static int vnop_fsync_9p(struct vnop_fsync_args *ap) { node_9p *np; dir_9p d; int e; TRACE(); if (!vnode_isreg(ap->a_vp)) return 0; np = NTO9P(ap->a_vp); nlock_9p(np, NODE_LCK_EXCLUSIVE); if (ubc_getsize(ap->a_vp)>0 && !vnode_isnocache(ap->a_vp)) { if (ISSET(np->flags, NODE_MMAPPED)) ubc_msync(np->vp, 0, ubc_getsize(np->vp), NULL, UBC_PUSHDIRTY|UBC_SYNC); else cluster_push(np->vp, IO_SYNC); } e = 0; /* only sync write fids */ if (np->openfid[OWRITE].fid!=NOFID || np->openfid[ORDWR].fid!=NOFID) { nulldir(&d); e = wstat_9p(np->nmp, np->fid, &d); } nunlock_9p(np); return e; }
static int vnop_write_9p(struct vnop_write_args *ap) { vnode_t vp; node_9p *np; uio_t uio; user_ssize_t resid; off_t eof, zh, zt, off; int e, flag; TRACE(); vp = ap->a_vp; uio = ap->a_uio; np = NTO9P(vp); if (vnode_isdir(vp)) return EISDIR; off = uio_offset(uio); if (off < 0) return EINVAL; resid = uio_resid(uio); if (resid == 0) return 0; flag = ap->a_ioflag; if (ISSET(flag, IO_APPEND)) { off = np->dir.length; uio_setoffset(uio, off); } nlock_9p(np, NODE_LCK_EXCLUSIVE); if (vnode_isnocache(vp) || ISSET(flag, IO_NOCACHE)) { ubc_msync(vp, uio_offset(uio), uio_offset(uio)+uio_resid(uio), NULL, UBC_PUSHDIRTY|UBC_SYNC); ubc_msync(vp, uio_offset(uio), uio_offset(uio)+uio_resid(uio), NULL, UBC_INVALIDATE); e = nwrite_9p(np, uio); } else { zh = zt = 0; eof = MAX(np->dir.length, resid+off); if (eof > np->dir.length) { if (off > np->dir.length) { zh = np->dir.length; SET(flag, IO_HEADZEROFILL); } zt = (eof + (PAGE_SIZE_64 - 1)) & ~PAGE_MASK_64; if (zt > eof) { zt = eof; SET(flag, IO_TAILZEROFILL); } } e = cluster_write(vp, uio, np->dir.length, eof, zh, zt, flag); if (e==0 && eof>np->dir.length) { np->dirtimer = 0; np->dir.length = eof; ubc_setsize(vp, eof); } } nunlock_9p(np); return e; }
static int vnop_read_9p(struct vnop_read_args *ap) { node_9p *np; vnode_t vp; uio_t uio; int e; TRACE(); vp = ap->a_vp; uio = ap->a_uio; np = NTO9P(vp); if (vnode_isdir(vp)) return EISDIR; if (uio_offset(uio) < 0) return EINVAL; if (uio_resid(uio) == 0) return 0; nlock_9p(np, NODE_LCK_SHARED); if (vnode_isnocache(vp) || ISSET(ap->a_ioflag, IO_NOCACHE)) { if (ISSET(np->flags, NODE_MMAPPED)) ubc_msync(vp, 0, ubc_getsize(vp), NULL, UBC_PUSHDIRTY|UBC_SYNC); else cluster_push(vp, IO_SYNC); ubc_msync(vp, uio_offset(uio), uio_offset(uio)+uio_resid(uio), NULL, UBC_INVALIDATE); e = nread_9p(np, uio); } else e = cluster_read(vp, uio, np->dir.length, ap->a_ioflag); nunlock_9p(np); return e; }
/** * ntfs_page_unmap - unmap a page belonging to a vnode from memory * @ni: ntfs inode to which the page belongs * @upl: page list of the page * @pl: array of pages containing the page itself * @mark_dirty: mark the page dirty * * Unmap the page belonging to the ntfs inode @ni from memory releasing it back * to the vm. * * The page is described by the page list @upl, the array of pages containing * the page @pl and the address of the mapped page contents @kaddr. * * If @mark_dirty is TRUE, tell the vm to mark the page dirty when releasing * the page. * * Locking: Caller must hold an iocount reference on the vnode of @ni. */ void ntfs_page_unmap(ntfs_inode *ni, upl_t upl, upl_page_info_array_t pl, const BOOL mark_dirty) { kern_return_t kerr; BOOL was_valid, was_dirty; was_valid = upl_valid_page(pl, 0); /* The page dirty bit is only valid if the page was valid. */ was_dirty = (was_valid && upl_dirty_page(pl, 0)); ntfs_debug("Entering for inode 0x%llx, page was %svalid %s %sdirty%s.", (unsigned long long)ni->mft_no, was_valid ? "" : "not ", (int)was_valid ^ (int)was_dirty ? "but" : "and", was_dirty ? "" : "not ", mark_dirty ? ", marking it dirty" : ""); /* Unmap the page from the kernel's address space. */ kerr = ubc_upl_unmap(upl); if (kerr != KERN_SUCCESS) ntfs_warning(ni->vol->mp, "ubc_upl_unmap() failed (error %d).", (int)kerr); /* * If the page was valid and dirty or is being made dirty or if caching * for the vnode is enabled (as it will usually be the case for all * metadata files), commit it thus releasing it into the vm taking care * to preserve the dirty state and marking the page dirty if requested * when committing the page. * * If the page was not valid or was valid but not dirty, it is not * being marked dirty, and caching is disabled on the vnode, dump the * page. */ if (was_dirty || mark_dirty || !vnode_isnocache(ni->vn)) { int commit_flags; commit_flags = UPL_COMMIT_FREE_ON_EMPTY | UPL_COMMIT_INACTIVATE; if (!was_valid && !mark_dirty) commit_flags |= UPL_COMMIT_CLEAR_DIRTY; else if (was_dirty || mark_dirty) commit_flags |= UPL_COMMIT_SET_DIRTY; ubc_upl_commit_range(upl, 0, PAGE_SIZE, commit_flags); ntfs_debug("Done (committed page)."); } else { ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); ntfs_debug("Done (dumped page)."); } }
/** * ntfs_page_map_ext - map a page of a vnode into memory * @ni: ntfs inode of which to map a page * @ofs: byte offset into @ni of which to map a page * @upl: destination page list for the page * @pl: destination array of pages containing the page itself * @kaddr: destination pointer for the address of the mapped page contents * @uptodate: if true return an uptodate page and if false return it as is * @rw: if true we intend to modify the page and if false we do not * * Map the page corresponding to byte offset @ofs into the ntfs inode @ni into * memory and return the page list in @upl, the array of pages containing the * page in @pl and the address of the mapped page contents in @kaddr. * * If @uptodate is true the page is returned uptodate, i.e. if the page is * currently not valid, it will be brought uptodate via a call to ntfs_pagein() * before it is returned. And if @uptodate is false, the page is just returned * ignoring its state. This means the page may or may not be uptodate. * * The caller must set @rw to true if the page is going to be modified and to * false otherwise. * * Note: @ofs must be page aligned. * * Locking: - Caller must hold an iocount reference on the vnode of @ni. * - Caller must hold @ni->lock for reading or writing. * * Return 0 on success and errno on error in which case *@upl is set to NULL. */ errno_t ntfs_page_map_ext(ntfs_inode *ni, s64 ofs, upl_t *upl, upl_page_info_array_t *pl, u8 **kaddr, const BOOL uptodate, const BOOL rw) { s64 size; kern_return_t kerr; int abort_flags; errno_t err; ntfs_debug("Entering for inode 0x%llx, offset 0x%llx, rw is %s.", (unsigned long long)ni->mft_no, (unsigned long long)ofs, rw ? "true" : "false"); if (ofs & PAGE_MASK) panic("%s() called with non page aligned offset (0x%llx).", __FUNCTION__, (unsigned long long)ofs); lck_spin_lock(&ni->size_lock); size = ubc_getsize(ni->vn); if (size > ni->data_size) size = ni->data_size; lck_spin_unlock(&ni->size_lock); if (ofs > size) { ntfs_error(ni->vol->mp, "Offset 0x%llx is outside the end of " "the attribute (0x%llx).", (unsigned long long)ofs, (unsigned long long)size); err = EINVAL; goto err; } /* Create a page list for the wanted page. */ kerr = ubc_create_upl(ni->vn, ofs, PAGE_SIZE, upl, pl, UPL_SET_LITE | (rw ? UPL_WILL_MODIFY : 0)); if (kerr != KERN_SUCCESS) panic("%s(): Failed to get page (error %d).