예제 #1
0
파일: predkda.c 프로젝트: rforge/locclass
SEXP predkda(SEXP s_test, SEXP s_learn, SEXP s_grouping, SEXP s_wf, SEXP s_bw, SEXP s_k, SEXP s_env)
{
	const R_len_t p = ncols(s_test);			// dimensionality
	const R_len_t N_learn = nrows(s_learn);		// # training observations
	const R_len_t N_test = nrows(s_test);		// # test observations
	const R_len_t K = nlevels(s_grouping);		// # classes
	double *test = REAL(s_test);				// pointer to test data set
	double *learn = REAL(s_learn);				// pointer to training data set
	int *g = INTEGER(s_grouping);				// pointer to class labels
	const int k = INTEGER(s_k)[0];				// number of nearest neighbors
	double *bw = REAL(s_bw);					// bandwidth
	/*Rprintf("k %u\n", k);
	Rprintf("bw %f\n", *bw);
	 */
	
	
	SEXP s_posterior;							// initialize posteriors
	PROTECT(s_posterior = allocMatrix(REALSXP, N_test, K));
	double *posterior = REAL(s_posterior);
	
	SEXP s_dist;								// initialize distances to test observation
	PROTECT(s_dist = allocVector(REALSXP, N_learn));
	double *dist = REAL(s_dist);
	
	SEXP s_weights;								// initialize weight vector
	PROTECT(s_weights = allocVector(REALSXP, N_learn));
	double *weights = REAL(s_weights);
	
	int nas = 0;
	
	int i, j, l, n;								// indices
		
	// select weight function
	typedef void (*wf_ptr_t) (double*, double*, int, double*, int);// *weights, *dist, N, *bw, k
	wf_ptr_t wf = NULL;
	if (isInteger(s_wf)) {
		const int wf_nr = INTEGER(s_wf)[0];
		//Rprintf("wf_nr %u\n", wf_nr);
		wf_ptr_t wfs[] = {biweight1, cauchy1, cosine1, epanechnikov1, exponential1, gaussian1,
			optcosine1, rectangular1, triangular1, biweight2, cauchy2, cosine2, epanechnikov2,
			exponential2, gaussian2, optcosine2, rectangular2, triangular2, biweight3, cauchy3,
			cosine3, epanechnikov3, exponential3, gaussian3, optcosine3, rectangular3, 
			triangular3, cauchy4, exponential4, gaussian4};
		wf = wfs[wf_nr - 1];
	}
	
	// loop over all test observations
	for(n = 0; n < N_test; n++) {
			
		// 0. check for NAs in test
		nas = 0;
		for (j = 0; j < p; j++) {
			nas += ISNA(test[n + N_test * j]);
		}
		if (nas > 0) { // NAs in n-th test observation
			warning("NAs in test observation %u", n+1);
			// set posterior to NA
			for (l = 0; l < K; l++) {
				posterior[n + N_test * l] = NA_REAL;
			}			
		} else {
			// 1. calculate distances to n-th test observation
			for (i = 0; i < N_learn; i++) {
				dist[i] = 0;
				for (j = 0; j < p; j++) {
					dist[i] += pow(learn[i + N_learn * j] - test[n + N_test * j], 2);
				}
				dist[i] = sqrt(dist[i]);
				weights[i] = 0;				// important because some weights are 0
				//Rprintf("dist %f\n", dist[i]);
			}
				
			// 2. calculate observation weights
			if (isInteger(s_wf)) {
				// case 1: wf is integer
				// calculate weights by reading number and calling corresponding C function
				wf(weights, dist, N_learn, bw, k);
			} else if (isFunction(s_wf)) {
				// case 2: wf is R function
				// calculate weights by calling R function
				SEXP R_fcall;
				PROTECT(R_fcall = lang2(s_wf, R_NilValue)); //R_NilValue = NULL??? NILSXP = NULL
				SETCADR(R_fcall, s_dist); // SETCADR: cadr list = (car (cdr list))
				weights = REAL(eval(R_fcall, s_env));
				UNPROTECT(1);	// R_fcall
			}
			/*for(i = 0; i < N_learn; i++) {
				Rprintf("weights %f\n", weights[i]);
			}*/
				
			// 3. calculate posterior probabilities as class wise sum of weights
			for (l = 0; l < K; l++) {
				posterior[n + N_test * l] = 0;
				for (i = 0; i < N_learn; i++) {
					if (g[i] == l + 1) {
						posterior[n + N_test * l] += weights[i];
					}
				}
			}
		}
			
	}
	// end loop over test observations
		
	// 4. set dimnames of s_posterior
	SEXP dimnames;
	PROTECT(dimnames = allocVector(VECSXP, 2));
	SET_VECTOR_ELT(dimnames, 0, VECTOR_ELT(getAttrib(s_test, R_DimNamesSymbol), 0));
	SET_VECTOR_ELT(dimnames, 1, getAttrib(s_grouping, R_LevelsSymbol));
	setAttrib(s_posterior, R_DimNamesSymbol, dimnames);
	
	//void R_max_col (double* matrix, int* nr, int* nc, int* maxes)
	// maxes initialisieren
	//R_max_col (posterior, &N_test, &K, int* maxes)
	
	UNPROTECT(4);	// dimnames, s_dist, s_weights, s_posterior
	return(s_posterior);
	
}
예제 #2
0
int main(int argc, char* argv[])
{
  // Instantiate a class with global functions.
  Hermes2D hermes2d;

  // Load the mesh.
  Mesh mesh;
  H2DReader mloader;
  mloader.load("../domain.mesh", &mesh);

  // Perform uniform mesh refinement.
  mesh.refine_all_elements();

  // Initialize boundary conditions.
  DefaultEssentialBCConst zero_disp("Bottom", 0.0);
  EssentialBCs bcs(&zero_disp);

  // Create x- and y- displacement space using the default H1 shapeset.
  H1Space u1_space(&mesh, &bcs, P_INIT);
  H1Space u2_space(&mesh, &bcs, P_INIT);
  info("ndof = %d.", Space::get_num_dofs(Hermes::vector<Space *>(&u1_space, &u2_space)));

  // Initialize the weak formulation.
  CustomWeakFormLinearElasticity wf(E, nu, rho*g1, "Top", f0, f1);

  // Testing n_dof and correctness of solution vector
  // for p_init = 1, 2, ..., 10
  int success = 1;
  Solution xsln, ysln;
  for (int p_init = 1; p_init <= 6; p_init++) {
    printf("********* p_init = %d *********\n", p_init);
    u1_space.set_uniform_order(p_init);
    u2_space.set_uniform_order(p_init);
    int ndof = Space::get_num_dofs(Hermes::vector<Space *>(&u1_space, &u2_space));
    info("ndof = %d", ndof);

    // Initialize the FE problem.
    DiscreteProblem dp(&wf, Hermes::vector<Space *>(&u1_space, &u2_space));

    // Set up the solver, matrix, and rhs according to the solver selection.
    SparseMatrix* matrix = create_matrix(matrix_solver);
    Vector* rhs = create_vector(matrix_solver);
    Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

    // Initial coefficient vector for the Newton's method.  
    scalar* coeff_vec = new scalar[ndof];
    memset(coeff_vec, 0, ndof*sizeof(scalar));

    // Perform Newton's iteration.
    bool verbose = true;
    bool jacobian_changed = true;
    if (!hermes2d.solve_newton(coeff_vec, &dp, solver, matrix, rhs, jacobian_changed,
        NEWTON_TOL, NEWTON_MAX_ITER, verbose)) error("Newton's iteration failed.");

    // Translate the resulting coefficient vector into the Solution sln.
    Solution u1_sln, u2_sln;
    Solution::vector_to_solutions(coeff_vec, Hermes::vector<Space *>(&u1_space, &u2_space), 
                                  Hermes::vector<Solution *>(&u1_sln, &u2_sln));

    double sum = 0;
    for (int i=0; i < ndof; i++) sum += coeff_vec[i];
    printf("coefficient sum = %g\n", sum);

    // Actual test. The values of 'sum' depend on the
    // current shapeset. If you change the shapeset,
    // you need to correct these numbers.
    if (p_init == 1 && fabs(sum - 1.41886e-05) > 1e-5) success = 0;
    if (p_init == 2 && fabs(sum - 1.60006e-05) > 1e-5) success = 0;
    if (p_init == 3 && fabs(sum - 1.60810e-05) > 1e-5) success = 0;
    if (p_init == 4 && fabs(sum - 1.61106e-05) > 1e-5) success = 0;
    if (p_init == 5 && fabs(sum - 1.61065e-05) > 1e-5) success = 0;
    if (p_init == 6 && fabs(sum - 1.61112e-05) > 1e-5) success = 0;

    delete [] coeff_vec;
    delete solver;
    delete matrix;
    delete rhs;
  }

  if (success == 1) {
    printf("Success!\n");
    return ERR_SUCCESS;
  }
  else {
    printf("Failure!\n");
    return ERR_FAILURE;
  }
}
예제 #3
0
파일: main.cpp 프로젝트: Zhonghua/hermes2d
int main(int argc, char* argv[])
{
  // load the mesh file
  Mesh mesh;
  H2DReader mloader;
  mloader.load("sample.mesh", &mesh);

  // initialize the shapeset and the cache
  H1Shapeset shapeset;
  PrecalcShapeset pss(&shapeset);

  // create the x displacement space
  H1Space xdisp(&mesh, &shapeset);
  xdisp.set_bc_types(bc_types);
  xdisp.set_bc_values(bc_values);

  // create the y displacement space
  H1Space ydisp(&mesh, &shapeset);
  ydisp.set_bc_types(bc_types);
  ydisp.set_bc_values(bc_values);

  // initialize the weak formulation
  WeakForm wf(2);
  wf.add_biform(0, 0, callback(bilinear_form_0_0), SYM);  // Note that only one symmetric part is
  wf.add_biform(0, 1, callback(bilinear_form_0_1), SYM);  // added in the case of symmetric bilinear
  wf.add_biform(1, 1, callback(bilinear_form_1_1), SYM);  // forms.
  wf.add_liform_surf(0, callback(linear_form_surf_0), 3);
  wf.add_liform_surf(1, callback(linear_form_surf_1), 3);

  // initialize the linear system and solver
  UmfpackSolver umfpack;
  LinSystem sys(&wf, &umfpack);
  sys.set_spaces(2, &xdisp, &ydisp);
  sys.set_pss(1, &pss);

  // testing n_dof and correctness of solution vector
  // for p_init = 1, 2, ..., 10
  int success = 1;
  for (int p_init = 1; p_init <= 10; p_init++) {
    printf("********* p_init = %d *********\n", p_init);
    xdisp.set_uniform_order(p_init);
    int ndofs = xdisp.assign_dofs(0);
    ydisp.set_uniform_order(p_init);
    ndofs += ydisp.assign_dofs(ndofs);

    // assemble the stiffness matrix and solve the system
    Solution xsln, ysln;
    sys.assemble();
    sys.solve(2, &xsln, &ysln);

    scalar *sol_vector;
    int n_dof;
    sys.get_solution_vector(sol_vector, n_dof);
    printf("n_dof = %d\n", n_dof);
    double sum = 0;
    for (int i=0; i < n_dof; i++) sum += sol_vector[i];
    printf("coefficient sum = %g\n", sum);

    // Actual test. The values of 'sum' depend on the
    // current shapeset. If you change the shapeset,
    // you need to correct these numbers.
    if (p_init == 1 && fabs(sum - 3.50185e-06) > 1e-3) success = 0;
    if (p_init == 2 && fabs(sum - 4.34916e-06) > 1e-3) success = 0;
    if (p_init == 3 && fabs(sum - 4.60553e-06) > 1e-3) success = 0;
    if (p_init == 4 && fabs(sum - 4.65616e-06) > 1e-3) success = 0;
    if (p_init == 5 && fabs(sum - 4.62893e-06) > 1e-3) success = 0;
    if (p_init == 6 && fabs(sum - 4.64336e-06) > 1e-3) success = 0;
    if (p_init == 7 && fabs(sum - 4.63724e-06) > 1e-3) success = 0;
    if (p_init == 8 && fabs(sum - 4.64491e-06) > 1e-3) success = 0;
    if (p_init == 9 && fabs(sum - 4.64582e-06) > 1e-3) success = 0;
    if (p_init == 10 && fabs(sum - 4.65028e-06) > 1e-3) success = 0;
  }

#define ERROR_SUCCESS                               0
#define ERROR_FAILURE                               -1
  if (success == 1) {
    printf("Success!\n");
    return ERROR_SUCCESS;
  }
  else {
    printf("Failure!\n");
    return ERROR_FAILURE;
  }
}
예제 #4
0
파일: main.cpp 프로젝트: dugankevin/hermes
int main() {		
  // Create space.
  // Transform input data to the format used by the "Space" constructor.
  SpaceData *md = new SpaceData(verbose);		
  Space* space = new Space(md->N_macroel, md->interfaces, md->poly_orders, md->material_markers, md->subdivisions, N_GRP, N_SLN);  
  delete md;
  
  // Enumerate basis functions, info for user.
  info("N_dof = %d", Space::get_num_dofs(space));
  // Plot the space.
  space->plot("space.gp");
  
  // Initial approximation of the dominant eigenvalue.
  double K_EFF = 1.0;
  // Initial approximation of the dominant eigenvector.
	double init_val = 1.0;

  for (int g = 0; g < N_GRP; g++)  {
  	set_vertex_dofs_constant(space, init_val, g);
  	space->set_bc_right_dirichlet(g, flux_right_surf[g]);
	}
  
  // Initialize the weak formulation.
  WeakForm wf(2);
  wf.add_matrix_form(0, 0, jacobian_fuel_0_0, NULL, fuel);
  wf.add_matrix_form(0, 0, jacobian_water_0_0, NULL, water);

  wf.add_matrix_form(0, 1, jacobian_fuel_0_1, NULL, fuel);
  wf.add_matrix_form(0, 1, jacobian_water_0_1, NULL, water);  

  wf.add_matrix_form(1, 0, jacobian_fuel_1_0, NULL, fuel);
  wf.add_matrix_form(1, 0, jacobian_water_1_0, NULL, water);

  wf.add_matrix_form(1, 1, jacobian_fuel_1_1, NULL, fuel);
  wf.add_matrix_form(1, 1, jacobian_water_1_1, NULL, water);
    
  wf.add_vector_form(0, residual_fuel_0, NULL, fuel);
  wf.add_vector_form(0, residual_water_0, NULL, water);  
  
  wf.add_vector_form(1, residual_fuel_1, NULL, fuel);
  wf.add_vector_form(1, residual_water_1, NULL, water); 

  wf.add_vector_form_surf(0, residual_surf_left_0, BOUNDARY_LEFT);
  wf.add_vector_form_surf(1, residual_surf_left_1, BOUNDARY_LEFT);

  // Initialize the FE problem.
  bool is_linear = false;
  DiscreteProblem *dp = new DiscreteProblem(&wf, space, is_linear);
  
	Linearizer l(space);
	char solution_file[32];

  // Source iteration
	int i;
  int current_solution = 0, previous_solution = 1;
 	double K_EFF_old;
  for (i = 0; i < Max_SI; i++)
  {	
  	// Plot the critical (i.e. steady-state) flux in the actual iteration.
  	sprintf(solution_file, "solution_%d.gp", i);
	  l.plot_solution(solution_file); 		
	  
    // Store the previous solution (used at the right-hand side).
    for (int g = 0; g < N_GRP; g++)
	    copy_dofs(current_solution, previous_solution, space, g);

    // Obtain the number of degrees of freedom.
    int ndof = Space::get_num_dofs(space);

    // Fill vector coeff_vec using dof and coeffs arrays in elements.
  double *coeff_vec = new double[Space::get_num_dofs(space)];
    get_coeff_vector(space, coeff_vec);
  
    // Set up the solver, matrix, and rhs according to the solver selection.
    SparseMatrix* matrix = create_matrix(matrix_solver);
    Vector* rhs = create_vector(matrix_solver);
    Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);
  
    int it = 1;
  while (1) {
    // Obtain the number of degrees of freedom.
    int ndof = Space::get_num_dofs(space);

      // Assemble the Jacobian matrix and residual vector.
      dp->assemble(matrix, rhs);

      // Calculate the l2-norm of residual vector.
      double res_l2_norm = get_l2_norm(rhs);

      // Info for user.
      info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(space), res_l2_norm);

      // If l2 norm of the residual vector is within tolerance, then quit.
      // NOTE: at least one full iteration forced
      //       here because sometimes the initial
      //       residual on fine mesh is too small.
      if(res_l2_norm < NEWTON_TOL && it > 1) break;

      // Multiply the residual vector with -1 since the matrix 
      // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n).
      for(int i=0; i<ndof; i++) rhs->set(i, -rhs->get(i));

      // Solve the linear system.
      if(!solver->solve())
        error ("Matrix solver failed.\n");

      // Add \deltaY^{n+1} to Y^n.
      for (int i = 0; i < ndof; i++) coeff_vec[i] += solver->get_solution()[i];

      // If the maximum number of iteration has been reached, then quit.
      if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge.");
      
      // Copy coefficients from vector y to elements.
      set_coeff_vector(coeff_vec, space);

      it++;
    }
    
    // Cleanup.
    delete matrix;
    delete rhs;
    delete solver;
    delete [] coeff_vec;
			
    // Update the eigenvalue.
    K_EFF_old = K_EFF;
    K_EFF = calc_total_reaction_rate(space, nSf, 0., 40.); 
    
    // Convergence test.
    if (fabs(K_EFF - K_EFF_old)/K_EFF < TOL_SI) break;
    
    // Normalize total neutron flux to one fission neutron.
    multiply_dofs_with_constant(space, 1./K_EFF, current_solution);
    
    if (verbose) info("K_EFF_%d = %.8f", i+1, K_EFF);
  }
  
  // Print the converged eigenvalue.
  info("K_EFF = %.8f, err= %.8f%%", K_EFF, 100*(K_EFF-1));

  // Plot the converged critical  neutron flux.
  sprintf(solution_file, "solution.gp");
  l.plot_solution(solution_file);

