType::Pointer mimetric = MetricType::New(); mimetric->SetNumberOfHistogramBins( mibins ); mimetric->SetFixedImage( image1 ); mimetric->SetMovingImage( image2 ); mimetric->SetMovingTransform( simmer ); mimetric->SetParameters( newparams ); if( mask.IsNotNull() ) { typename itk::ImageMaskSpatialObject<ImageDimension>::Pointer so = itk::ImageMaskSpatialObject<ImageDimension>::New(); so->SetImage( const_cast<maskimagetype *>( mask.GetPointer() ) ); mimetric->SetFixedImageMask( so ); gcmetric->SetFixedImageMask( so ); } typedef itk::ConjugateGradientLineSearchOptimizerv4 LocalOptimizerType; typename LocalOptimizerType::Pointer localoptimizer = LocalOptimizerType::New(); RealType localoptimizerlearningrate = 0.1; localoptimizer->SetLearningRate( localoptimizerlearningrate ); localoptimizer->SetMaximumStepSizeInPhysicalUnits( localoptimizerlearningrate ); localoptimizer->SetNumberOfIterations( localSearchIterations ); localoptimizer->SetLowerLimit( 0 ); localoptimizer->SetUpperLimit( 2 ); localoptimizer->SetEpsilon( 0.1 ); localoptimizer->SetMaximumLineSearchIterations( 50 ); localoptimizer->SetDoEstimateLearningRateOnce( true ); localoptimizer->SetMinimumConvergenceValue( 1.e-6 ); localoptimizer->SetConvergenceWindowSize( 5 ); if( true ) { typedef typename MetricType::FixedSampledPointSetType PointSetType; typedef typename PointSetType::PointType PointType; typename PointSetType::Pointer pset(PointSetType::New()); unsigned int ind=0; unsigned int ct=0; itk::ImageRegionIteratorWithIndex<ImageType> It(image1, image1->GetLargestPossibleRegion() ); for( It.GoToBegin(); !It.IsAtEnd(); ++It ) { // take every N^th point if ( ct % 10 == 0 ) { PointType pt; image1->TransformIndexToPhysicalPoint( It.GetIndex(), pt); pset->SetPoint(ind, pt); ind++; } ct++; } mimetric->SetFixedSampledPointSet( pset ); mimetric->SetUseFixedSampledPointSet( true ); gcmetric->SetFixedSampledPointSet( pset ); gcmetric->SetUseFixedSampledPointSet( true ); } if ( whichMetric.compare("MI") == 0 ) { mimetric->Initialize(); typedef itk::RegistrationParameterScalesFromPhysicalShift<MetricType> RegistrationParameterScalesFromPhysicalShiftType; typename RegistrationParameterScalesFromPhysicalShiftType::Pointer shiftScaleEstimator = RegistrationParameterScalesFromPhysicalShiftType::New(); shiftScaleEstimator->SetMetric( mimetric ); shiftScaleEstimator->SetTransformForward( true ); typename RegistrationParameterScalesFromPhysicalShiftType::ScalesType movingScales( simmer->GetNumberOfParameters() ); shiftScaleEstimator->EstimateScales( movingScales ); mstartOptimizer->SetScales( movingScales ); mstartOptimizer->SetMetric( mimetric ); localoptimizer->SetMetric( mimetric ); localoptimizer->SetScales( movingScales ); } if ( whichMetric.compare("MI") != 0 ) { gcmetric->Initialize(); typedef itk::RegistrationParameterScalesFromPhysicalShift<GCMetricType> RegistrationParameterScalesFromPhysicalShiftType; typename RegistrationParameterScalesFromPhysicalShiftType::Pointer shiftScaleEstimator = RegistrationParameterScalesFromPhysicalShiftType::New(); shiftScaleEstimator->SetMetric( gcmetric ); shiftScaleEstimator->SetTransformForward( true ); typename RegistrationParameterScalesFromPhysicalShiftType::ScalesType movingScales( simmer->GetNumberOfParameters() ); shiftScaleEstimator->EstimateScales( movingScales ); mstartOptimizer->SetScales( movingScales ); mstartOptimizer->SetMetric( gcmetric ); localoptimizer->SetMetric( gcmetric ); localoptimizer->SetScales( movingScales ); } typename OptimizerType::ParametersListType parametersList = mstartOptimizer->GetParametersList(); affinesearch->SetIdentity(); affinesearch->SetCenter( trans2 ); affinesearch->SetOffset( trans ); for ( unsigned int i = 0; i < vecsize; i++ ) { RealType ang1 = thetas[i]; RealType ang2 = 0; // FIXME should be psi vector_r[ i ]=0; if( ImageDimension == 3 ) { for ( unsigned int jj = 0; jj < vecsize; jj++ ) { ang2=thetas[jj]; affinesearch->SetIdentity(); affinesearch->SetCenter( trans2 ); affinesearch->SetOffset( trans ); if( useprincaxis ) { affinesearch->SetMatrix( A_solution ); } affinesearch->Rotate3D(axis1, ang1, 1); affinesearch->Rotate3D(axis2, ang2, 1); affinesearch->Scale( bestscale ); simmer->SetMatrix( affinesearch->GetMatrix() ); parametersList.push_back( simmer->GetParameters() ); } } if( ImageDimension == 2 ) { affinesearch->SetIdentity(); affinesearch->SetCenter( trans2 ); affinesearch->SetOffset( trans ); if( useprincaxis ) { affinesearch->SetMatrix( A_solution ); } affinesearch->Rotate2D( ang1, 1); affinesearch->Scale( bestscale ); simmer->SetMatrix( affinesearch->GetMatrix() ); typename AffineType::ParametersType pp = simmer->GetParameters(); //pp[1]=ang1; //pp[0]=bestscale; parametersList.push_back( simmer->GetParameters() ); } } mstartOptimizer->SetParametersList( parametersList ); if( localSearchIterations > 0 ) { mstartOptimizer->SetLocalOptimizer( localoptimizer ); } mstartOptimizer->StartOptimization(); typename AffineType::Pointer bestaffine = AffineType::New(); bestaffine->SetCenter( trans2 ); bestaffine->SetParameters( mstartOptimizer->GetBestParameters() ); if ( txfn.length() > 3 ) { typename AffineType::Pointer bestaffine = AffineType::New(); bestaffine->SetCenter( trans2 ); bestaffine->SetParameters( mstartOptimizer->GetBestParameters() ); typedef itk::TransformFileWriter TransformWriterType; typename TransformWriterType::Pointer transformWriter = TransformWriterType::New(); transformWriter->SetInput( bestaffine ); transformWriter->SetFileName( txfn.c_str() ); transformWriter->Update(); } metricvalues = mstartOptimizer->GetMetricValuesList(); for ( unsigned int k = 0; k < metricvalues.size(); k++ ) { vector_r[k] = metricvalues[k]; } dims[0] = vecsize; vector_r.attr( "dim" ) = vecsize; return Rcpp::wrap( vector_r ); } else { return Rcpp::wrap( vector_r ); } }
void SlicesRotator::RotateToPoint( SliceNavigationController *rotationPlaneSNC, SliceNavigationController *rotatedPlaneSNC, const Point3D &point, bool linked ) { MITK_WARN << "Deprecated function! Use SliceNavigationController::ReorientSlices() instead"; SliceNavigationController *thirdSNC = NULL; SNCVector::iterator iter; for ( iter = m_RotatableSNCs.begin(); iter != m_RotatableSNCs.end(); ++iter ) { if ( ((*iter) != rotationPlaneSNC) && ((*iter) != rotatedPlaneSNC) ) { thirdSNC = *iter; break; } } if ( thirdSNC == NULL ) { return; } const PlaneGeometry *rotationPlane = rotationPlaneSNC->GetCurrentPlaneGeometry(); const PlaneGeometry *rotatedPlane = rotatedPlaneSNC->GetCurrentPlaneGeometry(); const PlaneGeometry *thirdPlane = thirdSNC->GetCurrentPlaneGeometry(); if ( (rotationPlane == NULL) || (rotatedPlane == NULL) || (thirdPlane == NULL) ) { return; } if ( rotatedPlane->DistanceFromPlane( point ) < 0.001 ) { // Skip irrelevant rotations return; } Point3D projectedPoint; Line3D intersection; Point3D rotationCenter; if ( !rotationPlane->Project( point, projectedPoint ) || !rotationPlane->IntersectionLine( rotatedPlane, intersection ) || !thirdPlane->IntersectionPoint( intersection, rotationCenter ) ) { return; } // All pre-requirements are met; execute the rotation Point3D referencePoint = intersection.Project( projectedPoint ); Vector3D toProjected = referencePoint - rotationCenter; Vector3D toCursor = projectedPoint - rotationCenter; // cross product: | A x B | = |A| * |B| * sin(angle) Vector3D axisOfRotation; vnl_vector_fixed< ScalarType, 3 > vnlDirection = vnl_cross_3d( toCursor.GetVnlVector(), toProjected.GetVnlVector() ); axisOfRotation.SetVnlVector( vnlDirection ); // scalar product: A * B = |A| * |B| * cos(angle) // tan = sin / cos ScalarType angle = - atan2( (double)(axisOfRotation.GetNorm()), (double)(toCursor * toProjected) ); angle *= 180.0 / vnl_math::pi; // create RotationOperation and apply to all SNCs that should be rotated RotationOperation op(OpROTATE, rotationCenter, axisOfRotation, angle); if ( !linked ) { BaseRenderer *renderer = rotatedPlaneSNC->GetRenderer(); if ( renderer == NULL ) { return; } DisplayGeometry *displayGeometry = renderer->GetDisplayGeometry(); Point2D point2DWorld, point2DDisplayPre, point2DDisplayPost; displayGeometry->Map( rotationCenter, point2DWorld ); displayGeometry->WorldToDisplay( point2DWorld, point2DDisplayPre ); TimeGeometry *timeGeometry= rotatedPlaneSNC->GetCreatedWorldGeometry(); if ( !timeGeometry ) { return; } timeGeometry->ExecuteOperation( &op ); displayGeometry->Map( rotationCenter, point2DWorld ); displayGeometry->WorldToDisplay( point2DWorld, point2DDisplayPost ); Vector2D vector2DDisplayDiff = point2DDisplayPost - point2DDisplayPre; //Vector2D origin = displayGeometry->GetOriginInMM(); displayGeometry->MoveBy( vector2DDisplayDiff ); rotatedPlaneSNC->SendCreatedWorldGeometryUpdate(); } else { SNCVector::iterator iter; for ( iter = m_RotatableSNCs.begin(); iter != m_RotatableSNCs.end(); ++iter ) { BaseRenderer *renderer = (*iter)->GetRenderer(); if ( renderer == NULL ) { continue; } DisplayGeometry *displayGeometry = renderer->GetDisplayGeometry(); Point2D point2DWorld, point2DDisplayPre, point2DDisplayPost; displayGeometry->Map( rotationCenter, point2DWorld ); displayGeometry->WorldToDisplay( point2DWorld, point2DDisplayPre ); TimeGeometry* timeGeometry = (*iter)->GetCreatedWorldGeometry(); if ( !timeGeometry ) { continue; } timeGeometry->ExecuteOperation( &op ); displayGeometry->Map( rotationCenter, point2DWorld ); displayGeometry->WorldToDisplay( point2DWorld, point2DDisplayPost ); Vector2D vector2DDisplayDiff = point2DDisplayPost - point2DDisplayPre; //Vector2D origin = displayGeometry->GetOriginInMM(); displayGeometry->MoveBy( vector2DDisplayDiff ); (*iter)->SendCreatedWorldGeometryUpdate(); } } } // end RotateToPoint
bool SlicesRotator::DoRotationStep(Action*, const StateEvent* e) { const DisplayPositionEvent* posEvent = dynamic_cast<const DisplayPositionEvent*>(e->GetEvent()); if (!posEvent) return false; Point3D cursor = posEvent->GetWorldPosition(); Vector3D toProjected = m_LastCursorPosition - m_CenterOfRotation; Vector3D toCursor = cursor - m_CenterOfRotation; // cross product: | A x B | = |A| * |B| * sin(angle) Vector3D axisOfRotation; vnl_vector_fixed< ScalarType, 3 > vnlDirection = vnl_cross_3d( toCursor.GetVnlVector(), toProjected.GetVnlVector() ); axisOfRotation.SetVnlVector(vnlDirection); // scalar product: A * B = |A| * |B| * cos(angle) // tan = sin / cos ScalarType angle = - atan2( (double)(axisOfRotation.GetNorm()), (double)(toCursor * toProjected) ); angle *= 180.0 / vnl_math::pi; m_LastCursorPosition = cursor; // create RotationOperation and apply to all SNCs that should be rotated RotationOperation rotationOperation(OpROTATE, m_CenterOfRotation, axisOfRotation, angle); // iterate the OTHER slice navigation controllers: these are filled in DoDecideBetweenRotationAndSliceSelection for (SNCVector::iterator iter = m_SNCsToBeRotated.begin(); iter != m_SNCsToBeRotated.end(); ++iter) { // - remember the center of rotation on the 2D display BEFORE rotation // - execute rotation // - calculate new center of rotation on 2D display // - move display IF the center of rotation has moved slightly before and after rotation // DM 2012-10: this must probably be due to rounding errors only, right? // We don't have documentation on if/why this code is needed BaseRenderer *renderer = (*iter)->GetRenderer(); if ( !renderer ) continue; DisplayGeometry *displayGeometry = renderer->GetDisplayGeometry(); Point2D rotationCenter2DWorld, point2DDisplayPreRotation, point2DDisplayPostRotation; displayGeometry->Map( m_CenterOfRotation, rotationCenter2DWorld ); displayGeometry->WorldToDisplay( rotationCenter2DWorld, point2DDisplayPreRotation ); TimeGeometry* timeGeometry = (*iter)->GetCreatedWorldGeometry(); if (!timeGeometry) continue; timeGeometry->ExecuteOperation(&rotationOperation); displayGeometry->Map( m_CenterOfRotation, rotationCenter2DWorld ); displayGeometry->WorldToDisplay( rotationCenter2DWorld, point2DDisplayPostRotation ); Vector2D vector2DDisplayDiff = point2DDisplayPostRotation - point2DDisplayPreRotation; displayGeometry->MoveBy( vector2DDisplayDiff ); (*iter)->SendCreatedWorldGeometryUpdate(); } RenderingManager::GetInstance()->RequestUpdateAll(); this->InvokeEvent( SliceRotationEvent() ); // notify listeners return true; }