\n", __FUNCTION__, (int)kerr); /* * If the page is not valid, need to read it in from the vnode now thus * making it valid. * * We set UPL_NESTED_PAGEOUT to let ntfs_pagein() know that we already * have the inode locked (@ni->lock is held by the caller). */ if (uptodate && !upl_valid_page(*pl, 0)) { ntfs_debug("Reading page as it was not valid."); err = ntfs_pagein(ni, ofs, PAGE_SIZE, *upl, 0, UPL_IOSYNC | UPL_NOCOMMIT | UPL_NESTED_PAGEOUT); if (err) { ntfs_error(ni->vol->mp, "Failed to read page (error " "%d).", err); goto pagein_err; } } /* Map the page into the kernel's address space. */ kerr = ubc_upl_map(*upl, (vm_offset_t*)kaddr); if (kerr == KERN_SUCCESS) { ntfs_debug("Done."); return 0; } ntfs_error(ni->vol->mp, "Failed to map page (error %d).", (int)kerr); err = EIO; pagein_err: abort_flags = UPL_ABORT_FREE_ON_EMPTY; if (!upl_valid_page(*pl, 0) || (vnode_isnocache(ni->vn) && !upl_dirty_page(*pl, 0))) abort_flags |= UPL_ABORT_DUMP_PAGES; ubc_upl_abort_range(*upl, 0, PAGE_SIZE, abort_flags); err: *upl = NULL; return err; }
/** * ntfs_pagein - read a range of pages into memory * @ni: ntfs inode whose data to read into the page range * @attr_ofs: byte offset in the inode at which to start * @size: number of bytes to read from the inode * @upl: page list describing destination page range * @upl_ofs: byte offset into page list at which to start * @flags: flags further describing the pagein request * * Read @size bytes from the ntfs inode @ni, starting at byte offset @attr_ofs * into the inode, into the range of pages specified by the page list @upl, * starting at byte offset @upl_ofs into the page list. * * The @flags further describe the pagein request. The following pagein flags * are currently defined in OSX kernel: * UPL_IOSYNC - Perform synchronous i/o. * UPL_NOCOMMIT - Do not commit/abort the page range. * UPL_NORDAHEAD - Do not perform any speculative read-ahead. * IO_PASSIVE - This is background i/o so do not throttle other i/o. * * Inside the ntfs driver we have the need to perform pageins whilst the inode * is locked for writing (@ni->lock) thus we cheat and set UPL_NESTED_PAGEOUT * in @flags when this is the case. We make sure to clear it in @flags before * calling into the cluster layer so we do not accidentally cause confusion. * * For encrypted attributes we abort for now as we do not support them yet. * * For non-resident, non-compressed attributes we use cluster_pagein_ext() * which deals with both normal and multi sector transfer protected attributes. * * For resident attributes and non-resident, compressed attributes we read the * data ourselves by mapping the page list, and in the resident case, mapping * the mft record, looking up the attribute in it, and copying the requested * data from the mapped attribute into the page list, then unmapping the mft * record, whilst for non-resident, compressed attributes, we get the raw inode * and use it with ntfs_read_compressed() to read and decompress the data into * our mapped page list. We then unmap the page list and finally, if * UPL_NOCOMMIT is not specified, we commit (success) or abort (error) the page * range. * * Return 0 on success and errno on error. * * Note the pages in the page list are marked busy on entry and the busy bit is * cleared when we commit the page range. Thus it is perfectly safe for us to * fill the pages with encrypted or mst protected data and