	// Comparison with analytical results (see the reference above).
	double flux[N_GRP], J[N_GRP], R;

	get_solution_at_point(space, 0.0, flux, J);
	R = flux[0]/flux[1];
	info("phi_fast/phi_therm at x=0 : %.4f, err = %.2f%%", R, 100*(R-2.5332)/2.5332);
	
	get_solution_at_point(space, 40.0, flux, J);
	R = flux[0]/flux[1];
	info("phi_fast/phi_therm at x=40 : %.4f, err = %.2f%%", R, 100*(R-1.5162)/1.5162);
	
  info("Done.");
  return 0;
}
예제 #5
0
void GameUpdateDraw( NimblePixMap& map, NimbleRequest request ) {
#if WRITING_DOCUMENTATION
	new(&TheMap) NimblePixMap( map );
#endif /* WRITING_DOCUMENTATION */
	WavefieldRect = NimbleRect(PanelWidth,map.height()/2,map.width(),map.height());
	NimblePixMap subsurface(map,WavefieldRect); 
	NimblePixMap seismogramClip( map,NimbleRect(PanelWidth,0,map.width(),map.height()/2) );

	if( request & NimbleUpdate ) {
		ShowGeology.update(); 
		ShowSeismic.update(); 
	}
	const NimbleRequest pausedRequest = IsPaused ? request-NimbleUpdate : request;
    SeismogramUpdateDraw( seismogramClip, pausedRequest&NimbleUpdate, TheColorFunc, IsAutoGainOn );
 	WavefieldFunctor wf(subsurface, pausedRequest);
    SeismogramFunctor sf( seismogramClip, pausedRequest&NimbleDraw );
    ReservoirFunctor rf( pausedRequest );
#if PARALLEL
	tbb::parallel_invoke( wf, sf, rf );
#else
    wf();
	sf();
	rf();
#endif
	if( pausedRequest & NimbleUpdate ) {
		DrillBit.update();
		UpdateDuckAndRig();
	}
	if( request & NimbleDraw ) {
		ClickableSetEnd = ClickableSet;
		const int wavefieldWidth = map.width()-PanelWidth;
		Assert(wavefieldWidth%4==0);
		const int wavefieldHeight = map.height()/2;
		ReservoirDrawHoles( subsurface );
		if( DrillY>0 )
			DrillBit.drawOn( subsurface, RigX-DrillBit.width()/2, DrillY-5 );
		if( ShowReservoir )
			ReservoirDraw( subsurface );
		NimblePixMap spriteClip( map, NimbleRect( PanelWidth, 0, map.width(), map.height() ));\
		NimblePixel greenPixel = map.pixel( NimbleColor( 0, NimbleColor::FULL, 0 ));
		NimblePixel redPixel = map.pixel( NimbleColor( NimbleColor::FULL, 0, 0 ));
		const int lineHeight = map.height()/2-1; 
		if( CultureBeginX<CultureEndX ) {
		    spriteClip.draw( NimbleRect( 0, lineHeight, CultureBeginX, lineHeight+1 ), greenPixel ); 
		    spriteClip.draw( NimbleRect( CultureBeginX, lineHeight-1, CultureEndX, lineHeight+2 ), redPixel ); 
		    spriteClip.draw( NimbleRect( CultureEndX, lineHeight, spriteClip.width(), lineHeight+1 ), greenPixel ); 
			Culture.drawOn( spriteClip, CultureBeginX+(CultureEndX-CultureBeginX)/2-Culture.width()/2, map.height()/2-Culture.height() );
		} else {
		    spriteClip.draw( NimbleRect( 0, lineHeight, spriteClip.width(), lineHeight+1 ), greenPixel ); 
		}
		OilRig->drawOn( spriteClip, RigX-OilRig->width()/2, OilRigVerticalOffset ); 
		if( DuckGoingLeft )
			DuckLeft.drawOn( spriteClip, DuckX-50, map.height()/2-DuckLeft.height()+12 );
		else
			DuckRight.drawOn( spriteClip, DuckX-(DuckRight.width()-50), map.height()/2-DuckLeft.height()+12 );
		NimblePixMap panelClip( map, NimbleRect( 0, 0, PanelWidth, map.height() ));

		PanelBackground.drawOn( panelClip );

		int cashMeterY = map.height()- 50 -CashMeter.height();
		int levelMeterY = cashMeterY - 10 - LevelMeter.height();
		// The Min is there so that if there is room, the green line artistically lines up 
		// with the top of the fluid meters.
		int fluidMeterY = Min(levelMeterY - 10 - WaterMeter.height(), map.height()/2 );
		if( ScoreState.isDisplayingScore() ) {
			LevelMeter.drawOn( map, PanelWidth/2-LevelMeter.width()/2, levelMeterY );
		    CashMeter.drawOn( map, PanelWidth/2-CashMeter.width()/2, cashMeterY );
		}
		int meterMarginX = (PanelWidth-WaterMeter.width()-OilMeter.width()-GasMeter.width())/4;
		WaterMeter.drawOn( map, meterMarginX, fluidMeterY );
		OilMeter.drawOn( map, PanelWidth/2-OilMeter.width()/2, fluidMeterY );
		GasMeter.drawOn( map, PanelWidth-meterMarginX-GasMeter.width(), fluidMeterY );
		if( VisibleDialog ) {
			if( VisibleDialog==&TheAboutTheAuthorDialog || VisibleDialog==&TheLevelContinueDialog )
				// Center it on screen
				VisibleDialog->drawOn( map, map.width()/2-VisibleDialog->width()/2, map.height()/2-VisibleDialog->height()/2 );
			else if( VisibleDialog==&TheKeyboardHelpDialog )
				// Put in upper right corner
				VisibleDialog->drawOn( map, map.width()*.95f-VisibleDialog->width(), map.height()*.05f );
			else
				// Put it in upper left portion of seismogram
				VisibleDialog->drawOn( map, PanelWidth+24, 24 );
		}
		int tabTop1 = 50;
		int tabTop2 = tabTop1+2*TheFont.height();
		int tabLeft1 = PanelWidth/8;
		int tabLeft2 = PanelWidth*5/8;
		int airGunTop = tabTop2+2*TheFont.height();;
		AirgunMeter.drawOn( map, PanelWidth/2-AirgunMeter.width()/2, airGunTop );
		if( ShowFrameRate ) {
			FrameRateMeter.setValue( EstimateFrameRate() );
			FrameRateMeter.drawOn( map, PanelWidth/2-FrameRateMeter.width()/2, fluidMeterY-FrameRateMeter.height()-15 ); 
		}
		const int tabSpacing = PanelWidth/4;
		DrawClickable( TheFileMenu, map, tabLeft1, tabTop1 );
		DrawClickable( TheHelpMenu, map, tabLeft2, tabTop1 );
		// The "isTabbed" tests below do some ad-hoc occlusion testing.
		if( TheFileMenu.isTabbed() ) 
			DrawClickable( TheModelMenu, map, tabLeft1, tabTop2 );
		if( TheFileMenu.isTabbed() && TheHelpMenu.isTabbed() )
			DrawClickable( TheViewMenu, map, tabLeft2, tabTop2 );
	}
	ScoreState.update();
}
예제 #6
0
int main(int argc, char* argv[])
{
  // load the mesh file
  Mesh mesh;
  H2DReader mloader;
  mloader.load("domain-quad.mesh", &mesh); // unstructured triangular mesh available in domain-tri.mesh

  // a-priori mesh refinements
  mesh.refine_all_elements();
  mesh.refine_towards_boundary(5, 4, false);
  mesh.refine_towards_boundary(1, 4);
  mesh.refine_towards_boundary(3, 4);

  // display the mesh
  //MeshView mview("Navier-Stokes Example - Mesh", 100, 100, 1100, 400);
  //mview.show(&mesh);
  //mview.wait_for_keypress();

  // initialize the shapesets and the cache
  H1Shapeset shapeset_h1;
  PrecalcShapeset pss_h1(&shapeset_h1);
  L2Shapeset shapeset_l2;
  PrecalcShapeset pss_l2(&shapeset_l2);

  // H1 spaces for velocities and L2 for pressure
  H1Space xvel(&mesh, &shapeset_h1);
  H1Space yvel(&mesh, &shapeset_h1);
  L2Space press(&mesh, &shapeset_l2);

  // initialize boundary conditions
  xvel.set_bc_types(xvel_bc_type);
  xvel.set_bc_values(xvel_bc_value);
  yvel.set_bc_types(yvel_bc_type);
  press.set_bc_types(press_bc_type);

  // set velocity and pressure polynomial degrees
  xvel.set_uniform_order(P_INIT_VEL);
  yvel.set_uniform_order(P_INIT_VEL);
  press.set_uniform_order(P_INIT_PRESSURE);

  // assign degrees of freedom
  int ndofs = 0;
  ndofs += xvel.assign_dofs(ndofs);
  ndofs += yvel.assign_dofs(ndofs);
  ndofs += press.assign_dofs(ndofs);

  // initial condition: xprev and yprev are zero
  Solution xprev, yprev;
  xprev.set_zero(&mesh);
  yprev.set_zero(&mesh);

  // set up weak formulation
  WeakForm wf(3);
  wf.add_biform(0, 0, callback(bilinear_form_sym_0_0_1_1), SYM);
  wf.add_biform(0, 0, callback(bilinear_form_unsym_0_0_1_1), UNSYM, ANY, 2, &xprev, &yprev);
  wf.add_biform(1, 1, callback(bilinear_form_sym_0_0_1_1), SYM);
  wf.add_biform(1, 1, callback(bilinear_form_unsym_0_0_1_1), UNSYM, ANY, 2, &xprev, &yprev);
  wf.add_biform(0, 2, callback(bilinear_form_unsym_0_2), ANTISYM);
  wf.add_biform(1, 2, callback(bilinear_form_unsym_1_2), ANTISYM);
  wf.add_liform(0, callback(linear_form), ANY, 1, &xprev);
  wf.add_liform(1, callback(linear_form), ANY, 1, &yprev);

  // visualization
  VectorView vview("velocity [m/s]", 0, 0, 1500, 470);
  ScalarView pview("pressure [Pa]", 0, 530, 1500, 470);
  vview.set_min_max_range(0, 1.6);
  vview.fix_scale_width(80);
  pview.show_mesh(false);
  pview.fix_scale_width(80);
  // fixing scale width (for nicer videos). Note: creation of videos is
  // discussed in a separate example
  vview.fix_scale_width(5);
  pview.fix_scale_width(5);

  // set up the linear system
  UmfpackSolver umfpack;
  LinSystem sys(&wf, &umfpack);
  sys.set_spaces(3, &xvel, &yvel, &press);
  sys.set_pss(3, &pss_h1, &pss_h1, &pss_l2);

  // main loop
  char title[100];
  int num_time_steps = FINAL_TIME / TAU;
  for (int i = 1; i <= num_time_steps; i++)
  {
    TIME += TAU;

    info("\n---- Time step %d, time = %g -----------------------------------", i, TIME);

    // this is needed to update the time-dependent boundary conditions
    ndofs = 0;
    ndofs += xvel.assign_dofs(ndofs);
    ndofs += yvel.assign_dofs(ndofs);
    ndofs += press.assign_dofs(ndofs);

    // assemble and solve
    Solution xsln, ysln, psln;
    sys.assemble();
    sys.solve(3, &xsln, &ysln, &psln);

    // visualization
    sprintf(title, "Velocity, time %g", TIME);
    vview.set_title(title);
    vview.show(&xprev, &yprev, EPS_LOW);
    sprintf(title, "Pressure, time %g", TIME);
    pview.set_title(title);
    pview.show(&psln);

    xprev = xsln;
    yprev = ysln;
  }

  // wait for keyboard or mouse input
  View::wait("Waiting for all views to be closed.");
  return 0;
}
예제 #7
0
파일: main.cpp 프로젝트: dugankevin/hermes
int main(int argc, char* argv[])
{
  // Load the mesh.
  Mesh mesh;
  H2DReader mloader;
  mloader.load("sample.mesh", &mesh);

  // Perform uniform mesh refinement.
  mesh.refine_all_elements();

  // Create x- and y- displacement space using the default H1 shapeset.
  H1Space u_space(&mesh, bc_types, essential_bc_values, P_INIT);
  H1Space v_space(&mesh, bc_types, essential_bc_values, P_INIT);
  info("ndof = %d.", Space::get_num_dofs(Tuple<Space *>(&u_space, &v_space)));

  // Initialize the weak formulation.
  WeakForm wf(2);
  wf.add_matrix_form(0, 0, callback(bilinear_form_0_0), HERMES_SYM);  // Note that only one symmetric part is
  wf.add_matrix_form(0, 1, callback(bilinear_form_0_1), HERMES_SYM);  // added in the case of symmetric bilinear
  wf.add_matrix_form(1, 1, callback(bilinear_form_1_1), HERMES_SYM);  // forms.
  wf.add_vector_form_surf(0, callback(linear_form_surf_0), GAMMA_3_BDY);
  wf.add_vector_form_surf(1, callback(linear_form_surf_1), GAMMA_3_BDY);

  // Initialize the FE problem.
  bool is_linear = true;
  DiscreteProblem dp(&wf, Tuple<Space *>(&u_space, &v_space), is_linear);

  // Set up the solver, matrix, and rhs according to the solver selection.
  SparseMatrix* matrix = create_matrix(matrix_solver);
  Vector* rhs = create_vector(matrix_solver);
  Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

  // Initialize the solutions.
  Solution u_sln, v_sln;

  // Assemble the stiffness matrix and right-hand side vector.
  info("Assembling the stiffness matrix and right-hand side vector.");
  dp.assemble(matrix, rhs);

  // Solve the linear system and if successful, obtain the solutions.
  info("Solving the matrix problem.");
  if(solver->solve())
    Solution::vector_to_solutions(solver->get_solution(), Tuple<Space *>(&u_space, &v_space), Tuple<Solution *>(&u_sln, &v_sln));
  else
    error ("Matrix solver failed.\n");
  
  // Visualize the solution.
  ScalarView view("Von Mises stress [Pa]", new WinGeom(0, 0, 800, 400));
  VonMisesFilter stress(Tuple<MeshFunction *>(&u_sln, &v_sln), lambda, mu);
  view.show_mesh(false);
  view.show(&stress, HERMES_EPS_HIGH, H2D_FN_VAL_0, &u_sln, &v_sln, 1.5e5);

  // Wait for the view to be closed.
  View::wait();

  // Clean up.
  delete solver;
  delete matrix;
  delete rhs;

  return 0;
}
예제 #8
0
파일: main.cpp 프로젝트: alieed/hermes
int main() 
{
  // Time measurement.
  TimePeriod cpu_time;
  cpu_time.tick();

  // Create coarse mesh, set Dirichlet BC, enumerate basis functions.
  Space* space = new Space(A, B, NELEM, DIR_BC_LEFT, DIR_BC_RIGHT, P_INIT, NEQ, NEQ);

  // Enumerate basis functions, info for user.
  int ndof = Space::get_num_dofs(space);
  info("ndof: %d", ndof);

  // Initialize the weak formulation.
  WeakForm wf(2);
  wf.add_matrix_form(0, 0, jacobian_0_0);
  wf.add_matrix_form(0, 1, jacobian_0_1);
  wf.add_matrix_form(1, 0, jacobian_1_0);
  wf.add_matrix_form(1, 1, jacobian_1_1);
  wf.add_vector_form(0, residual_0);
  wf.add_vector_form(1, residual_1);

  // Initialize the FE problem.
  bool is_linear = false;
  DiscreteProblem *dp_coarse = new DiscreteProblem(&wf, space, is_linear);

  // Set zero initial condition.
  double *coeff_vec_coarse = new double[Space::get_num_dofs(space)];
  set_zero(coeff_vec_coarse, Space::get_num_dofs(space));

  // Set up the solver, matrix, and rhs according to the solver selection.
  SparseMatrix* matrix_coarse = create_matrix(matrix_solver);
  Vector* rhs_coarse = create_vector(matrix_solver);
  Solver* solver_coarse = create_linear_solver(matrix_solver, matrix_coarse, rhs_coarse);

  // Newton's loop on coarse mesh.
  int it = 1;
  while (1) 
  {
    // Obtain the number of degrees of freedom.
    int ndof_coarse = Space::get_num_dofs(space);

    // Assemble the Jacobian matrix and residual vector.
    dp_coarse->assemble(coeff_vec_coarse, matrix_coarse, rhs_coarse);

    // Calculate the l2-norm of residual vector.
    double res_l2_norm = get_l2_norm(rhs_coarse);

    // Info for user.
    info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(space), res_l2_norm);

    // If l2 norm of the residual vector is within tolerance, then quit.
    // NOTE: at least one full iteration forced here because sometimes the initial
    //       residual on fine mesh is already too small.
    if(res_l2_norm < NEWTON_TOL_COARSE && it > 1) break;

    // Multiply the residual vector with -1 since the matrix 
    // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n).
    for(int i = 0; i < ndof_coarse; i++) rhs_coarse->set(i, -rhs_coarse->get(i));

    // Solve the linear system.
    if(!solver_coarse->solve()) error ("Matrix solver failed.\n");

    // Add \deltaY^{n+1} to Y^n.
    for (int i = 0; i < ndof_coarse; i++) coeff_vec_coarse[i] += solver_coarse->get_solution()[i];

    // If the maximum number of iteration has been reached, then quit.
    if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge.");
        
    it++;
  }
  
  // Cleanup.
  delete matrix_coarse;
  delete rhs_coarse;
  delete solver_coarse;
  delete [] coeff_vec_coarse;
  delete dp_coarse;

  // DOF and CPU convergence graphs.
  SimpleGraph graph_dof_est, graph_cpu_est;
  SimpleGraph graph_dof_exact, graph_cpu_exact;

  // Adaptivity loop:
  int as = 1;
  bool done = false;
  do
  {
    info("---- Adaptivity step %d:", as); 

    // Construct globally refined reference mesh, create reference space on it,
    // and transfer the coarse mesh solution there.
    Space* ref_space = construct_refined_space(space);
    
    // Initialize the FE problem.
    bool is_linear = false;
    DiscreteProblem* dp = new DiscreteProblem(&wf, ref_space, is_linear);

    // Set up the solver, matrix, and rhs according to the solver selection.
    SparseMatrix* matrix = create_matrix(matrix_solver);
    Vector* rhs = create_vector(matrix_solver);
    Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

    // Fill vector coeff_vec using dof and coeffs arrays in elements.
    double *coeff_vec = new double[Space::get_num_dofs(ref_space)];
    get_coeff_vector(ref_space, coeff_vec);

    // Newton's loop on the fine mesh.
    info("Solving on fine mesh:");
    int it = 1;
    while (1) 
    {
      // Obtain the number of degrees of freedom.
      int ndof = Space::get_num_dofs(ref_space);

      // Assemble the Jacobian matrix and residual vector.
      dp->assemble(coeff_vec, matrix, rhs);