to decrypt or mst * deprotect in place before committing the page range. * * Adapted from cluster_pagein_ext(). * * Locking: - Caller must hold an iocount reference on the vnode of @ni. * - Caller must not hold @ni->lock or if it is held it must be for * reading unless UPL_NESTED_PAGEOUT is set in @flags in which case * the caller must hold @ni->lock for reading or writing. */ int ntfs_pagein(ntfs_inode *ni, s64 attr_ofs, unsigned size, upl_t upl, upl_offset_t upl_ofs, int flags) { s64 attr_size; u8 *kaddr; kern_return_t kerr; unsigned to_read; int err; BOOL locked = FALSE; ntfs_debug("Entering for mft_no 0x%llx, offset 0x%llx, size 0x%x, " "pagein flags 0x%x, page list offset 0x%llx.", (unsigned long long)ni->mft_no, (unsigned long long)attr_ofs, size, flags, (unsigned long long)upl_ofs); /* * If the caller did not specify any i/o, then we are done. We cannot * issue an abort because we do not have a upl or we do not know its * size. */ if (!upl) { ntfs_error(ni->vol->mp, "NULL page list passed in (error " "EINVAL)."); return EINVAL; } if (S_ISDIR(ni->mode)) { ntfs_error(ni->vol->mp, "Called for directory vnode."); err = EISDIR; goto err; } /* * Protect against changes in initialized_size and thus against * truncation also unless UPL_NESTED_PAGEOUT is set in which case the * caller has already taken @ni->lock for exclusive access. We simply * leave @locked to be FALSE in this case so we do not try to drop the * lock later on. * * If UPL_NESTED_PAGEOUT is set we clear it in @flags to ensure we do * not cause confusion in the cluster layer or the VM. */ if (flags & UPL_NESTED_PAGEOUT) flags &= ~UPL_NESTED_PAGEOUT; else { locked = TRUE; lck_rw_lock_shared(&ni->lock); } /* Do not allow messing with the inode once it has been deleted. */ if (NInoDeleted(ni)) { /* Remove the inode from the name cache. */ cache_purge(ni->vn); err = ENOENT; goto err; } retry_pagein: /* * We guarantee that the size in the ubc will be smaller or equal to * the size in the ntfs inode thus no need to check @ni->data_size. */ attr_size = ubc_getsize(ni->vn); /* * Only $DATA attributes can be encrypted/compressed. Index root can * have the flags set but this means to create compressed/encrypted * files, not that the attribute is compressed/encrypted. Note we need * to check for AT_INDEX_ALLOCATION since this is the type of directory * index inodes. */ if (ni->type != AT_INDEX_ALLOCATION) { /* TODO: Deny access to encrypted attributes, just like NT4. */ if (NInoEncrypted(ni)) { if (ni->type != AT_DATA) panic("%s(): Encrypted non-data attribute.\n", __FUNCTION__); ntfs_warning(ni->vol->mp, "Denying access to " "encrypted attribute (EACCES)."); err = EACCES; goto err; } /* Compressed data streams need special handling. */ if (NInoNonResident(ni) && NInoCompressed(ni) && !NInoRaw(ni)) { if (ni->type != AT_DATA) panic("%s(): Compressed non-data attribute.\n", __FUNCTION__); goto compressed; } } /* NInoNonResident() == NInoIndexAllocPresent() */ if (NInoNonResident(ni)) { int (*callback)(buf_t, void *); callback = NULL; if (NInoMstProtected(ni) || NInoEncrypted(ni)) callback = ntfs_cluster_iodone; /* Non-resident, possibly mst protected, attribute. */ err = cluster_pagein_ext(ni->vn, upl, upl_ofs, attr_ofs, size, attr_size, flags, callback, NULL); if (!err) ntfs_debug("Done (cluster_pagein_ext())."); else ntfs_error(ni->vol->mp, "Failed (cluster_pagein_ext(), " "error %d).", err); if (locked) lck_rw_unlock_shared(&ni->lock); return err; } compressed: /* * The attribute is resident