      // Calculate the l2-norm of residual vector.
      double res_l2_norm = get_l2_norm(rhs);

      // Info for user.
      info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(ref_space), res_l2_norm);

      // If l2 norm of the residual vector is within tolerance, then quit.
      // NOTE: at least one full iteration forced here because sometimes the initial
      //       residual on fine mesh is already too small.
      if(res_l2_norm < NEWTON_TOL_REF && it > 1) break;

      // Multiply the residual vector with -1 since the matrix 
      // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n).
      for(int i=0; i<ndof; i++) rhs->set(i, -rhs->get(i));

      // Solve the linear system.
      if(!solver->solve()) error ("Matrix solver failed.\n");

      // Add \deltaY^{n+1} to Y^n.
      for (int i = 0; i < ndof; i++) coeff_vec[i] += solver->get_solution()[i];

      // If the maximum number of iteration has been reached, then quit.
      if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge.");
      
      it++;
    }
    
    // Starting with second adaptivity step, obtain new coarse 
    // mesh solution via projecting the fine mesh solution.
    if(as > 1)
    {
      info("Projecting the fine mesh solution onto the coarse mesh.");
      // Project the fine mesh solution (defined on space_ref) onto the coarse mesh (defined on space).
      OGProjection::project_global(space, ref_space, matrix_solver);
    }

    // Calculate element errors and total error estimate.
    info("Calculating error estimate.");
    double err_est_array[MAX_ELEM_NUM];
    double err_est_rel = calc_err_est(NORM, space, ref_space, err_est_array) * 100;

    // Report results.
    info("ndof_coarse: %d, ndof_fine: %d, err_est_rel: %g%%", 
      Space::get_num_dofs(space), Space::get_num_dofs(ref_space), err_est_rel);

    // Time measurement.
    cpu_time.tick();

    // If exact solution available, also calculate exact error.
    if (EXACT_SOL_PROVIDED) 
    {
      // Calculate element errors wrt. exact solution.
      double err_exact_rel = calc_err_exact(NORM, space, exact_sol, NEQ, A, B) * 100;
     
      // Info for user.
      info("Relative error (exact) = %g %%", err_exact_rel);

      // Add entry to DOF and CPU convergence graphs.
      graph_dof_exact.add_values(Space::get_num_dofs(space), err_exact_rel);
      graph_cpu_exact.add_values(cpu_time.accumulated(), err_exact_rel);
    }

    // Add entry to DOF and CPU convergence graphs.
    graph_dof_est.add_values(Space::get_num_dofs(space), err_est_rel);
    graph_cpu_est.add_values(cpu_time.accumulated(), err_est_rel);

    // If err_est_rel too large, adapt the mesh.
    if (err_est_rel < NEWTON_TOL_REF) done = true;
    else 
    {
      info("Adapting the coarse mesh.");
      adapt(NORM, ADAPT_TYPE, THRESHOLD, err_est_array, space, ref_space);
    }

    as++;
    
    // Plot meshes, results, and errors.
    adapt_plotting(space, ref_space, NORM, EXACT_SOL_PROVIDED, exact_sol);

    // Cleanup.
    delete solver;
    delete matrix;
    delete rhs;
    delete ref_space;
    delete dp;
    delete [] coeff_vec;
  }
  while (done == false);

  info("Total running time: %g s", cpu_time.accumulated());

  // Save convergence graphs.
  graph_dof_est.save("conv_dof_est.dat");
  graph_cpu_est.save("conv_cpu_est.dat");
  graph_dof_exact.save("conv_dof_exact.dat");
  graph_cpu_exact.save("conv_cpu_exact.dat");

  return 0;
}
예제 #9
0
파일: main.cpp 프로젝트: Zhonghua/hermes2d
int main(int argc, char* argv[])
{
  // Load the mesh
  Mesh mesh;
  H2DReader mloader;
  mloader.load("domain.mesh", &mesh);
  // initial uniform mesh refinement
  for (int i=0; i < INIT_REF_NUM; i++) mesh.refine_all_elements();

  // Initialize the shapeset and the cache
  H1Shapeset shapeset;
  PrecalcShapeset pss(&shapeset);

  // Create finite element space
  H1Space space(&mesh, &shapeset);
  space.set_bc_types(bc_types);
  space.set_bc_values(bc_values);
  space.set_uniform_order(P_INIT);

  // Enumerate basis functions
  space.assign_dofs();

  // initialize the weak formulation
  WeakForm wf(1);
  wf.add_biform(0, 0, bilinear_form_1, bilinear_form_ord, SYM, 1);
  wf.add_biform(0, 0, bilinear_form_2, bilinear_form_ord, SYM, 2);
  wf.add_biform(0, 0, bilinear_form_3, bilinear_form_ord, SYM, 3);
  wf.add_biform(0, 0, bilinear_form_4, bilinear_form_ord, SYM, 4);
  wf.add_biform(0, 0, bilinear_form_5, bilinear_form_ord, SYM, 5);
  wf.add_liform(0, linear_form_1, linear_form_ord, 1);
  wf.add_liform(0, linear_form_3, linear_form_ord, 3);

  // Visualize solution and mesh
  ScalarView sview("Coarse solution", 0, 100, 798, 700);
  OrderView  oview("Polynomial orders", 800, 100, 798, 700);

  // Matrix solver
  UmfpackSolver solver;

  // DOF and CPU convergence graphs
  SimpleGraph graph_dof, graph_cpu;

  // prepare selector
  RefinementSelectors::H1NonUniformHP selector(ISO_ONLY, ADAPT_TYPE, 1.0, H2DRS_DEFAULT_ORDER, &shapeset);

  // Adaptivity loop
  int it = 1, ndofs;
  bool done = false;
  double cpu = 0.0;
  Solution sln_coarse, sln_fine;
  do
    {
    info("\n---- Adaptivity step %d ---------------------------------------------\n", it++);

    // Time measurement
    begin_time();

    // Solve the coarse mesh problem
    LinSystem ls(&wf, &solver);
    ls.set_spaces(1, &space);
    ls.set_pss(1, &pss);
    ls.assemble();
    ls.solve(1, &sln_coarse);

    // Time measurement
    cpu += end_time();

    // View the solution and mesh
    sview.show(&sln_coarse);
    oview.show(&space);

    // Time measurement
    begin_time();

    // Solve the fine mesh problem
    RefSystem rs(&ls);
    rs.assemble();
    rs.solve(1, &sln_fine);

    // Calculate error estimate wrt. fine mesh solution
    H1AdaptHP hp(1, &space);
    double err_est = hp.calc_error(&sln_coarse, &sln_fine) * 100;
    info("Estimate of error: %g%%", err_est);

    // add entry to DOF convergence graph
    graph_dof.add_values(space.get_num_dofs(), err_est);
    graph_dof.save("conv_dof.dat");

    // add entry to CPU convergence graph
    graph_cpu.add_values(cpu, err_est);
    graph_cpu.save("conv_cpu.dat");

    // If err_est too large, adapt the mesh
    if (err_est < ERR_STOP) done = true;
    else {
      hp.adapt(THRESHOLD, STRATEGY, &selector, MESH_REGULARITY);
      ndofs = space.assign_dofs();
      if (ndofs >= NDOF_STOP) done = true;
    }

    // Time measurement
    cpu += end_time();
  }
  while (done == false);
  verbose("Total running time: %g sec", cpu);

  // Show the fine solution - this is the final result
  sview.set_title("Final solution");
  sview.show(&sln_fine);
  oview.set_title("Final orders");
  oview.show(&space);

  // Wait for keyboard or mouse input
  View::wait();
  return 0;
}
예제 #10
0
int main(int argc, char* argv[])
{
#ifdef WITH_PARALUTION
  HermesCommonApi.set_integral_param_value(matrixSolverType, SOLVER_PARALUTION_ITERATIVE);
  // Load the mesh.
  MeshSharedPtr mesh(new Mesh);
  MeshReaderH2D mloader;
  mloader.load("square.mesh", mesh);

  // Perform initial mesh refinements.
  for(int i = 0; i < INIT_GLOB_REF_NUM; i++) mesh->refine_all_elements();
  mesh->refine_towards_boundary("Bdy", INIT_BDY_REF_NUM);

  // Initialize boundary conditions.
  CustomEssentialBCNonConst bc_essential("Bdy");
  EssentialBCs<double> bcs(&bc_essential);

  // Create an H1 space with default shapeset.
  SpaceSharedPtr<double> space(new H1Space<double>(mesh, &bcs, P_INIT));
  int ndof = space->get_num_dofs();

  // Initialize the weak formulation
  CustomNonlinearity lambda(alpha);
  Hermes2DFunction<double> src(-heat_src);
  DefaultWeakFormPoisson<double> wf(HERMES_ANY, &lambda, &src);
#ifdef SHOW_OUTPUT
  ScalarView s_view("Solution");
#endif

  double* coeff_vec = new double[ndof];
  MeshFunctionSharedPtr<double> init_sln(new CustomInitialCondition(mesh));
  OGProjection<double> ogProjection; ogProjection.project_global(space, init_sln, coeff_vec); 
  MeshFunctionSharedPtr<double> sln(new Solution<double>);

  // Testing is happening here.
  Hermes::vector<int> numbers_of_nonlinear_iterations;
  Hermes::vector<int> numbers_of_linear_iterations_in_last_nonlinear_step;
  // Iterative - original initial guess.
  HermesCommonApi.set_integral_param_value(matrixSolverType, SOLVER_PARALUTION_ITERATIVE);
  {
    // Initialize Newton solver.
    NewtonSolver<double> newton(&wf, space);
    newton.set_tolerance(NEWTON_TOL, ResidualNormAbsolute);
    newton.set_max_steps_with_reused_jacobian(0);

    newton.get_linear_matrix_solver()->as_IterSolver()->set_solver_type(Solvers::GMRES);
    newton.get_linear_matrix_solver()->as_IterSolver()->set_tolerance(1e-5);

    // Perform Newton's iteration.
    newton.solve(coeff_vec);
    numbers_of_nonlinear_iterations.push_back(newton.get_num_iters());
    numbers_of_linear_iterations_in_last_nonlinear_step.push_back(newton.get_linear_matrix_solver()->as_IterSolver()->get_num_iters());

    // Translate the resulting coefficient vector into a Solution.
    Solution<double>::vector_to_solution(newton.get_sln_vector(), space, sln);
#ifdef SHOW_OUTPUT
    s_view.show(sln);
#endif
  }

  // Iterative - "exact" initial guess.
  {
    // Initialize Newton solver.
    NewtonSolver<double> newton(&wf, space);
    newton.set_tolerance(NEWTON_TOL, ResidualNormAbsolute);

    newton.get_linear_matrix_solver()->as_IterSolver()->set_solver_type(Solvers::GMRES);

    // Perform Newton's iteration.
    newton.solve(sln);
    numbers_of_nonlinear_iterations.push_back(newton.get_num_iters());
    numbers_of_linear_iterations_in_last_nonlinear_step.push_back(newton.get_linear_matrix_solver()->as_IterSolver()->get_num_iters());

    // Translate the resulting coefficient vector into a Solution.
    Solution<double>::vector_to_solution(newton.get_sln_vector(), space, sln);
#ifdef SHOW_OUTPUT
    s_view.show(sln);
#endif
  }

  bool success = true;
  
  success = Hermes::Testing::test_value(numbers_of_nonlinear_iterations[0], 10, "Nonlinear iterations[0]", 1) && success;
  success = Hermes::Testing::test_value(numbers_of_nonlinear_iterations[1], 1, "Nonlinear iterations[1]", 1) && success;
  success = Hermes::Testing::test_value(numbers_of_linear_iterations_in_last_nonlinear_step[0], 5, "Linear iterations[0]", 1) && success;
  success = Hermes::Testing::test_value(numbers_of_linear_iterations_in_last_nonlinear_step[1], 7, "Linear iterations[1]", 1) && success;
  if(success == true)
  {
    printf("Success!\n");
    return 0;
  }
  else
  {
    printf("Failure!\n");
    return -1;
  }
#endif
  return 0;
}
예제 #11
0
파일: main.cpp 프로젝트: Zhonghua/hermes2d
int main(int argc, char* argv[])
{
  // load the mesh
  Mesh mesh;
  H2DReader mloader;
  mloader.load("square_quad.mesh", &mesh);
  // mloader.load("square_tri.mesh", &mesh);
  for (int i=0; i<INIT_REF_NUM; i++) mesh.refine_all_elements();
  mesh.refine_towards_boundary(2, INIT_REF_NUM_BDY);

  // initialize the shapeset and the cache
  H1Shapeset shapeset;
  PrecalcShapeset pss(&shapeset);

  // create finite element space
  H1Space space(&mesh, &shapeset);
  space.set_bc_types(bc_types);
  space.set_bc_values(bc_values);
  space.set_uniform_order(P_INIT);

  // enumerate basis functions
  space.assign_dofs();

  // initialize the weak formulation
  WeakForm wf(1);
  wf.add_biform(0, 0, callback(bilinear_form));
  if (STABILIZATION_ON == true) {
    wf.add_biform(0, 0, bilinear_form_stabilization,
            bilinear_form_stabilization_order);
  }
  if (SHOCK_CAPTURING_ON == true) {
    wf.add_biform(0, 0, bilinear_form_shock_capturing, bilinear_form_shock_capturing_order);
  }

  // visualize solution and mesh
  OrderView  oview("Coarse mesh", 0, 0, 500, 400);
  ScalarView sview("Coarse mesh solution", 510, 0, 500, 400);
  ScalarView sview2("Fine mesh solution", 1020, 0, 500, 400);

  // matrix solver
  UmfpackSolver solver;

  // DOF convergence graph
  SimpleGraph graph_dof_est, graph_cpu_est;

  // prepare selector
  RefinementSelectors::H1NonUniformHP selector(ISO_ONLY, ADAPT_TYPE, CONV_EXP, H2DRS_DEFAULT_ORDER, &shapeset);

  // adaptivity loop
  int it = 1, ndofs;
  bool done = false;
  double cpu = 0.0;
  Solution sln_coarse, sln_fine;
  do
  {
    info("\n---- Adaptivity step %d ---------------------------------------------\n", it++);

    // time measurement
    begin_time();

    // solve the coarse mesh problem
    LinSystem ls(&wf, &solver);
    ls.set_spaces(1, &space);
    ls.set_pss(1, &pss);
    ls.assemble();
    ls.solve(1, &sln_coarse);

    // solve the fine mesh problem
    int p_increase;
    if (ADAPT_TYPE == RefinementSelectors::H2DRS_CAND_HP) p_increase = 1;
    else p_increase = 0;
    RefSystem rs(&ls, p_increase, 1);  // the '1' is for one level of global refinement in space
    rs.assemble();
    rs.solve(1, &sln_fine);

    // time measurement
    cpu += end_time();

    // show fine mesh solution
    // view the solution and mesh
    oview.show(&space);
    sview.show(&sln_coarse);
    sview2.show(&sln_fine);
    //sview.wait_for_keypress();
 
    // time measurement
    begin_time();

    // calculate error estimate wrt. fine mesh solution
    H1AdaptHP hp(1, &space);
    double err_est = hp.calc_error(&sln_coarse, &sln_fine) * 100;
    info("Estimate of error: %g%%", err_est);

    // add entries to DOF and CPU convergence graphs
    graph_dof_est.add_values(space.get_num_dofs(), err_est);
    graph_dof_est.save("conv_dof_est.dat");
    graph_cpu_est.add_values(cpu, err_est);
    graph_cpu_est.save("conv_cpu_est.dat");

    // if err_est too large, adapt the mesh
    if (err_est < ERR_STOP) done = true;
    else {
      hp.adapt(THRESHOLD, STRATEGY, &selector, MESH_REGULARITY);
      ndofs = space.assign_dofs();
      if (ndofs >= NDOF_STOP) done = true;
    }

    // time measurement
    cpu += end_time();
  }
  while (done == false);
  verbose("Total running time: %g sec", cpu);

  // show the fine solution - this is the final result
  sview.set_title("Final solution");
  sview.show(&sln_fine);

  // wait for keyboard or mouse input
  View::wait();
  return 0;
}
예제 #12
0
int main(int argc, char* argv[])
{
  // Load the mesh.
  Mesh basemesh;
  H2DReader mloader;
  mloader.load("domain.mesh", &basemesh);

  // Initialize the meshes.
  Mesh mesh_flow, mesh_concentration;
  mesh_flow.copy(&basemesh);
  mesh_concentration.copy(&basemesh);

  for(unsigned int i = 0; i < INIT_REF_NUM_CONCENTRATION; i++)
    mesh_concentration.refine_all_elements(0);

  mesh_concentration.refine_towards_boundary(BDY_DIRICHLET_CONCENTRATION, INIT_REF_NUM_CONCENTRATION_BDY);

  for(unsigned int i = 0; i < INIT_REF_NUM_FLOW; i++)
    mesh_flow.refine_all_elements();

  // Initialize boundary condition types and spaces with default shapesets.
  // For the concentration.
  EssentialBCs bcs_concentration;
  
  bcs_concentration.add_boundary_condition(new DefaultEssentialBCConst(BDY_DIRICHLET_CONCENTRATION, CONCENTRATION_EXT));
  
  L2Space space_rho(&mesh_flow, P_INIT_FLOW);
  L2Space space_rho_v_x(&mesh_flow, P_INIT_FLOW);
  L2Space space_rho_v_y(&mesh_flow, P_INIT_FLOW);
  L2Space space_e(&mesh_flow, P_INIT_FLOW);
  // Space for concentration.
  H1Space space_c(&mesh_concentration, &bcs_concentration, P_INIT_CONCENTRATION);

  int ndof = Space::get_num_dofs(Hermes::vector<Space*>(&space_rho, &space_rho_v_x, &space_rho_v_y, &space_e, &space_c));
  info("ndof: %d", ndof);

  // Initialize solutions, set initial conditions.
  InitialSolutionEulerDensity prev_rho(&mesh_flow, RHO_EXT);
  InitialSolutionEulerDensityVelX prev_rho_v_x(&mesh_flow, RHO_EXT * V1_EXT);
  InitialSolutionEulerDensityVelY prev_rho_v_y(&mesh_flow, RHO_EXT * V2_EXT);
  InitialSolutionEulerDensityEnergy prev_e(&mesh_flow, QuantityCalculator:: calc_energy(RHO_EXT, RHO_EXT * V1_EXT, RHO_EXT * V2_EXT, P_EXT, KAPPA));
  InitialSolutionConcentration prev_c(&mesh_concentration, 0.0);

  // Numerical flux.
  OsherSolomonNumericalFlux num_flux(KAPPA);

  // Initialize weak formulation.
  EulerEquationsWeakFormExplicitCoupled wf(&num_flux, KAPPA, RHO_EXT, V1_EXT, V2_EXT, P_EXT, BDY_SOLID_WALL,
    BDY_INLET, BDY_OUTLET, BDY_NATURAL_CONCENTRATION, &prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e, &prev_c, EPSILON);
  
  wf.set_time_step(time_step);

  // Initialize the FE problem.
  bool is_linear = true;
  DiscreteProblem dp(&wf, Hermes::vector<Space*>(&space_rho, &space_rho_v_x, &space_rho_v_y, &space_e, &space_c), is_linear);

  // If the FE problem is in fact a FV problem.
  //if(P_INIT == 0) dp.set_fvm();  

  // Filters for visualization of Mach number, pressure and entropy.
  MachNumberFilter Mach_number(Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e), KAPPA);
  PressureFilter pressure(Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e), KAPPA);
  EntropyFilter entropy(Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e), KAPPA, RHO_EXT, P_EXT);

  /*
  ScalarView pressure_view("Pressure", new WinGeom(0, 0, 600, 300));
  ScalarView Mach_number_view("Mach number", new WinGeom(700, 0, 600, 300));
  ScalarView entropy_production_view("Entropy estimate", new WinGeom(0, 400, 600, 300));

  ScalarView s5("Concentration", new WinGeom(700, 400, 600, 300));
  */
  
  ScalarView s1("1", new WinGeom(0, 0, 600, 300));
  ScalarView s2("2", new WinGeom(700, 0, 600, 300));
  ScalarView s3("3", new WinGeom(0, 400, 600, 300));
  ScalarView s4("4", new WinGeom(700, 400, 600, 300));
  ScalarView s5("Concentration", new WinGeom(350, 200, 600, 300));
  

  // Set up the solver, matrix, and rhs according to the solver selection.
  SparseMatrix* matrix = create_matrix(matrix_solver);
  Vector* rhs = create_vector(matrix_solver);
  Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

  // Set up CFL calculation class.
  CFLCalculation CFL(CFL_NUMBER, KAPPA);

  // Set up Advection-Diffusion-Equation stability calculation class.
  ADEStabilityCalculation ADES(ADVECTION_STABILITY_CONSTANT, DIFFUSION_STABILITY_CONSTANT, EPSILON);

  int iteration = 0; double t = 0;
  for(t = 0.0; t < 83.0; t += time_step) {
    info("---- Time step %d, time %3.5f.", iteration++, t);

    // Set the current time step.
    wf.set_time_step(time_step);

    bool rhs_only = (iteration == 1 ? false : true);
    // Assemble stiffness matrix and rhs or just rhs.
    if (rhs_only == false) {
      info("Assembling the stiffness matrix and right-hand side vector.");
      dp.assemble(matrix, rhs);
    }

    else {
      info("Assembling the right-hand side vector (only).");
      dp.assemble(NULL, rhs);
    }

    // Solve the matrix problem.
    info("Solving the matrix problem.");
    scalar* solution_vector = NULL;
    if(solver->solve()) {
      solution_vector = solver->get_solution();
      Solution::vector_to_solutions(solution_vector, Hermes::vector<Space *>(&space_rho, &space_rho_v_x, 
      &space_rho_v_y, &space_e, &space_c), Hermes::vector<Solution *>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e, &prev_c));
    }
    else
    error ("Matrix solver failed.\n");

    if(SHOCK_CAPTURING) {
      DiscontinuityDetector discontinuity_detector(Hermes::vector<Space *>(&space_rho, &space_rho_v_x, 
        &space_rho_v_y, &space_e), Hermes::vector<Solution *>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));

      std::set<int> discontinuous_elements = discontinuity_detector.get_discontinuous_element_ids(DISCONTINUITY_DETECTOR_PARAM);

      FluxLimiter flux_limiter(solution_vector, Hermes::vector<Space *>(&space_rho, &space_rho_v_x, 
        &space_rho_v_y, &space_e), Hermes::vector<Solution *>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));

      flux_limiter.limit_according_to_detector(discontinuous_elements);
    }

    util_time_step = time_step;

    if((iteration - 1) % CFL_CALC_FREQ == 0)
      CFL.calculate(Hermes::vector<Solution *>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e), &mesh_flow, util_time_step);

    time_step = util_time_step;

    ADES.calculate(Hermes::vector<Solution *>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y), &mesh_concentration, util_time_step);

    if(util_time_step < time_step)
      time_step = util_time_step;

    // Visualization.
    if((iteration - 1) % EVERY_NTH_STEP == 0) {
      // Hermes visualization.
      if(HERMES_VISUALIZATION) {
        /*
        Mach_number.reinit();
        pressure.reinit();
        entropy.reinit();
        pressure_view.show(&pressure);
        entropy_production_view.show(&entropy);
        Mach_number_view.show(&Mach_number);
        s5.show(&prev_c);
        */
        s1.show(&prev_rho);
        s2.show(&prev_rho_v_x);
        s3.show(&prev_rho_v_y);
        s4.show(&prev_e);
        s5.show(&prev_c);
        //s5.wait_for_close();
        
      }
      // Output solution in VTK format.
      if(VTK_VISUALIZATION) {
        pressure.reinit();
        Mach_number.reinit();
        Linearizer lin;
        char filename[40];
        sprintf(filename, "pressure-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&pressure, filename, "Pressure", false);
        sprintf(filename, "pressure-3D-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&pressure, filename, "Pressure", true);
        sprintf(filename, "Mach number-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&Mach_number, filename, "MachNumber", false);
        sprintf(filename, "Mach number-3D-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&Mach_number, filename, "MachNumber", true);
        sprintf(filename, "Concentration-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&prev_c, filename, "Concentration", true);
        sprintf(filename, "Concentration-3D-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&prev_c, filename, "Concentration", true);
 
      }
    }
  }
  
  /*
  pressure_view.close();
  entropy_production_view.close();
  Mach_number_view.close();
  s5.close();
  */
  
  s1.close();
  s2.close();
  s3.close();
  s4.close();
  s5.close();

  return 0;
}
예제 #13
0
int main(int argc, char* argv[])
{
  // Instantiate a class with global functions.
  Hermes2D hermes2d;

  // Load the mesh.
  Mesh mesh;
  H2DReader mloader;
  mloader.load("domain.mesh", &mesh);
  
  // Perform initial uniform mesh refinement.
  for (int i = 0; i < INIT_REF_NUM; i++) mesh.refine_all_elements();

  // Set essential boundary conditions.
  DefaultEssentialBCConst bc_essential(Hermes::vector<std::string>("right", "top"), 0.0);
  EssentialBCs bcs(&bc_essential);
  
  // Create an H1 space with default shapeset.
  H1Space space(&mesh, &bcs, P_INIT);

  // Associate element markers (corresponding to physical regions) 
  // with material properties (diffusion coefficient, absorption 
  // cross-section, external sources).
  Hermes::vector<std::string> regions("e1", "e2", "e3", "e4", "e5");
  Hermes::vector<double> D_map(D_1, D_2, D_3, D_4, D_5);
  Hermes::vector<double> Sigma_a_map(SIGMA_A_1, SIGMA_A_2, SIGMA_A_3, SIGMA_A_4, SIGMA_A_5);
  Hermes::vector<double> Sources_map(Q_EXT_1, 0.0, Q_EXT_3, 0.0, 0.0);
  
  // Initialize the weak formulation.
  WeakFormsNeutronics::Monoenergetic::Diffusion::DefaultWeakFormFixedSource
    wf(regions, D_map, Sigma_a_map, Sources_map);

  // Initialize coarse and reference mesh solution.
  Solution sln, ref_sln;
  
  // Initialize refinement selector.
  H1ProjBasedSelector selector(CAND_LIST, CONV_EXP, H2DRS_DEFAULT_ORDER);

  // Initialize views.
  ScalarView sview("Solution", new WinGeom(0, 0, 440, 350));
  sview.fix_scale_width(50);
  sview.show_mesh(false);
  OrderView  oview("Polynomial orders", new WinGeom(450, 0, 400, 350));
  
  // DOF and CPU convergence graphs initialization.
  SimpleGraph graph_dof, graph_cpu;
  
  // Time measurement.
  TimePeriod cpu_time;
  cpu_time.tick();

  // Adaptivity loop:
  int as = 1; bool done = false;
  do
  {
    info("---- Adaptivity step %d:", as);

    // Construct globally refined reference mesh and setup reference space.
    Space* ref_space = Space::construct_refined_space(&space);
    int ndof_ref = Space::get_num_dofs(ref_space);

    // Initialize the FE problem.
    DiscreteProblem dp(&wf, ref_space);

    // Initialize the FE problem.
    SparseMatrix* matrix = create_matrix(matrix_solver);
    Vector* rhs = create_vector(matrix_solver);
    Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

    // Initial coefficient vector for the Newton's method.  
    scalar* coeff_vec = new scalar[ndof_ref];
    memset(coeff_vec, 0, ndof_ref*sizeof(scalar));

    // Perform Newton's iteration on reference emesh.
    info("Solving on reference mesh.");
    if (!hermes2d.solve_newton(coeff_vec, &dp, solver, matrix, rhs)) error("Newton's iteration failed.");

    // Translate the resulting coefficient vector into the Solution sln.
    Solution::vector_to_solution(coeff_vec, ref_space, &ref_sln);

    // Project the fine mesh solution onto the coarse mesh.
    Solution sln;
    info("Projecting reference solution on coarse mesh.");
    OGProjection::project_global(&space, &ref_sln, &sln, matrix_solver); 

    // Time measurement.
    cpu_time.tick();
   
    // View the coarse mesh solution and polynomial orders.
    sview.show(&sln);
    oview.show(&space);

    // Skip visualization time.
    cpu_time.tick(HERMES_SKIP);

    // Calculate element errors and total error estimate.
    info("Calculating error estimate."); 
    Adapt* adaptivity = new Adapt(&space);
    double err_est_rel = adaptivity->calc_err_est(&sln, &ref_sln) * 100;

    // Report results.
    info("ndof_coarse: %d, ndof_fine: %d, err_est_rel: %g%%", 
      Space::get_num_dofs(&space), Space::get_num_dofs(ref_space), err_est_rel);

    // Time measurement.
    cpu_time.tick();

    // Add entry to DOF and CPU convergence graphs.
    graph_dof.add_values(Space::get_num_dofs(&space), err_est_rel);
    graph_dof.save("conv_dof_est.dat");
    graph_cpu.add_values(cpu_time.accumulated(), err_est_rel);
    graph_cpu.save("conv_cpu_est.dat");

    // If err_est too large, adapt the mesh.
    if (err_est_rel < ERR_STOP) done = true;
    else 
    {
      info("Adapting coarse mesh.");
      done = adaptivity->adapt(&selector, THRESHOLD, STRATEGY, MESH_REGULARITY);
      
      // Increase the counter of performed adaptivity steps.
      if (done == false)  as++;
    }
    if (Space::get_num_dofs(&space) >= NDOF_STOP) done = true;

    // Clean up.
    delete [] coeff_vec;
    delete solver;
    delete matrix;
    delete rhs;
    delete adaptivity;
    if(done == false) delete ref_space->get_mesh();
    delete ref_space;
  }
  while (done == false);
  
  verbose("Total running time: %g s", cpu_time.accumulated());

  // Show the reference solution - the final result.
  sview.set_title("Fine mesh solution");
  sview.show_mesh(false);
  sview.show(&ref_sln);

  // Wait for all views to be closed.
  View::wait();
  return 0;
}
예제 #14
0
int main(int argc, char* argv[])
{
  // Instantiate a class with global functions.
  Hermes2D hermes_2D;

  // Load the mesh.
  Mesh mesh;
  H2DReader mloader;
  mloader.load("domain.mesh", &mesh);

  // Initial mesh refinements.
  for(int i = 0; i < INIT_REF_NUM; i++) mesh.refine_all_elements();

  // Initialize boundary conditions.
  DefaultEssentialBCConst left_t("Left", 1.0);
  EssentialBCs bcs_t(&left_t);

  DefaultEssentialBCConst left_c("Left", 0.0);
  EssentialBCs bcs_c(&left_c);

  // Create H1 spaces with default shapesets.
  H1Space* t_space = new H1Space(&mesh, &bcs_t, P_INIT);
  H1Space* c_space = new H1Space(&mesh, &bcs_c, P_INIT);
  int ndof = Space::get_num_dofs(Hermes::vector<Space*>(t_space, c_space));
  info("ndof = %d.", ndof);

  // Define initial conditions.
  InitialSolutionTemperature t_prev_time_1(&mesh, x1);
  InitialSolutionConcentration c_prev_time_1(&mesh, x1, Le);
  InitialSolutionTemperature t_prev_time_2(&mesh, x1);
  InitialSolutionConcentration c_prev_time_2(&mesh, x1, Le);
  Solution t_prev_newton;
  Solution c_prev_newton;

  // Filters for the reaction rate omega and its derivatives.
  CustomFilter omega(Hermes::vector<MeshFunction*>(&t_prev_time_1, &c_prev_time_1), Le, alpha, beta, kappa, x1, TAU);
  CustomFilterDt omega_dt(Hermes::vector<MeshFunction*>(&t_prev_time_1, &c_prev_time_1), Le, alpha, beta, kappa, x1, TAU);
  CustomFilterDc omega_dc(Hermes::vector<MeshFunction*>(&t_prev_time_1, &c_prev_time_1), Le, alpha, beta, kappa, x1, TAU);

  // Initialize visualization.
  ScalarView rview("Reaction rate", new WinGeom(0, 0, 800, 230));

  scalar* coeff_vec = new scalar[Space::get_num_dofs(Hermes::vector<Space*>(t_space, c_space))];
  memset(coeff_vec, 0, ndof * sizeof(double));
  Solution::vector_to_solutions(coeff_vec, Hermes::vector<Space*>(t_space, c_space), 
                                Hermes::vector<Solution *>(&t_prev_time_1, &c_prev_time_1));

  // Initialize the weak formulation.
  double current_time = 0;
  CustomWeakForm wf(Le, alpha, beta, kappa, x1, TAU, false, PRECOND, &omega, &omega_dt, 
                    &omega_dc, &t_prev_time_1, &c_prev_time_1, &t_prev_time_2, &c_prev_time_2);

  // Initialize the FE problem.
  DiscreteProblem dp(&wf, Hermes::vector<Space*>(t_space, c_space));

  // Set up the solver, matrix, and rhs according to the solver selection.
  SparseMatrix* matrix = create_matrix(matrix_solver);
  Vector* rhs = create_vector(matrix_solver);
  Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

  // Time stepping:
  int ts = 1;
  bool jacobian_changed = true;
  do 
  {
    info("---- Time step %d, time %3.5f s", ts, current_time);

    if (NEWTON)
    {
      // Perform Newton's iteration.
      info("Solving nonlinear problem:");
      bool verbose = true;
      bool jacobian_changed = true;
      if (!hermes_2D.solve_newton(coeff_vec, &dp, solver, matrix, rhs, jacobian_changed,
                                  NEWTON_TOL, NEWTON_MAX_ITER, verbose)) error("Newton's iteration failed.");

      Solution::vector_to_solutions(coeff_vec, Hermes::vector<Space*>(t_space, c_space), 
                                    Hermes::vector<Solution*>(&t_prev_newton, &c_prev_newton));
 
      // Saving solutions for the next time step.
      if(ts > 1)
      {
        t_prev_time_2.copy(&t_prev_time_1);
        c_prev_time_2.copy(&c_prev_time_1);
      }

      t_prev_time_1.copy(&t_prev_newton);
      c_prev_time_1.copy(&c_prev_newton);

    }

    // Visualization.
    rview.set_min_max_range(0.0,2.0);
    rview.show(&omega);

    // Increase current time and time step counter.
    current_time += TAU;
    ts++;
  }
  while (current_time < T_FINAL);

  // Clean up.
  delete [] coeff_vec;
  delete matrix;
  delete rhs;
  delete solver;

  // Wait for all views to be closed.
  View::wait();
  return 0;
}
예제 #15
0
int main(int argc, char* argv[])
{
  // Define problem parameters: (x_loc, y_loc) is the center of the circular wave front, R_ZERO is the distance from the 
  // wave front to the center of the circle, and alpha gives the steepness of the wave front.
  double alpha, x_loc, y_loc, r_zero;
  switch(PARAM) {
  case 0:
    alpha = 20;
    x_loc = -0.05;
    y_loc = -0.05;
    r_zero = 0.7;
    break;
  case 1:
    alpha = 1000;
    x_loc = -0.05;
    y_loc = -0.05;
    r_zero = 0.7;
    break;
  case 2:
    alpha = 1000;
    x_loc = 1.5;
    y_loc = 0.25;
    r_zero = 0.92;
    break;
  case 3:
    alpha = 50;
    x_loc = 0.5;
    y_loc = 0.5;
    r_zero = 0.25;
    break;
  default:   
    // The same as 0.
    alpha = 20;
    x_loc = -0.05;
    y_loc = -0.05;
    r_zero = 0.7;
    break;
  }
  
  // Set adaptivity options according to the command line argument.
  int refinement_mode;
  if (argc != 2)
    refinement_mode = 0;
  else
  {
    refinement_mode = atoi(argv[1]);
    if (refinement_mode < 1 || refinement_mode > 12)
      throw Hermes::Exceptions::Exception("Invalid run case: %d (valid range is [1,12])", refinement_mode);
  }
  
  double threshold = 0.3;                     
  // strategy = 0 ... Refine elements until sqrt(threshold) times total error is processed. 
  //                  If more elements have similar errors, refine all to keep the mesh symmetric.
  int strategy = 0;       
  // strategy = 1 ... Refine all elements whose error is larger than threshold times max. element error.
  // Add also the norm of the residual to the error estimate of each element.
  bool use_residual_estimator = false;        
  // Use energy norm for error estimate normalization and measuring of exact error.
  bool use_energy_norm_normalization = false; 
  
  switch (refinement_mode)
  {
    case 1:
    case 2:
    case 3:
    case 4:
    case 5:
    case 6:
    {
      strategy = 0;
      break;
    }
    
    case 7 :
    case 8 :
    case 9 :
    case 10:
    case 11:
    case 12:
    {
      strategy = 1;
      break;
    }
  }
  
  switch (refinement_mode)
  {
    case 1:
    case 2:
    case 3:
    case 7:
    case 8:
    case 9:
    {
      threshold = 0.3;
      break;
    }
    
    case 4:
    case 5:
    case 6:
    case 10:
    case 11:
    case 12:
    {
      threshold = 0.3*0.3;
      break;
    }
  }
  
  switch (refinement_mode)
  {
    case 2:
    case 3:
    case 5:
    case 6:
    case 8:
    case 9:
    case 11:
    case 12:
    {
      use_residual_estimator = true;
      break;
    }
  }
  
  switch (refinement_mode)
  {
    case 3:
    case 6:
    case 9:
    case 12:
    {
      use_energy_norm_normalization = true;
      break;
    }
  }
  
  double setup_time = 0, assemble_time = 0, solve_time = 0, adapt_time = 0;
  