and/or compressed. * * Cannot pagein from a negative offset or if we are starting beyond * the end of the attribute or if the attribute offset is not page * aligned or the size requested is not a multiple of PAGE_SIZE. */ if (attr_ofs < 0 || attr_ofs >= attr_size || attr_ofs & PAGE_MASK_64 || size & PAGE_MASK || upl_ofs & PAGE_MASK) { err = EINVAL; goto err; } to_read = size; attr_size -= attr_ofs; if (to_read > attr_size) to_read = attr_size; /* * We do not need @attr_size any more so reuse it to hold the number of * bytes available in the attribute starting at offset @attr_ofs up to * a maximum of the requested number of bytes rounded up to a multiple * of the system page size. */ attr_size = (to_read + PAGE_MASK) & ~PAGE_MASK; /* Abort any pages outside the end of the attribute. */ if (size > attr_size && !(flags & UPL_NOCOMMIT)) { ubc_upl_abort_range(upl, upl_ofs + attr_size, size - attr_size, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR); /* Update @size. */ size = attr_size; } /* To access the page list contents, we need to map the page list. */ kerr = ubc_upl_map(upl, (vm_offset_t*)&kaddr); if (kerr != KERN_SUCCESS) { ntfs_error(ni->vol->mp, "ubc_upl_map() failed (error %d).", (int)kerr); err = EIO; goto err; } if (!NInoNonResident(ni)) { /* * Read the data from the resident attribute into the page * list. */ err = ntfs_resident_attr_read(ni, attr_ofs, size, kaddr + upl_ofs); if (err && err != EAGAIN) ntfs_error(ni->vol->mp, "ntfs_resident_attr_read() " "failed (error %d).", err); } else { ntfs_inode *raw_ni; int ioflags; /* * Get the raw inode. We take the inode lock shared to protect * against concurrent writers as the compressed data is invalid * whilst a write is in progress. */ err = ntfs_raw_inode_get(ni, LCK_RW_TYPE_SHARED, &raw_ni); if (err) ntfs_error(ni->vol->mp, "Failed to get raw inode " "(error %d).", err); else { if (!NInoRaw(raw_ni)) panic("%s(): Requested raw inode but got " "non-raw one.\n", __FUNCTION__); ioflags = 0; if (vnode_isnocache(ni->vn) || vnode_isnocache(raw_ni->vn)) ioflags |= IO_NOCACHE; if (vnode_isnoreadahead(ni->vn) || vnode_isnoreadahead(raw_ni->vn)) ioflags |= IO_RAOFF; err = ntfs_read_compressed(ni, raw_ni, attr_ofs, size, kaddr + upl_ofs, NULL, ioflags); if (err) ntfs_error(ni->vol->mp, "ntfs_read_compressed() " "failed (error %d).", err); lck_rw_unlock_shared(&raw_ni->lock); (void)vnode_put(raw_ni->vn); } } kerr = ubc_upl_unmap(upl); if (kerr != KERN_SUCCESS) { ntfs_error(ni->vol->mp, "ubc_upl_unmap() failed (error %d).", (int)kerr); if (!err) err = EIO; } if (!err) { if (!(flags & UPL_NOCOMMIT)) { /* Commit the page range we brought up to date. */ ubc_upl_commit_range(upl, upl_ofs, size, UPL_COMMIT_FREE_ON_EMPTY); } ntfs_debug("Done (%s).", !NInoNonResident(ni) ? "ntfs_resident_attr_read()" : "ntfs_read_compressed()"); } else /* if (err) */ { /* * If the attribute was converted to non-resident under our * nose, retry the pagein. * * TODO: This may no longer be possible to happen now that we * lock against changes in initialized size and thus * truncation... Revisit this issue when the write code has * been written and remove the check + goto if appropriate. */ if (err == EAGAIN) goto retry_pagein; err: if (!(flags & UPL_NOCOMMIT)) { int upl_flags = UPL_ABORT_FREE_ON_EMPTY; if (err != ENOMEM) upl_flags |= UPL_ABORT_ERROR; ubc_upl_abort_range(upl, upl_ofs, size, upl_flags); } ntfs_error(ni->vol->mp, "Failed (error %d).", err); } if (locked) lck_rw_unlock_shared(&ni->lock); return err; }