  // Time measurement.
  Hermes::Mixins::TimeMeasurable wall_clock;
  // Stop counting time for adaptation.
  wall_clock.tick(); 

  // Load the mesh.
  Mesh mesh;
  MeshReaderH2D mloader;
  mloader.load("square_quad.mesh", &mesh);    

  // Perform initial mesh refinement.
  for (int i = 0; i < INIT_REF_NUM; i++) mesh.refine_all_elements();
  
  // Stop counting time for adaptation.
  wall_clock.tick(); 
  adapt_time += wall_clock.last();
  
  // Set exact solution.
  CustomExactSolution exact(&mesh, alpha, x_loc, y_loc, r_zero);

  // Define right-hand side.
  CustomRightHandSide rhs(alpha, x_loc, y_loc, r_zero);

  // Initialize the weak formulation.
  CustomWeakForm wf(&rhs);
  // Equivalent, but slower:
  // DefaultWeakFormPoisson<double> wf(Hermes::HERMES_ANY, HERMES_ONE, &rhs);

  // Initialize boundary conditions.
  DefaultEssentialBCNonConst<double> bc("Bdy", &exact);
  EssentialBCs<double> bcs(&bc);

SpaceSharedPtr<double> space(new // Create an H1 space with default shapeset.
  H1Space<double>(&mesh, &bcs, P_INIT));
  
  // Initialize approximate solution.
  Solution<double> sln;
  
  // Initialize views.
  Views::ScalarView sview("Solution", new Views::WinGeom(800, 0, 400, 400));
  sview.show_mesh(false);
  sview.set_3d_mode();
  sview.set_palette(Views::H2DV_PT_HUESCALE);
  sview.fix_scale_width(50);
  Views::OrderView  oview("Mesh", new Views::WinGeom(0, 0, 800, 800));
  oview.set_palette(Views::H2DV_PT_INVGRAYSCALE);

  // DOF and CPU convergence graphs.
  ConvergenceTable conv_table;
  conv_table.add_column(" cycle ", "%6d ");
  conv_table.add_column("  H1 error ", " %.4e ");
  conv_table.add_column("   ndof  ", " %6d ");
  conv_table.add_column(" total time ", " %8.3f  ");
  conv_table.add_column(" setup time ", "  %8.3f  ");
  conv_table.add_column(" assem time ", "  %8.3f  ");
  conv_table.add_column(" solve time ", "  %8.3f  ");
  conv_table.add_column(" adapt time ", "  %8.3f  ");
  
  wall_clock.tick(Hermes::Mixins::TimeMeasurable::HERMES_SKIP);

  // Adaptivity loop:
  int as = 0; bool done = false;
  do
  {
    // Start counting setup time.
    wall_clock.tick(); 
    
    // Assemble the discrete problem.    
    DiscreteProblem<double> dp(&wf, &space);

    // Actual ndof.
    int ndof = space.get_num_dofs();
    
    NewtonSolver<double> newton(&dp);
    //newton.set_verbose_output(false);

    // Setup time continues in NewtonSolver::solve().
    try
    {
      newton.solve();
    }
    catch(Hermes::Exceptions::Exception e)
    {
      e.print_msg();
      throw Hermes::Exceptions::Exception("Newton's iteration failed.");
    };
     
    // Start counting time for adaptation.
    wall_clock.tick();  
    Solution<double>::vector_to_solution(newton.get_sln_vector(), &space, &sln);
    
    double err_exact = Global<double>::calc_abs_error(&sln, &exact, HERMES_H1_NORM);
   
    // Report results.
    Hermes::Mixins::Loggable::Static::info(" Cycle %d:", as);
    Hermes::Mixins::Loggable::Static::info("    Number of degrees of freedom: %d", ndof);
    Hermes::Mixins::Loggable::Static::info("    H1 error w.r.t. exact soln.:  %g", err_exact);
    
    // Stop counting time for adaptation.
    wall_clock.tick(); 
    double accum_time = wall_clock.accumulated();
    adapt_time += wall_clock.last();
    
    // View the approximate solution and polynomial orders.
    //sview.show(&sln);
    //oview.show(&space);
    //Views::View::wait(Views::HERMES_WAIT_KEYPRESS);
    
    conv_table.add_value(0, as);
    conv_table.add_value(1, err_exact);
    conv_table.add_value(2, ndof);
    conv_table.add_value(3, accum_time);
    conv_table.add_value(4, setup_time);
    conv_table.add_value(5, assemble_time);
    conv_table.add_value(6, solve_time);
    conv_table.add_value(7, adapt_time);
    
    // Start counting time for adaptation.
    wall_clock.tick(); 
    
    if (err_exact < ERR_STOP) 
      done = true;
    else
    {
      // Calculate element errors and total error estimate.
      Hermes::Hermes2D::BasicKellyAdapt<double> adaptivity(&space);
      
      unsigned int error_flags = HERMES_TOTAL_ERROR_ABS;
      
      if (use_energy_norm_normalization)
      {
        error_flags |= HERMES_ELEMENT_ERROR_REL;
        adaptivity.set_error_form(new EnergyErrorForm(&wf));
      }
      else
        error_flags |= HERMES_ELEMENT_ERROR_ABS;
      
      if (use_residual_estimator) 
        adaptivity.add_error_estimator_vol(new ResidualErrorForm(&rhs));
      
      double err_est_rel = adaptivity.calc_err_est(&sln, error_flags);  
      
      done = adaptivity.adapt(threshold, strategy, MESH_REGULARITY);
      
      // Stop counting time for adaptation.
      wall_clock.tick(); 
      adapt_time += wall_clock.last();
    }
        
    // Increase the counter of performed adaptivity steps.
    if (done == false)  
      as++;
    else
    {
      Hermes::Mixins::Loggable::Static::info("Total running time:  %g s", wall_clock.accumulated());
      Hermes::Mixins::Loggable::Static::info("   Setup:            %g s", setup_time);
      Hermes::Mixins::Loggable::Static::info("   Assemble:         %g s", assemble_time);
      Hermes::Mixins::Loggable::Static::info("   Solve:            %g s", solve_time);
      Hermes::Mixins::Loggable::Static::info("   Adapt:            %g s", adapt_time);
      
      //sview.show(&sln);
      oview.show(&space);
      oview.save_screenshot(("final_mesh-"+itos(refinement_mode)+".bmp").c_str());
      oview.close();
      conv_table.save(("conv_table-"+itos(refinement_mode)+".dat").c_str());
    }
  }
  while (done == false);

  // Wait for all views to be closed.
  //Views::View::wait();
  return 0;
}
예제 #16
0
int main(int argc, char* argv[])
{
  // Choose a Butcher's table or define your own.
  ButcherTable bt(butcher_table_type);
  if (bt.is_explicit()) Hermes::Mixins::Loggable::Static::info("Using a %d-stage explicit R-K method.", bt.get_size());
  if (bt.is_diagonally_implicit()) Hermes::Mixins::Loggable::Static::info("Using a %d-stage diagonally implicit R-K method.", bt.get_size());
  if (bt.is_fully_implicit()) Hermes::Mixins::Loggable::Static::info("Using a %d-stage fully implicit R-K method.", bt.get_size());

  // Load the mesh.
  Mesh mesh;
  MeshReaderH2D mloader;
  mloader.load("square.mesh", &mesh);

  // Initial mesh refinements.
  for(int i = 0; i < INIT_REF_NUM; i++) mesh.refine_all_elements();

  // Convert initial condition into a Solution<std::complex<double> >.
  CustomInitialCondition psi_time_prev(&mesh);
  Solution<std::complex<double> > psi_time_new(&mesh);

  // Initialize the weak formulation.
  double current_time = 0;

  CustomWeakFormGPRK wf(h, m, g, omega);
  
  // Initialize boundary conditions.
  DefaultEssentialBCConst<std::complex<double> > bc_essential("Bdy", 0.0);
  EssentialBCs<std::complex<double> > bcs(&bc_essential);

  // Create an H1 space with default shapeset.
  H1Space<std::complex<double> > space(&mesh, &bcs, P_INIT);
  int ndof = space.get_num_dofs();
  Hermes::Mixins::Loggable::Static::info("ndof = %d", ndof);
 
  // Initialize the FE problem.
  DiscreteProblem<std::complex<double> > dp(&wf, &space);

  // Initialize views.
  ScalarView sview_real("Solution - real part", new WinGeom(0, 0, 600, 500));
  ScalarView sview_imag("Solution - imaginary part", new WinGeom(610, 0, 600, 500));
  sview_real.fix_scale_width(80);
  sview_imag.fix_scale_width(80);

  // Initialize Runge-Kutta time stepping.
  RungeKutta<std::complex<double> > runge_kutta(&wf, &space, &bt);
  
  // Time stepping:
  int ts = 1;
  int nstep = (int)(T_FINAL/time_step + 0.5);
  for(int ts = 1; ts <= nstep; ts++)
  {
    // Perform one Runge-Kutta time step according to the selected Butcher's table.
    Hermes::Mixins::Loggable::Static::info("Runge-Kutta time step (t = %g s, time step = %g s, stages: %d).", 
         current_time, time_step, bt.get_size());
    
    try
    {
      runge_kutta.setTime(current_time);
      runge_kutta.setTimeStep(time_step);
      runge_kutta.rk_time_step_newton(&psi_time_prev, &psi_time_new);
    }
    catch(Exceptions::Exception& e)
    {
      e.printMsg();
      throw Hermes::Exceptions::Exception("Runge-Kutta time step failed");
    }

    // Show the new time level solution.
    char title[100];
    sprintf(title, "Solution - real part, Time %3.2f s", current_time);
    sview_real.set_title(title);
    sprintf(title, "Solution - imaginary part, Time %3.2f s", current_time);
    sview_imag.set_title(title);
    RealFilter real(&psi_time_new);
    ImagFilter imag(&psi_time_new);
    sview_real.show(&real);
    sview_imag.show(&imag);

    // Copy solution for the new time step.
    psi_time_prev.copy(&psi_time_new);

    // Increase current time and time step counter.
    current_time += time_step;
    ts++;
  }

  // Wait for the view to be closed.
  View::wait();
  return 0;
}
예제 #17
0
파일: main.cpp 프로젝트: colman01/hermes
int main() 
{
  // Time measurement.
  TimePeriod cpu_time;
  cpu_time.tick();

  // Create space, set Dirichlet BC, enumerate basis functions.
  Space* space = new Space(A, B, NELEM, DIR_BC_LEFT, DIR_BC_RIGHT, P_INIT, NEQ, NEQ);

  // Enumerate basis functions, info for user.
  int ndof = Space::get_num_dofs(space);
  info("ndof: %d", ndof);

  // Initialize the weak formulation.
  WeakForm wf(2);
  wf.add_matrix_form(0, 0, jacobian_0_0);
  wf.add_matrix_form(0, 1, jacobian_0_1);
  wf.add_matrix_form(1, 0, jacobian_1_0);
  wf.add_matrix_form(1, 1, jacobian_1_1);
  wf.add_vector_form(0, residual_0);
  wf.add_vector_form(1, residual_1);

  // Initialize the FE problem.
  bool is_linear = false;
  DiscreteProblem *dp = new DiscreteProblem(&wf, space, is_linear);
  
  // Newton's loop.
  // Fill vector coeff_vec using dof and coeffs arrays in elements.
  double *coeff_vec = new double[Space::get_num_dofs(space)];
  get_coeff_vector(space, coeff_vec);

  // Set up the solver, matrix, and rhs according to the solver selection.
  SparseMatrix* matrix = create_matrix(matrix_solver);
  Vector* rhs = create_vector(matrix_solver);
  Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

  int it = 1;
  bool success = false;
  while (1) 
  {
    // Obtain the number of degrees of freedom.
    int ndof = Space::get_num_dofs(space);

    // Assemble the Jacobian matrix and residual vector.
    dp->assemble(coeff_vec, matrix, rhs);

    // Calculate the l2-norm of residual vector.
    double res_l2_norm = get_l2_norm(rhs);

    // Info for user.
    info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(space), res_l2_norm);

    // If l2 norm of the residual vector is within tolerance, then quit.
    // NOTE: at least one full iteration forced
    //       here because sometimes the initial
    //       residual on fine mesh is too small.
    if(res_l2_norm < NEWTON_TOL && it > 1) break;

    // Multiply the residual vector with -1 since the matrix 
    // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n).
    for(int i=0; i<ndof; i++) rhs->set(i, -rhs->get(i));

    // Solve the linear system.
    if(!(success = solver->solve()))
      error ("Matrix solver failed.\n");

    // Add \deltaY^{n+1} to Y^n.
    for (int i = 0; i < ndof; i++) coeff_vec[i] += solver->get_solution()[i];

    // If the maximum number of iteration has been reached, then quit.
    if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge.");
    
    // Copy coefficients from vector y to elements.
    set_coeff_vector(coeff_vec, space);

    it++;
  }
  info("Total running time: %g s", cpu_time.accumulated());

  // Test variable.
  info("ndof = %d.", Space::get_num_dofs(space));

  // Cleanup.
  for(unsigned i = 0; i < DIR_BC_LEFT.size(); i++)
      delete DIR_BC_LEFT[i];
  DIR_BC_LEFT.clear();

  for(unsigned i = 0; i < DIR_BC_RIGHT.size(); i++)
      delete DIR_BC_RIGHT[i];
  DIR_BC_RIGHT.clear();

  delete matrix;
  delete rhs;
  delete solver;
  delete[] coeff_vec;
  delete dp;
  delete space;

  if (success)
  {
    info("Success!");
    return ERROR_SUCCESS;
  }
  else
  {
    info("Failure!");
    return ERROR_FAILURE;
  }
}
예제 #18
0
파일: main.cpp 프로젝트: Veix123/hermes
int main(int argc, char **args)
{
  // Test variable.
  int success_test = 1;

  if (argc < 2) error("Not enough parameters.");

  // Load the mesh.
	Mesh mesh;
  H3DReader mloader;
  if (!mloader.load(args[1], &mesh)) error("Loading mesh file '%s'.", args[1]);

	// Initialize the space.
#if defined NONLIN1
	Ord3 order(1, 1, 1);
#else
	Ord3 order(2, 2, 2);
#endif
	H1Space space(&mesh, bc_types, essential_bc_values, order);

#if defined NONLIN2
	// Do L2 projection of zero function.
	WeakForm proj_wf;
	proj_wf.add_matrix_form(biproj_form<double, scalar>, biproj_form<Ord, Ord>, HERMES_SYM);
	proj_wf.add_vector_form(liproj_form<double, scalar>, liproj_form<Ord, Ord>);

	bool is_linear = true;
	DiscreteProblem lp(&proj_wf, &space, is_linear);

	// Initialize the solver in the case of SOLVER_PETSC or SOLVER_MUMPS.
  initialize_solution_environment(matrix_solver, argc, args);

  // Set up the solver, matrix, and rhs according to the solver selection.
  SparseMatrix* matrix = create_matrix(matrix_solver);
  Vector* rhs = create_vector(matrix_solver);
  Solver* solver_proj = create_linear_solver(matrix_solver, matrix, rhs);
  
  // Initialize the preconditioner in the case of SOLVER_AZTECOO.
  if (matrix_solver == SOLVER_AZTECOO) 
  {
    ((AztecOOSolver*) solver_proj)->set_solver(iterative_method);
    ((AztecOOSolver*) solver_proj)->set_precond(preconditioner);
    // Using default iteration parameters (see solver/aztecoo.h).
  }
  
  // Assemble the linear problem.
  info("Assembling (ndof: %d).", Space::get_num_dofs(&space));
  lp.assemble(matrix, rhs);
    
  // Solve the linear system.
  info("Solving.");
  if(!solver_proj->solve());
  	error ("Matrix solver failed.\n");

  delete matrix;
  delete rhs;
#endif

	// Initialize the weak formulation.
	WeakForm wf(1);
	wf.add_matrix_form(0, 0, jacobi_form<double, scalar>, jacobi_form<Ord, Ord>, HERMES_UNSYM);
	wf.add_vector_form(0, resid_form<double, scalar>, resid_form<Ord, Ord>);

	// Initialize the FE problem.
#if defined NONLIN2
  is_linear = false;
#else
  bool is_linear = false;
#endif
	DiscreteProblem dp(&wf, &space, is_linear);

	NoxSolver solver(&dp);

#if defined NONLIN2
solver.set_init_sln(solver_proj->get_solution());
delete solver_proj;
#endif

solver.set_conv_iters(10);
	info("Solving.");
	Solution sln(&mesh);
	if(solver.solve()) Solution::vector_to_solution(solver.get_solution(), &space, &sln);
  else error ("Matrix solver failed.\n");

		Solution ex_sln(&mesh);
#ifdef NONLIN1
		ex_sln.set_const(100.0);
#else
		ex_sln.set_exact(exact_solution);
#endif
		// Calculate exact error.
  info("Calculating exact error.");
  Adapt *adaptivity = new Adapt(&space, HERMES_H1_NORM);
  bool solutions_for_adapt = false;
  double err_exact = adaptivity->calc_err_exact(&sln, &ex_sln, solutions_for_adapt, HERMES_TOTAL_ERROR_ABS);

  if (err_exact > EPS)
		// Calculated solution is not precise enough.
		success_test = 0;

  if (success_test) {
    info("Success!");
    return ERR_SUCCESS;
  }
  else {
    info("Failure!");
    return ERR_FAILURE;
  }
}
예제 #19
0
파일: main.cpp 프로젝트: navi-vonavi/hermes
int main() {
  // Create space, set Dirichlet BC, enumerate basis functions.
  Space* space = new Space(A, B, NELEM, DIR_BC_LEFT, DIR_BC_RIGHT, P_INIT, NEQ);
  info("N_dof = %d.", Space::get_num_dofs(space));

  // Initialize the weak formulation.
  WeakForm wf(4);
  wf.add_matrix_form(0, 0, jacobian_1_1);
  wf.add_matrix_form(0, 1, jacobian_1_2);
  wf.add_matrix_form(1, 0, jacobian_2_1);
  wf.add_matrix_form(1, 1, jacobian_2_2);
  wf.add_matrix_form(1, 2, jacobian_2_3);
  wf.add_matrix_form(2, 1, jacobian_3_2);
  wf.add_matrix_form(2, 2, jacobian_3_3);
  wf.add_matrix_form(2, 3, jacobian_3_4);
  wf.add_matrix_form(3, 2, jacobian_4_3);
  wf.add_matrix_form(3, 3, jacobian_4_4);
  wf.add_vector_form(0, residual_1);
  wf.add_vector_form(1, residual_2);
  wf.add_vector_form(2, residual_3);
  wf.add_vector_form(3, residual_4);

  // Initialize the FE problem.
  bool is_linear = false;
  DiscreteProblem *dp = new DiscreteProblem(&wf, space, is_linear);

  // Newton's loop.
  // Fill vector coeff_vec using dof and coeffs arrays in elements.
  double *coeff_vec = new double[Space::get_num_dofs(space)];
  get_coeff_vector(space, coeff_vec);

  // Set up the solver, matrix, and rhs according to the solver selection.
  SparseMatrix* matrix = create_matrix(matrix_solver);
  Vector* rhs = create_vector(matrix_solver);
  Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

  int it = 1;
  while (1) {
    // Obtain the number of degrees of freedom.
    int ndof = Space::get_num_dofs(space);

    // Assemble the Jacobian matrix and residual vector.
    dp->assemble(matrix, rhs);

    // Calculate the l2-norm of residual vector.
    double res_l2_norm = get_l2_norm(rhs);

    // Info for user.
    info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(space), res_l2_norm);

    // If l2 norm of the residual vector is within tolerance, then quit.
    // NOTE: at least one full iteration forced
    //       here because sometimes the initial
    //       residual on fine mesh is too small.
    if(res_l2_norm < NEWTON_TOL && it > 1) break;

    // Multiply the residual vector with -1 since the matrix 
    // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n).
    for(int i=0; i<ndof; i++) rhs->set(i, -rhs->get(i));

    // Solve the linear system.
    if(!solver->solve())
      error ("Matrix solver failed.\n");

    // Add \deltaY^{n+1} to Y^n.
    for (int i = 0; i < ndof; i++) coeff_vec[i] += solver->get_solution()[i];

    // If the maximum number of iteration has been reached, then quit.
    if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge.");
    
    // Copy coefficients from vector y to elements.
    set_coeff_vector(coeff_vec, space);

    it++;
  }
  
  // Plot the solution.
  Linearizer l(space);
  l.plot_solution("solution.gp");

  // Plot the resulting space.
  space->plot("space.gp");

  info("Done.");
  return 0;
}
예제 #20
0
int main(int argc, char* argv[])
{
  // Choose a Butcher's table or define your own.
  ButcherTable bt(butcher_table_type);
  if (bt.is_explicit()) Hermes::Mixins::Loggable::Static::info("Using a %d-stage explicit R-K method.", bt.get_size());
  if (bt.is_diagonally_implicit()) Hermes::Mixins::Loggable::Static::info("Using a %d-stage diagonally implicit R-K method.", bt.get_size());
  if (bt.is_fully_implicit()) Hermes::Mixins::Loggable::Static::info("Using a %d-stage fully implicit R-K method.", bt.get_size());

  // Turn off adaptive time stepping if R-K method is not embedded.
  if (bt.is_embedded() == false && ADAPTIVE_TIME_STEP_ON == true) {
    Hermes::Mixins::Loggable::Static::warn("R-K method not embedded, turning off adaptive time stepping.");
    ADAPTIVE_TIME_STEP_ON = false;
  }

  // Load the mesh.
  MeshSharedPtr mesh(new Mesh), basemesh(new Mesh);
  MeshReaderH2D mloader;
  mloader.load("square.mesh", basemesh);
  mesh->copy(basemesh);

  // Initial mesh refinements.
  for(int i = 0; i < INIT_REF_NUM; i++) mesh->refine_all_elements();

  // Convert initial condition into a Solution<complex>.
  MeshFunctionSharedPtr<complex> psi_time_prev(new CustomInitialCondition(mesh));

  // Initialize the weak formulation.
  double current_time = 0;

  // Initialize weak formulation.
  CustomWeakFormGPRK wf(h, m, g, omega);

  // Initialize boundary conditions.
  DefaultEssentialBCConst<complex> bc_essential("Bdy", 0.0);
  EssentialBCs<complex> bcs(&bc_essential);

  // Create an H1 space with default shapeset.
  SpaceSharedPtr<complex> space(new H1Space<complex> (mesh, &bcs, P_INIT));
  int ndof = space->get_num_dofs();
  Hermes::Mixins::Loggable::Static::info("ndof = %d", ndof);

  // Initialize the FE problem.
  DiscreteProblem<complex> dp(&wf, space);

  // Create a refinement selector.
  H1ProjBasedSelector<complex> selector(CAND_LIST);

  // Visualize initial condition.
  char title[100];

  ScalarView sview_real("Initial condition - real part", new WinGeom(0, 0, 600, 500));
  ScalarView sview_imag("Initial condition - imaginary part", new WinGeom(610, 0, 600, 500));

  sview_real.show_mesh(false);
  sview_imag.show_mesh(false);
  sview_real.fix_scale_width(50);
  sview_imag.fix_scale_width(50);
  OrderView ord_view("Initial mesh", new WinGeom(445, 0, 440, 350));
  ord_view.fix_scale_width(50);
  ScalarView time_error_view("Temporal error", new WinGeom(0, 400, 440, 350));
  time_error_view.fix_scale_width(50);
  time_error_view.fix_scale_width(60);
  ScalarView space_error_view("Spatial error", new WinGeom(445, 400, 440, 350));
  space_error_view.fix_scale_width(50);
  MeshFunctionSharedPtr<double> real(new RealFilter(psi_time_prev));

  MeshFunctionSharedPtr<double> imag(new ImagFilter(psi_time_prev));

  sview_real.show(real);
  sview_imag.show(imag);
  ord_view.show(space);

  // Graph for time step history.
  SimpleGraph time_step_graph;
  if (ADAPTIVE_TIME_STEP_ON) Hermes::Mixins::Loggable::Static::info("Time step history will be saved to file time_step_history.dat.");

  // Time stepping:
  int num_time_steps = (int)(T_FINAL/time_step + 0.5);
  for(int ts = 1; ts <= num_time_steps; ts++)
    // Time stepping loop.
      double current_time = 0.0; int ts = 1;
  do 
  {
    Hermes::Mixins::Loggable::Static::info("Begin time step %d.", ts);
    // Periodic global derefinement.
    if (ts > 1 && ts % UNREF_FREQ == 0) 
    {
      Hermes::Mixins::Loggable::Static::info("Global mesh derefinement.");
      switch (UNREF_METHOD) {
      case 1: mesh->copy(basemesh);
        space->set_uniform_order(P_INIT);
        break;
      case 2: space->unrefine_all_mesh_elements();
        space->set_uniform_order(P_INIT);
        break;
      case 3: space->unrefine_all_mesh_elements();
        space->adjust_element_order(-1, -1, P_INIT, P_INIT);
        break;
      default: throw Hermes::Exceptions::Exception("Wrong global derefinement method.");
      }

      ndof = Space<complex>::get_num_dofs(space);
    }
    Hermes::Mixins::Loggable::Static::info("ndof: %d", ndof);

    // Spatial adaptivity loop. Note: psi_time_prev must not be 
    // changed during spatial adaptivity. 
    MeshFunctionSharedPtr<complex> ref_sln(new Solution<complex>());
    MeshFunctionSharedPtr<complex> time_error_fn(new Solution<complex>);
    bool done = false;
    int as = 1;
    double err_est;
    do {
      // Construct globally refined reference mesh and setup reference space.
      Mesh::ReferenceMeshCreator refMeshCreator(mesh);
      MeshSharedPtr ref_mesh = refMeshCreator.create_ref_mesh();

      Space<complex>::ReferenceSpaceCreator refSpaceCreator(space, ref_mesh);
      SpaceSharedPtr<complex> ref_space = refSpaceCreator.create_ref_space();

      // Initialize discrete problem on reference mesh.
      DiscreteProblem<complex>* ref_dp = new DiscreteProblem<complex>(&wf, ref_space);

      RungeKutta<complex> runge_kutta(&wf, ref_space, &bt);

      // Runge-Kutta step on the fine mesh->
      Hermes::Mixins::Loggable::Static::info("Runge-Kutta time step on fine mesh (t = %g s, time step = %g s, stages: %d).", 
        current_time, time_step, bt.get_size());
      bool verbose = true;

      try
      {
        runge_kutta.set_time(current_time);
        runge_kutta.set_time_step(time_step);
        runge_kutta.set_max_allowed_iterations(NEWTON_MAX_ITER);
        runge_kutta.set_tolerance(NEWTON_TOL_FINE);
        runge_kutta.rk_time_step_newton(psi_time_prev, ref_sln, time_error_fn);
      }
      catch(Exceptions::Exception& e)
      {
        e.print_msg();
        throw Hermes::Exceptions::Exception("Runge-Kutta time step failed");
      }

      /* If ADAPTIVE_TIME_STEP_ON == true, estimate temporal error. 
      If too large or too small, then adjust it and restart the time step. */

      double rel_err_time = 0;
      if (bt.is_embedded() == true) {
        Hermes::Mixins::Loggable::Static::info("Calculating temporal error estimate.");

        // Show temporal error.
        char title[100];
        sprintf(title, "Temporal error est, spatial adaptivity step %d", as);     
        time_error_view.set_title(title);
        time_error_view.show_mesh(false);
        MeshFunctionSharedPtr<double> abs_time(new RealFilter(time_error_fn));

        MeshFunctionSharedPtr<double> abs_tef(new AbsFilter(abs_time));

        time_error_view.show(abs_tef);

        rel_err_time = Global<complex>::calc_norm(time_error_fn.get(), HERMES_H1_NORM) / 
          Global<complex>::calc_norm(ref_sln.get(), HERMES_H1_NORM) * 100;
        if (ADAPTIVE_TIME_STEP_ON == false) Hermes::Mixins::Loggable::Static::info("rel_err_time: %g%%", rel_err_time);
      }

      if (ADAPTIVE_TIME_STEP_ON) {
        if (rel_err_time > TIME_ERR_TOL_UPPER) {
          Hermes::Mixins::Loggable::Static::info("rel_err_time %g%% is above upper limit %g%%", rel_err_time, TIME_ERR_TOL_UPPER);
          Hermes::Mixins::Loggable::Static::info("Decreasing time step from %g to %g s and restarting time step.", 
            time_step, time_step * TIME_STEP_DEC_RATIO);
          time_step *= TIME_STEP_DEC_RATIO;

          delete ref_dp;
          continue;
        }
        else if (rel_err_time < TIME_ERR_TOL_LOWER) {
          Hermes::Mixins::Loggable::Static::info("rel_err_time = %g%% is below lower limit %g%%", rel_err_time, TIME_ERR_TOL_LOWER);
          Hermes::Mixins::Loggable::Static::info("Increasing time step from %g to %g s.", time_step, time_step * TIME_STEP_INC_RATIO);
          time_step *= TIME_STEP_INC_RATIO;

          delete ref_dp;
          continue;
        }
        else {
          Hermes::Mixins::Loggable::Static::info("rel_err_time = %g%% is in acceptable interval (%g%%, %g%%)", 
            rel_err_time, TIME_ERR_TOL_LOWER, TIME_ERR_TOL_UPPER);
        }

        // Add entry to time step history graph.
        time_step_graph.add_values(current_time, time_step);
        time_step_graph.save("time_step_history.dat");
      }

      /* Estimate spatial errors and perform mesh refinement */

      Hermes::Mixins::Loggable::Static::info("Spatial adaptivity step %d.", as);

      // Project the fine mesh solution onto the coarse mesh.
      MeshFunctionSharedPtr<complex> sln(new Solution<complex>);
      Hermes::Mixins::Loggable::Static::info("Projecting fine mesh solution on coarse mesh for error estimation.");
      OGProjection<complex> ogProjection; ogProjection.project_global(space, ref_sln, sln); 

      // Show spatial error.
      sprintf(title, "Spatial error est, spatial adaptivity step %d", as);  
      MeshFunctionSharedPtr<complex> space_error_fn(new DiffFilter<complex>(Hermes::vector<MeshFunctionSharedPtr<complex> >(ref_sln, sln)));

      space_error_view.set_title(title);
      space_error_view.show_mesh(false);

      MeshFunctionSharedPtr<double> abs_space(new RealFilter(space_error_fn));
      MeshFunctionSharedPtr<double> abs_sef(new AbsFilter(abs_space));

      space_error_view.show(abs_sef);

      // Calculate element errors and spatial error estimate.
      Hermes::Mixins::Loggable::Static::info("Calculating spatial error estimate.");
      Adapt<complex> adaptivity(space);
      double err_rel_space = errorCalculator.get_total_error_squared() * 100;

      // Report results.
      Hermes::Mixins::Loggable::Static::info("ndof: %d, ref_ndof: %d, err_rel_space: %g%%", 
        Space<complex>::get_num_dofs(space), Space<complex>::get_num_dofs(ref_space), err_rel_space);

      // If err_est too large, adapt the mesh.
      if (err_rel_space < SPACE_ERR_TOL) done = true;
      else 
      {
        Hermes::Mixins::Loggable::Static::info("Adapting the coarse mesh.");
        done = adaptivity.adapt(&selector);

        // Increase the counter of performed adaptivity steps.
        as++;
      }

      // Clean up.
      
      delete ref_dp;
    }
    while (done == false);

    // Visualize the solution and mesh->
    char title[100];
    sprintf(title, "Solution - real part, Time %3.2f s", current_time);
    sview_real.set_title(title);
    sprintf(title, "Solution - imaginary part, Time %3.2f s", current_time);
    sview_imag.set_title(title);
    MeshFunctionSharedPtr<double> real(new RealFilter(ref_sln));
    MeshFunctionSharedPtr<double> imag(new ImagFilter(ref_sln));
    sview_real.show(real);
    sview_imag.show(imag);
    sprintf(title, "Mesh, time %g s", current_time);
    ord_view.set_title(title);
    ord_view.show(space);

    // Copy last reference solution into psi_time_prev.
    psi_time_prev->copy(ref_sln);

    // Increase current time and counter of time steps.
    current_time += time_step;
    ts++;
  }
  while (current_time < T_FINAL);

  // Wait for all views to be closed.
  View::wait();
  return 0;
}
예제 #21
0
int main(int argc, char* argv[])
{
  // Instantiate a class with global functions.
  Hermes2D hermes2d;

  // Load the mesh.
  Mesh mesh;
  H2DReader mloader;
  mloader.load("domain.mesh", &mesh);

  // Perform initial mesh refinements (optional).
  for (int i = 0; i < INIT_REF_NUM; i++) mesh.refine_all_elements();

  // Initialize the weak formulation.
  CustomWeakFormPoissonNeumann wf("Aluminum", LAMBDA_AL, "Copper", LAMBDA_CU, VOLUME_HEAT_SRC,
                                  "Outer", HEAT_FLUX);
  
  // Initialize boundary conditions.
  CustomDirichletCondition bc_essential(Hermes::vector<std::string>("Bottom", "Inner", "Left"),
                                        BDY_A_PARAM, BDY_B_PARAM, BDY_C_PARAM);
  EssentialBCs bcs(&bc_essential);

  // Create an H1 space with default shapeset.
  H1Space space(&mesh, &bcs, P_INIT);
  int ndof = space.get_num_dofs();
  info("ndof = %d", ndof);

  // Initialize the FE problem.
  DiscreteProblem dp(&wf, &space);

  // Set up the solver, matrix, and rhs according to the solver selection.
  SparseMatrix* matrix = create_matrix(matrix_solver);
  Vector* rhs = create_vector(matrix_solver);
  Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

  // Initial coefficient vector for the Newton's method.  
  scalar* coeff_vec = new scalar[ndof];
  memset(coeff_vec, 0, ndof*sizeof(scalar));

  // Perform Newton's iteration.
  if (!hermes2d.solve_newton(coeff_vec, &dp, solver, matrix, rhs)) error("Newton's iteration failed.");

  // Translate the resulting coefficient vector into the Solution sln.
  Solution sln;
  Solution::vector_to_solution(coeff_vec, &space, &sln);

  // VTK output.
  if (VTK_VISUALIZATION) {
    // Output solution in VTK format.
    Linearizer lin;
    bool mode_3D = true;
    lin.save_solution_vtk(&sln, "sln.vtk", "Temperature", mode_3D);
    info("Solution in VTK format saved to file %s.", "sln.vtk");

    // Output mesh and element orders in VTK format.
    Orderizer ord;
    ord.save_orders_vtk(&space, "ord.vtk");
    info("Element orders in VTK format saved to file %s.", "ord.vtk");
  }

  // Visualize the solution.
  if (HERMES_VISUALIZATION) {
    ScalarView view("Solution", new WinGeom(0, 0, 440, 350));
    view.show(&sln, HERMES_EPS_HIGH);
    View::wait();
  }

  // Clean up.
  delete solver;
  delete matrix;
  delete rhs;
  delete [] coeff_vec;

  return 0;
}
예제 #22
0
int main(int argc, char* argv[])
{
  // Time measurement.
  Hermes::Mixins::TimeMeasurable cpu_time;
  cpu_time.tick();

  // Load the mesh.
  Mesh mesh;
  MeshReaderH2D mloader;
  mloader.load("domain.mesh", &mesh);

  // Perform initial mesh refinemets.
  for (int i=0; i < INIT_REF_NUM; i++)  mesh.refine_all_elements();

  // Initialize boundary conditions.
  DefaultEssentialBCConst<double> left_t("Left", 1.0);
  EssentialBCs<double> bcs_t(&left_t);

  DefaultEssentialBCConst<double> left_c("Left", 0.0);
  EssentialBCs<double> bcs_c(&left_c);

  // Create H1 spaces with default shapesets.
  H1Space<double>* t_space = new H1Space<double>(&mesh, &bcs_t, P_INIT);
  H1Space<double>* c_space = new H1Space<double>(&mesh, &bcs_c, P_INIT);
  int ndof = Space<double>::get_num_dofs(Hermes::vector<const Space<double>*>(t_space, c_space));
  Hermes::Mixins::Loggable::Static::info("ndof = %d.", ndof);

  // Define initial conditions.
  InitialSolutionTemperature t_prev_time_1(&mesh, x1);
  InitialSolutionConcentration c_prev_time_1(&mesh, x1, Le);
  InitialSolutionTemperature t_prev_time_2(&mesh, x1);
  InitialSolutionConcentration c_prev_time_2(&mesh, x1, Le);
  Solution<double> t_prev_newton;
  Solution<double> c_prev_newton;

  // Filters for the reaction rate omega and its derivatives.
  CustomFilter omega(Hermes::vector<Solution<double>*>(&t_prev_time_1, &c_prev_time_1), Le, alpha, beta, kappa, x1, TAU);
  CustomFilterDt omega_dt(Hermes::vector<Solution<double>*>(&t_prev_time_1, &c_prev_time_1), Le, alpha, beta, kappa, x1, TAU);
  CustomFilterDc omega_dc(Hermes::vector<Solution<double>*>(&t_prev_time_1, &c_prev_time_1), Le, alpha, beta, kappa, x1, TAU);

  // Initialize visualization.
  ScalarView rview("Reaction rate", new WinGeom(0, 0, 800, 230));

  // Initialize weak formulation.
  CustomWeakForm wf(Le, alpha, beta, kappa, x1, TAU, TRILINOS_JFNK, PRECOND, &omega, &omega_dt, 
                    &omega_dc, &t_prev_time_1, &c_prev_time_1, &t_prev_time_2, &c_prev_time_2);

  // Project the functions "t_prev_time_1" and "c_prev_time_1" on the FE space 
  // in order to obtain initial vector for NOX. 
  Hermes::Mixins::Loggable::Static::info("Projecting initial solutions on the FE meshes.");
  double* coeff_vec = new double[ndof];
  OGProjection<double> ogProjection; ogProjection.project_global(Hermes::vector<const Space<double> *>(t_space, c_space), 
                                       Hermes::vector<MeshFunction<double>*>(&t_prev_time_1, &c_prev_time_1),
                                       coeff_vec);

  // Measure the projection time.
  double proj_time = cpu_time.tick().last();

  // Initialize finite element problem.
  DiscreteProblem<double> dp(&wf, Hermes::vector<const Space<double>*>(t_space, c_space));

  // Initialize NOX solver and preconditioner.
  NewtonSolverNOX<double> solver(&dp);
  MlPrecond<double> pc("sa");
  if (PRECOND)
  {
    if (TRILINOS_JFNK) 
      solver.set_precond(pc);
    else 
      solver.set_precond("New Ifpack");
  }
  if (TRILINOS_OUTPUT)
    solver.set_output_flags(NOX::Utils::Error | NOX::Utils::OuterIteration |
                            NOX::Utils::OuterIterationStatusTest |
                            NOX::Utils::LinearSolverDetails);

  // Time stepping loop:
  double total_time = 0.0;
  cpu_time.tick_reset();
  for (int ts = 1; total_time <= T_FINAL; ts++)
  {
    Hermes::Mixins::Loggable::Static::info("---- Time step %d, t = %g s", ts, total_time + TAU);

    cpu_time.tick();
    try
    {
      solver.solve(coeff_vec);
    }
    catch(std::exception& e)
    {
      std::cout << e.what();
      
    }

    Solution<double>::vector_to_solutions(solver.get_sln_vector(), Hermes::vector<const Space<double> *>(t_space, c_space), 
              Hermes::vector<Solution<double> *>(&t_prev_newton, &c_prev_newton));

    cpu_time.tick();
    Hermes::Mixins::Loggable::Static::info("Number of nonlin iterations: %d (norm of residual: %g)",
        solver.get_num_iters(), solver.get_residual());
    Hermes::Mixins::Loggable::Static::info("Total number of iterations in linsolver: %d (achieved tolerance in the last step: %g)",
        solver.get_num_lin_iters(), solver.get_achieved_tol());

    // Time measurement.
    cpu_time.tick();
			
    // Skip visualization time.
    cpu_time.tick();

    // Update global time.
    total_time += TAU;

    // Saving solutions for the next time step.
    if(ts > 1)
    {
      t_prev_time_2.copy(&t_prev_time_1);
      c_prev_time_2.copy(&c_prev_time_1);
    }

    t_prev_time_1.copy(&t_prev_newton);
    c_prev_time_1.copy(&c_prev_newton);
      
    // Visualization.
    rview.set_min_max_range(0.0,2.0);
    rview.show(&omega);
    cpu_time.tick();

    Hermes::Mixins::Loggable::Static::info("Total running time for time level %d: %g s.", ts, cpu_time.tick().last());
  }

  // Wait for all views to be closed.
  View::wait();
  return 0;
}
예제 #23
0
int main(int argc, char* argv[])
{
    // Load the mesh.
  Mesh mesh;
  MeshReaderH2D mloader;
  mloader.load("domain.mesh", &mesh);

  // Perform uniform mesh refinement.
  // 2 is for vertical split.
  for(int i = 0; i < INIT_REF_NUM; i++) mesh.refine_all_elements(2); 

  // Initialize boundary conditions
  DefaultEssentialBCConst<double> bc1("Bdy_perfect", 0.0);
  EssentialBCNonConst bc2("Bdy_left");
  DefaultEssentialBCConst<double> bc3("Bdy_left", 0.0);
  EssentialBCs<double> bcs(Hermes::vector<EssentialBoundaryCondition<double> *>(&bc1, &bc2));
  EssentialBCs<double> bcs_im(Hermes::vector<EssentialBoundaryCondition<double> *>(&bc1, &bc3));

  // Create an H1 space with default shapeset.
  H1Space<double> e_r_space(&mesh, &bcs, P_INIT);
  H1Space<double> e_i_space(&mesh, &bcs_im, P_INIT);
  int ndof = Space<double>::get_num_dofs(&e_r_space);
  info("ndof = %d", ndof);

  // Initialize the weak formulation.
  WeakFormHelmholtz wf(eps, mu, omega, sigma, beta, E0, h);

  // Initialize the FE problem.
  DiscreteProblem<double> dp(&wf, Hermes::vector<const Space<double>*>(&e_r_space, &e_i_space));

  // Initialize the solutions.
  Solution<double> e_r_sln, e_i_sln;

  // Initial coefficient vector for the Newton's method.  
  ndof = Space<double>::get_num_dofs(Hermes::vector<const Space<double>*>(&e_r_space, &e_i_space));

  Hermes::Hermes2D::NewtonSolver<double> newton(&dp, matrix_solver);
  try
  {
    newton.solve(NULL, NEWTON_TOL, NEWTON_MAX_ITER);
  }
  catch(Hermes::Exceptions::Exception e)
  {
    e.printMsg();
    error("Newton's iteration failed.");
  };

  // Translate the resulting coefficient vector into Solutions.
  Solution<double>::vector_to_solutions(newton.get_sln_vector(), Hermes::vector<const Space<double>*>(&e_r_space, &e_i_space), 
      Hermes::vector<Solution<double>*>(&e_r_sln, &e_i_sln));

  // Visualize the solution.
  ScalarView viewEr("Er [V/m]", new WinGeom(0, 0, 800, 400));
  viewEr.show(&e_r_sln);
  // viewEr.save_screenshot("real_part.bmp");

  ScalarView viewEi("Ei [V/m]", new WinGeom(0, 450, 800, 400));
  viewEi.show(&e_i_sln);
  // viewEi.save_screenshot("imaginary_part.bmp");

  // Wait for the view to be closed.
  View::wait();

  return 0;
}
예제 #24
0
파일: main.cpp 프로젝트: alieed/hermes
int main() 
{
  // Create space.
  // Transform input data to the format used by the "Space" constructor.
  SpaceData *md = new SpaceData();		
  Space* space = new Space(md->N_macroel, md->interfaces, md->poly_orders, md->material_markers, md->subdivisions, N_GRP, N_SLN);  
  delete md;
  
  // Enumerate basis functions, info for user.
  int ndof = Space::get_num_dofs(space);
  info("ndof: %d", ndof);

  // Plot the space.
  space->plot("space.gp");

  for (int g = 0; g < N_GRP; g++)  
  {
    space->set_bc_left_dirichlet(g, flux_left_surf[g]);
    space->set_bc_right_dirichlet(g, flux_right_surf[g]);
  }
  
  // Initialize the weak formulation.
  WeakForm wf(2);
  wf.add_matrix_form(0, 0, jacobian_mat1_0_0, NULL, mat1);
  wf.add_matrix_form(0, 0, jacobian_mat2_0_0, NULL, mat2);
  wf.add_matrix_form(0, 0, jacobian_mat3_0_0, NULL, mat3);
  
  wf.add_matrix_form(0, 1, jacobian_mat1_0_1, NULL, mat1);
  wf.add_matrix_form(0, 1, jacobian_mat2_0_1, NULL, mat2);
  wf.add_matrix_form(0, 1, jacobian_mat3_0_1, NULL, mat3);
  
  wf.add_matrix_form(1, 0, jacobian_mat1_1_0, NULL, mat1);    
  wf.add_matrix_form(1, 0, jacobian_mat2_1_0, NULL, mat2);
  wf.add_matrix_form(1, 0, jacobian_mat3_1_0, NULL, mat3);
    
  wf.add_matrix_form(1, 1, jacobian_mat1_1_1, NULL, mat1);
  wf.add_matrix_form(1, 1, jacobian_mat2_1_1, NULL, mat2);
  wf.add_matrix_form(1, 1, jacobian_mat3_1_1, NULL, mat3);
  
  wf.add_vector_form(0, residual_mat1_0, NULL, mat1);  
  wf.add_vector_form(0, residual_mat2_0, NULL, mat2);  
  wf.add_vector_form(0, residual_mat3_0, NULL, mat3);
	    
  wf.add_vector_form(1, residual_mat1_1, NULL, mat1);
  wf.add_vector_form(1, residual_mat2_1, NULL, mat2); 
  wf.add_vector_form(1, residual_mat3_1, NULL, mat3);  

  // Initialize the FE problem.
  bool is_linear = false;
  DiscreteProblem *dp = new DiscreteProblem(&wf, space, is_linear);
  
  // Newton's loop.
  // Fill vector coeff_vec using dof and coeffs arrays in elements.
  double *coeff_vec = new double[Space::get_num_dofs(space)];
  get_coeff_vector(space, coeff_vec);

  // Set up the solver, matrix, and rhs according to the solver selection.
  SparseMatrix* matrix = create_matrix(matrix_solver);
  Vector* rhs = create_vector(matrix_solver);
  Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

  int it = 1;
  while (1) 
  {
    // Obtain the number of degrees of freedom.
    int ndof = Space::get_num_dofs(space);

    // Assemble the Jacobian matrix and residual vector.
    dp->assemble(coeff_vec, matrix, rhs);

    // Calculate the l2-norm of residual vector.
    double res_l2_norm = get_l2_norm(rhs);

    // Info for user.
    info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(space), res_l2_norm);

    // If l2 norm of the residual vector is within tolerance, then quit.
    // NOTE: at least one full iteration forced
    //       here because sometimes the initial
    //       residual on fine mesh is too small.
    if(res_l2_norm < NEWTON_TOL && it > 1) break;

    // Multiply the residual vector with -1 since the matrix 
    // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n).
    for(int i=0; i<ndof; i++) rhs->set(i, -rhs->get(i));

    // Solve the linear system.
    if(!solver->solve())
      error ("Matrix solver failed.\n");

    // Add \deltaY^{n+1} to Y^n.
    for (int i = 0; i < ndof; i++) coeff_vec[i] += solver->get_solution()[i];

    // If the maximum number of iteration has been reached, then quit.
    if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge.");
    
    // Copy coefficients from vector y to elements.
    set_coeff_vector(coeff_vec, space);

    it++;
  }
  
  // Plot the solution.
  Linearizer l(space);
  l.plot_solution("solution.gp");
	
  info("Done.");
  return 0;
}
예제 #25
0
int main(int argc, char* argv[])
{
  // Instantiate a class with global functions.
  Hermes2D hermes2d;

  // Load the mesh.
  Mesh mesh;
  H2DReader mloader;
  mloader.load("../domain.mesh", &mesh);

  // Perform initial mesh refinements (optional).
  for (int i = 0; i < INIT_REF_NUM; i++) mesh.refine_all_elements();

  // Initialize the weak formulation.
  CustomWeakFormPoissonDirichlet wf("Aluminum", LAMBDA_AL, "Copper", 
                                    LAMBDA_CU, VOLUME_HEAT_SRC);
  
  // Initialize boundary conditions.
  CustomDirichletCondition bc_essential(Hermes::vector<std::string>("Bottom", "Inner", "Outer", "Left"),
                                        BDY_A_PARAM, BDY_B_PARAM, BDY_C_PARAM);
  EssentialBCs bcs(&bc_essential);

  // Create an H1 space with default shapeset.
  H1Space space(&mesh, &bcs, P_INIT);
  int ndof = space.get_num_dofs();
  info("ndof = %d", ndof);

  // Initialize the FE problem.
  DiscreteProblem dp(&wf, &space);

  // Set up the solver, matrix, and rhs according to the solver selection.
  SparseMatrix* matrix = create_matrix(matrix_solver);
  Vector* rhs = create_vector(matrix_solver);
  Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

  // Initial coefficient vector for the Newton's method.  
  scalar* coeff_vec = new scalar[ndof];
  memset(coeff_vec, 0, ndof*sizeof(scalar));

  // Perform Newton's iteration.
  if (!hermes2d.solve_newton(coeff_vec, &dp, solver, matrix, rhs)) error("Newton's iteration failed.");

  // Translate the resulting coefficient vector into the Solution sln.
  Solution sln;
  Solution::vector_to_solution(coeff_vec, &space, &sln);

  // VTK output.
  if (VTK_VISUALIZATION) {
    // Output solution in VTK format.
    Linearizer lin;
    bool mode_3D = true;
    lin.save_solution_vtk(&sln, "sln.vtk", "Temperature", mode_3D);
    info("Solution in VTK format saved to file %s.", "sln.vtk");

    // Output mesh and element orders in VTK format.
    Orderizer ord;
    ord.save_orders_vtk(&space, "ord.vtk");
    info("Element orders in VTK format saved to file %s.", "ord.vtk");
  }

  ndof = Space::get_num_dofs(&space);
  printf("ndof = %d\n", ndof);
  double sum = 0;
  for (int i=0; i < ndof; i++) sum += coeff_vec[i];
  printf("coefficient sum = %g\n", sum);

  bool success = true;
  if (fabs(sum + 4.2471) > 1e-3) success = 0;

  if (success == 1) {
    printf("Success!\n");
    return ERR_SUCCESS;
  }
  else {
    printf("Failure!\n");
    return ERR_FAILURE;
  }

}
예제 #26
0
파일: main.cpp 프로젝트: panek50/hermes-dev
int main(int argc, char* argv[])
{
  // Load the mesh.
  Hermes::Hermes2D::Mesh mesh;
  Hermes::Hermes2D::MeshReaderH2D mloader;
  mloader.load("domain.mesh", &mesh);

  // Perform initial mesh refinements (optional).
  for (int i=0; i < INIT_REF_NUM; i++) 
    mesh.refine_all_elements();

  // Initialize the weak formulation.
  CustomWeakFormPoissonNewton wf("Aluminum", new Hermes::Hermes1DFunction<double>(LAMBDA_AL), 
    "Copper", new Hermes::Hermes1DFunction<double>(LAMBDA_CU), 
    new Hermes::Hermes2DFunction<double>(-VOLUME_HEAT_SRC),
    "Outer", ALPHA, T_EXTERIOR);

  // Initialize boundary conditions.
  CustomDirichletCondition bc_essential(Hermes::vector<std::string>("Bottom", "Inner", "Left"),
    BDY_A_PARAM, BDY_B_PARAM, BDY_C_PARAM);
  Hermes::Hermes2D::EssentialBCs<double> bcs(&bc_essential);

  // Create an H1 space with default shapeset.
  Hermes::Hermes2D::H1Space<double> space(&mesh, &bcs, P_INIT);
  int ndof = space.get_num_dofs();
  info("ndof = %d", ndof);

  // Initialize the FE problem.
  Hermes::Hermes2D::DiscreteProblem<double> dp(&wf, &space);

  // Initial coefficient vector for the Newton's method.  
  double* coeff_vec = new double[ndof];
  memset(coeff_vec, 0, ndof*sizeof(double));

  // Initialize the Newton solver.
  Hermes::Hermes2D::NewtonSolver<double> newton(&dp, matrix_solver_type);

  // Perform Newton's iteration and translate the resulting coefficient vector into a Solution.
  Hermes::Hermes2D::Solution<double> sln;
  if (!newton.solve(coeff_vec)) 
    error("Newton's iteration failed.");
  else
    Hermes::Hermes2D::Solution<double>::vector_to_solution(newton.get_sln_vector(), &space, &sln);

  // VTK output.
  if (VTK_VISUALIZATION) {
    // Output solution in VTK format.
    Hermes::Hermes2D::Views::Linearizer lin(&sln);
    bool mode_3D = true;
    lin.save_solution_vtk("sln.vtk", "Temperature", mode_3D);
    info("Solution in VTK format saved to file %s.", "sln.vtk");

    // Output mesh and element orders in VTK format.
    Hermes::Hermes2D::Views::Orderizer ord;
    ord.save_orders_vtk(&space, "ord.vtk");
    info("Element orders in VTK format saved to file %s.", "ord.vtk");
  }

  // Visualize the solution.
  if (HERMES_VISUALIZATION) {
    Hermes::Hermes2D::Views::ScalarView view("Solution", new Hermes::Hermes2D::Views::WinGeom(0, 0, 440, 350));
    view.show(&sln, Hermes::Hermes2D::Views::HERMES_EPS_VERYHIGH);
    Hermes::Hermes2D::Views::View::wait();
  }

  // Clean up.
  delete [] coeff_vec;

  return 0;
}
예제 #27
0
int main(int argc, char* argv[])
{
  // Load the mesh.
  MeshSharedPtr mesh(new Mesh), mesh1(new Mesh);
  if (USE_XML_FORMAT == true)
  {
    MeshReaderH2DXML mloader;  
    Hermes::Mixins::Loggable::Static::info("Reading mesh in XML format.");
    mloader.load("domain.xml", mesh);
  }
  else 
  {
    MeshReaderH2D mloader;
    Hermes::Mixins::Loggable::Static::info("Reading mesh in original format.");
    mloader.load("domain.mesh", mesh);
  }

  // Perform uniform mesh refinement.
  mesh->refine_all_elements();

  // Show mesh.
  MeshView mv("Mesh", new WinGeom(0, 0, 580, 400));
  mv.show(mesh);

  // Initialize boundary conditions.
  DefaultEssentialBCConst<double> zero_disp("Bottom", 0.0);
  EssentialBCs<double> bcs(&zero_disp);

  // Create x- and y- displacement space using the default H1 shapeset.
  SpaceSharedPtr<double> u1_space(new H1Space<double>(mesh, &bcs, P_INIT));
  SpaceSharedPtr<double> u2_space(new H1Space<double>(mesh, &bcs, P_INIT));
  Hermes::vector<SpaceSharedPtr<double> > spaces(u1_space, u2_space);
  int ndof = Space<double>::get_num_dofs(spaces);
  Hermes::Mixins::Loggable::Static::info("ndof = %d", ndof);

  // Initialize the weak formulation.
  CustomWeakFormLinearElasticity wf(E, nu, rho*g1, "Top", f0, f1);

  // Initialize the FE problem.
  DiscreteProblem<double> dp(&wf, spaces);

  // Initialize Newton solver.
  NewtonSolver<double> newton(&dp);
  newton.set_verbose_output(true);

  // Perform Newton's iteration.
  try
  {
    newton.solve();
  }
  catch(std::exception& e)
  {
    std::cout << e.what();
    
  }

  // Translate the resulting coefficient vector into the Solution sln.
  MeshFunctionSharedPtr<double> u1_sln(new Solution<double>), u2_sln(new Solution<double>);
  Solution<double>::vector_to_solutions(newton.get_sln_vector(), spaces, Hermes::vector<MeshFunctionSharedPtr<double> >(u1_sln, u2_sln));
  
  // Visualize the solution.
  ScalarView view("Von Mises stress [Pa]", new WinGeom(590, 0, 700, 400));
  // First Lame constant.
  double lambda = (E * nu) / ((1 + nu) * (1 - 2*nu));  
  // Second Lame constant.
  double mu = E / (2*(1 + nu));                        
  MeshFunctionSharedPtr<double> stress(new VonMisesFilter(Hermes::vector<MeshFunctionSharedPtr<double> >(u1_sln, u2_sln), lambda, mu));
  view.show_mesh(false);
  view.show(stress, HERMES_EPS_HIGH, H2D_FN_VAL_0, u1_sln, u2_sln, 1.5e5);

  // Wait for the view to be closed.
  View::wait();

  return 0;
}
예제 #28
0
int main(int argc, char* argv[])
{
  // load the mesh
  Mesh mesh;
  H2DReader mloader;
  if (ALIGN_MESH) mloader.load("oven_load_circle.mesh", &mesh);
  else mloader.load("oven_load_square.mesh", &mesh);

  //mesh.refine_all_elements();

  // initialize the shapeset and the cache
  HcurlShapeset shapeset;
  PrecalcShapeset pss(&shapeset);

  // create finite element space
  HcurlSpace space(&mesh, &shapeset);
  space.set_bc_types(e_bc_types);
  space.set_uniform_order(P_INIT);

  // enumerate basis functions
  space.assign_dofs();

  // initialize the weak formulation
  WeakForm wf(1);
  wf.add_biform(0, 0, callback(bilinear_form));
  wf.add_liform_surf(0, callback(linear_form_surf));

  // visualize solution and mesh
  VectorView eview("Electric field",0,0,800, 590);
  OrderView ord("Order", 800, 0, 700, 590);

  /*
  // view the basis functions
  VectorBaseView bview;
  vbview.show(&space);
  vbview.wait_for_keypress();
  */

  // matrix solver
  UmfpackSolver solver;

  // DOF and CPU convergence graphs
  SimpleGraph graph_dof_est, graph_cpu_est;

  // adaptivity loop
  int it = 1, ndofs;
  bool done = false;
  double cpu = 0.0;
  Solution sln_coarse, sln_fine;
  do
  {
    info("\n---- Adaptivity step %d ---------------------------------------------\n", it++);

    // time measurement
    begin_time();

    // coarse problem
    LinSystem sys(&wf, &solver);
    sys.set_spaces(1, &space);
    sys.set_pss(1, &pss);
    sys.assemble();
    sys.solve(1, &sln_coarse);

    // time measurement
    cpu += end_time();

    // show real part of the solution
    AbsFilter abs(&sln_coarse);
    eview.set_min_max_range(0, 4e3);
    eview.show(&abs);
    ord.show(&space);

    // time measurement
    begin_time();

    // solve the fine mesh problem
    RefSystem ref(&sys);
    ref.assemble();
    ref.solve(1, &sln_fine);

    // calculate error estimate wrt. fine mesh solution
    HcurlOrthoHP hp(1, &space);
    hp.set_biform(0, 0, callback(hcurl_form_kappa));
    double err_est_adapt = hp.calc_error(&sln_coarse, &sln_fine) * 100;
    double err_est_hcurl = hcurl_error(&sln_coarse, &sln_fine) * 100;
    info("Error estimate (adapt): %g%%", err_est_adapt);
    info("Error estimate (hcurl): %g%%", err_est_hcurl);

    // add entries to DOF convergence graphs
    graph_dof_est.add_values(space.get_num_dofs(), err_est_hcurl);
    graph_dof_est.save("conv_dof_est.dat");

    // add entries to CPU convergence graphs
    graph_cpu_est.add_values(cpu, err_est_hcurl);
    graph_cpu_est.save("conv_cpu_est.dat");

    // if err_est_adapt too large, adapt the mesh
    if (err_est_adapt < ERR_STOP) done = true;
    else {
      hp.adapt(THRESHOLD, STRATEGY, ADAPT_TYPE, ISO_ONLY, MESH_REGULARITY);
      ndofs = space.assign_dofs();
      if (ndofs >= NDOF_STOP) done = true;
    }

    // time measurement
    cpu += end_time();
  }
  while (done == false);
  verbose("Total running time: %g sec", cpu);

  // wait for keyboard or mouse input
  View::wait("Waiting for all views to be closed.");
  return 0;
}
예제 #29
0
int main(int argc, char* argv[])
{
  // Time measurement.
  Hermes::Mixins::TimeMeasurable cpu_time;
  cpu_time.tick();

  // Load the mesh.
  MeshSharedPtr u_mesh(new Mesh), v_mesh(new Mesh);
  MeshReaderH2D mloader;
  mloader.load("domain.mesh", u_mesh);
  if (MULTI == false) u_mesh->refine_towards_boundary("Bdy", INIT_REF_BDY);

  // Create initial mesh (master mesh).
  v_mesh->copy(u_mesh);

  // Initial mesh refinements in the v_mesh towards the boundary.
  if (MULTI == true) v_mesh->refine_towards_boundary("Bdy", INIT_REF_BDY);

  // Set exact solutions.
  MeshFunctionSharedPtr<double> exact_u(new ExactSolutionFitzHughNagumo1(u_mesh));
  MeshFunctionSharedPtr<double> exact_v(new ExactSolutionFitzHughNagumo2(v_mesh, K));

  // Define right-hand sides.
  CustomRightHandSide1 g1(K, D_u, SIGMA);
  CustomRightHandSide2 g2(K, D_v);

  // Initialize the weak formulation.
  CustomWeakForm wf(&g1, &g2);
  
  // Initialize boundary conditions
  DefaultEssentialBCConst<double> bc_u("Bdy", 0.0);
  EssentialBCs<double> bcs_u(&bc_u);
  DefaultEssentialBCConst<double> bc_v("Bdy", 0.0);
  EssentialBCs<double> bcs_v(&bc_v);

  // Create H1 spaces with default shapeset for both displacement components.
  SpaceSharedPtr<double> u_space(new H1Space<double>(u_mesh, &bcs_u, P_INIT_U));
  SpaceSharedPtr<double> v_space(new H1Space<double>(MULTI ? v_mesh : u_mesh, &bcs_v, P_INIT_V));
  Hermes::vector<SpaceSharedPtr<double> > spaces(u_space, v_space);
  // Set the spaces to adaptivity.
  adaptivity.set_spaces(spaces);

  // Initialize coarse and reference mesh solutions.
  MeshFunctionSharedPtr<double>  u_sln(new Solution<double>), v_sln(new Solution<double>),
    u_ref_sln(new Solution<double>), v_ref_sln(new Solution<double>);

  // Initialize refinement selector.
  H1ProjBasedSelector<double> selector(CAND_LIST, H2DRS_DEFAULT_ORDER);

  // Initialize views.
  Views::ScalarView s_view_0("Solution[0]", new Views::WinGeom(0, 0, 440, 350));
  s_view_0.show_mesh(false);
  Views::OrderView  o_view_0("Mesh[0]", new Views::WinGeom(450, 0, 420, 350));
  Views::ScalarView s_view_1("Solution[1]", new Views::WinGeom(880, 0, 440, 350));
  s_view_1.show_mesh(false);
  Views::OrderView o_view_1("Mesh[1]", new Views::WinGeom(1330, 0, 420, 350));

  // DOF and CPU convergence graphs.
  SimpleGraph graph_dof_est, graph_cpu_est; 
  SimpleGraph graph_dof_exact, graph_cpu_exact;

  // Newton
  NewtonSolver<double> newton(&wf, spaces);
  newton.set_tolerance(1e-1, Hermes::Solvers::ResidualNormAbsolute);
    
  // Adaptivity loop:
  int as = 1; 
  bool done = false;
  do
  {
    Hermes::Mixins::Loggable::Static::info("---- Adaptivity step %d:", as);

    // Construct globally refined reference mesh and setup reference space.
    Mesh::ReferenceMeshCreator u_ref_mesh_creator(u_mesh);
    MeshSharedPtr u_ref_mesh = u_ref_mesh_creator.create_ref_mesh();
    Mesh::ReferenceMeshCreator v_ref_mesh_creator(v_mesh);
    MeshSharedPtr v_ref_mesh = v_ref_mesh_creator.create_ref_mesh();
    Space<double>::ReferenceSpaceCreator u_ref_space_creator(u_space, u_ref_mesh);
    SpaceSharedPtr<double> u_ref_space = u_ref_space_creator.create_ref_space();
    Space<double>::ReferenceSpaceCreator v_ref_space_creator(v_space, v_ref_mesh);
    SpaceSharedPtr<double> v_ref_space = v_ref_space_creator.create_ref_space();

    Hermes::vector<SpaceSharedPtr<double> > ref_spaces(u_ref_space, v_ref_space);

    int ndof_ref = Space<double>::get_num_dofs(ref_spaces);

    // Initialize reference problem.
    Hermes::Mixins::Loggable::Static::info("Solving on reference mesh.");
    
    // Time measurement.
    cpu_time.tick();
    
    // Perform Newton's iteration.
    try
    {
      newton.set_spaces(ref_spaces);
      newton.solve();
    }
    catch(std::exception& e)
    {
      std::cout << e.what();
    }

    // Translate the resulting coefficient vector into the instance of Solution.
    Solution<double>::vector_to_solutions(newton.get_sln_vector(), ref_spaces, Hermes::vector<MeshFunctionSharedPtr<double> >(u_ref_sln, v_ref_sln));

    // Project the fine mesh solution onto the coarse mesh.
    Hermes::Mixins::Loggable::Static::info("Projecting reference solution on coarse mesh.");
    OGProjection<double>::project_global(spaces, 
                                 Hermes::vector<MeshFunctionSharedPtr<double> >(u_ref_sln, v_ref_sln), 
                                 Hermes::vector<MeshFunctionSharedPtr<double> >(u_sln, v_sln)); 
   
    cpu_time.tick();

    // View the coarse mesh solution and polynomial orders.
    s_view_0.show(u_sln); 
    o_view_0.show(u_space);
    s_view_1.show(v_sln); 
    o_view_1.show(v_space);

    // Calculate element errors and total error estimate.
    errorCalculator.calculate_errors(Hermes::vector<MeshFunctionSharedPtr<double> >(u_sln, v_sln),
      Hermes::vector<MeshFunctionSharedPtr<double> >(exact_u, exact_v), false);
    double err_exact_rel = errorCalculator.get_total_error_squared() * 100;
    // Calculate exact error.
    errorCalculator.calculate_errors(Hermes::vector<MeshFunctionSharedPtr<double> >(u_sln, v_sln),
      Hermes::vector<MeshFunctionSharedPtr<double> >(u_ref_sln, v_ref_sln));
    double err_est_rel = errorCalculator.get_total_error_squared() * 100;

    // Time measurement.
    cpu_time.tick();

    // Report results.
    Hermes::Mixins::Loggable::Static::info("ndof_coarse[0]: %d, ndof_fine[0]: %d",
         u_space->get_num_dofs(), u_ref_space->get_num_dofs());
    Hermes::Mixins::Loggable::Static::info("ndof_coarse[1]: %d, ndof_fine[1]: %d",
         v_space->get_num_dofs(), v_ref_space->get_num_dofs());
    Hermes::Mixins::Loggable::Static::info("ndof_coarse_total: %d, ndof_fine_total: %d",
         Space<double>::get_num_dofs(Hermes::vector<SpaceSharedPtr<double> >(u_space, v_space)), 
         Space<double>::get_num_dofs(ref_spaces));
    Hermes::Mixins::Loggable::Static::info("err_est_rel_total: %g%%, err_est_exact_total: %g%%", err_est_rel, err_exact_rel);

    // Add entry to DOF and CPU convergence graphs.
    graph_dof_est.add_values(Space<double>::get_num_dofs(Hermes::vector<SpaceSharedPtr<double> >(u_space, v_space)), 
      err_est_rel);
    graph_dof_est.save("conv_dof_est.dat");
    graph_cpu_est.add_values(cpu_time.accumulated(), err_est_rel);
    graph_cpu_est.save("conv_cpu_est.dat");

    graph_dof_exact.add_values(Space<double>::get_num_dofs(Hermes::vector<SpaceSharedPtr<double> >(u_space, v_space)), 
      err_exact_rel);
    graph_dof_exact.save("conv_dof_exact.dat");
    graph_cpu_exact.add_values(cpu_time.accumulated(), err_exact_rel);
    graph_cpu_exact.save("conv_cpu_exact.dat");

    // If err_est too large, adapt the mesh.
    if (err_est_rel < ERR_STOP)
      done = true;
    else 
    {
      Hermes::Mixins::Loggable::Static::info("Adapting coarse mesh.");
      done = adaptivity.adapt(Hermes::vector<RefinementSelectors::Selector<double> *>(&selector, &selector));
    }

    // Increase counter.
    as++;
  }
  while (done == false);

  Hermes::Mixins::Loggable::Static::info("Total running time: %g s", cpu_time.accumulated());

  // Wait for all views to be closed.
  Views::View::wait();
  return 0;
}
예제 #30
0
int main(int argc, char* argv[])
{
  // Choose a Butcher's table or define your own.
  ButcherTable bt(butcher_table_type);
  if (bt.is_explicit()) info("Using a %d-stage explicit R-K method.", bt.get_size());
  if (bt.is_diagonally_implicit()) info("Using a %d-stage diagonally implicit R-K method.", bt.get_size());
  if (bt.is_fully_implicit()) info("Using a %d-stage fully implicit R-K method.", bt.get_size());

  // Load the mesh.
  Mesh mesh;
  MeshReaderH2D mloader;
  mloader.load("domain.mesh", &mesh);

  // Perform initial mesh refinemets.
  for (int i = 0; i < INIT_REF_NUM; i++) mesh.refine_all_elements();

  // Initialize solutions.
  CustomInitialConditionWave E_sln(&mesh);
  ZeroSolution B_sln(&mesh);
  Hermes::vector<Solution<double>*> slns(&E_sln, &B_sln);

  // Initialize the weak formulation.
  CustomWeakFormWave wf(C_SQUARED);
  
  // Initialize boundary conditions
  DefaultEssentialBCConst<double> bc_essential("Perfect conductor", 0.0);
  EssentialBCs<double> bcs_E(&bc_essential);
  EssentialBCs<double> bcs_B;

  // Create x- and y- displacement space using the default H1 shapeset.
  HcurlSpace<double> E_space(&mesh, &bcs_E, P_INIT);
  H1Space<double> B_space(&mesh, &bcs_B, P_INIT);
  Hermes::vector<const Space<double> *> spaces(&E_space, &B_space);
  Hermes::vector<Space<double> *> spaces_mutable(&E_space, &B_space);
  info("ndof = %d.", Space<double>::get_num_dofs(spaces));

  // Initialize views.
  ScalarView E1_view("Solution E1", new WinGeom(0, 0, 400, 350));
  E1_view.fix_scale_width(50);
  ScalarView E2_view("Solution E2", new WinGeom(410, 0, 400, 350));
  E2_view.fix_scale_width(50);
  ScalarView B_view("Solution B", new WinGeom(0, 405, 400, 350));
  B_view.fix_scale_width(50);

  // Initialize Runge-Kutta time stepping.
  RungeKutta<double> runge_kutta(&wf, spaces_mutable, &bt, matrix_solver);

  // Time stepping loop.
  double current_time = time_step; int ts = 1;
  do
  {
    // Perform one Runge-Kutta time step according to the selected Butcher's table.
    info("Runge-Kutta time step (t = %g s, time_step = %g s, stages: %d).", 
         current_time, time_step, bt.get_size());
    bool jacobian_changed = false;
    bool verbose = true;
    
    try
    {
      runge_kutta.rk_time_step_newton(current_time, time_step, slns, slns, jacobian_changed, verbose);
    }
    catch(Exceptions::Exception& e)
    {
      e.printMsg();
      error("Runge-Kutta time step failed");
    }

    // Visualize the solutions.
    char title[100];
    sprintf(title, "E1, t = %g", current_time);
    E1_view.set_title(title);
    E1_view.show(&E_sln, HERMES_EPS_NORMAL, H2D_FN_VAL_0);
    sprintf(title, "E2, t = %g", current_time);
    E2_view.set_title(title);
    E2_view.show(&E_sln, HERMES_EPS_NORMAL, H2D_FN_VAL_1);
    sprintf(title, "B, t = %g", current_time);
    B_view.set_title(title);
    B_view.show(&B_sln, HERMES_EPS_NORMAL, H2D_FN_VAL_0);

    // Update time.
    current_time += time_step;
  
  } while (current_time < T_FINAL);

  // Wait for the view to be closed.
  View::wait();

  return 0;
}