예제 #1
0
Solution LpsolveAdaptator::getSolution(lprec * lp) {
	Solution sol = Solution();
	REAL row[get_Norig_columns(lp)];
#ifdef DEBUG
	set_verbose(lp, NORMAL);
	write_LP(lp, stdout);
#else
	set_verbose(lp, CRITICAL);
#endif
	solve(lp);

	// WARNING possible conversion failure from double to float
	sol.setZ(get_objective(lp));
	get_variables(lp, row);

#ifdef DEBUG
	for(int j = 0; j < get_Norig_columns(lp); j++) {
	   printf("%s: %f\n", get_col_name(lp, j + 1), row[j]);
	}
#endif
	
	for (int i = 0; i < get_Norig_columns(lp); i++) {
		double var_value = (double)row[i];
		sol.addVariable(var_value);
	}

	delete_lp(lp);
	return sol;
}
예제 #2
0
파일: mps2lp.c 프로젝트: ks6g10/CA
int main(int argc, char *argv[])
{
  lprec *lp;
  FILE *fpin, *fpout;
  int i;

  for (i = 1; i < argc; i++)
   if (argv[i][0] == '-') {
     printf("mps to lp file converter\n");
     printf("Usage: mps2lp [inputfile.mps [outputfile.lp]] [<inputfile.mps] [>outputfile.lp]\n");
     return(1);
   }

  if (argc >= 2) {
    fpin = fopen(argv[1], "r");
    if (fpin == NULL) {
      fprintf(stderr, "Unable to open input file %s\n", argv[1]);
      return(2);
    }
  }
  else
    fpin = stdin;

  if (argc >= 3) {
    fpout = fopen(argv[2], "w");
    if (fpout == NULL) {
      fprintf(stderr, "Unable to open output file %s\n", argv[2]);
      return(3);
    }
  }
  else
    fpout = stdout;

  fprintf(stderr,"reading mps file\n");
  lp = read_mps(fpin, FALSE);
  if (fpin != stdin)
    fclose(fpin);

  if (lp == NULL) {
    fprintf(stderr, "Unable to read mps file\n");
    return(4);
  }
  else {
    fprintf(stderr,"writing lp file\n");
    if (!write_LP(lp, fpout)) {
      fprintf(stderr, "Unable to write lp file\n");
      return(5);
    }
  }
  if (fpout != stdout)
    fclose(fpout);

  return(0);
}
예제 #3
0
//Execute function
int LPSolveClass::Execute()
{
	/*
	std::cout << "---------------------------------\n";
	std::cout << "objective function\n";
	for (unsigned int i = 0; i < coefficients.size(); i++)
		std::cout << coefficients[i] << "\t";
	std::cout << "\nConstant Value = " << obj_const << std::endl;

	std::cout << "---------------------------------\n";
	std::cout << "Equality Constraints\n";	
	for (unsigned int i = 0; i < A_equ.size(); i++){
		//std::cout << "Row index = " << i << "\t\t";
		for (unsigned int j = 0; j < A_equ[i].size(); j++)
			std::cout << A_equ[i][j] << "\t";
		std::cout << "\n";
	}
	std::cout << "b\n";
	for (unsigned int i = 0; i < b_equ.size(); i++)
		std::cout << b_equ[i] << "\t";
	std::cout << "\n";


	std::cout << "---------------------------------\n";
	std::cout << "InEquality Constraints\n";	
	for (unsigned int i = 0; i < A_inequ.size(); i++){
		//std::cout << "Row index = " << i << "\t\t";
		for (unsigned int j = 0; j < A_inequ[i].size(); j++)
			std::cout << A_inequ[i][j] << "\t";
		std::cout << "\n";
	}
	std::cout << "b\n";
	for (unsigned int i = 0; i < b_inequ.size(); i++)
		std::cout << b_inequ[i] << "\t";
	std::cout << "\n";
	*/

	lprec *lp;
	int Ncol = coefficients.size(), *colno = NULL, j, ret = 0;
	REAL *row = NULL;
	
	/* We will build the model row by row
     So we start with creating a model with 0 rows and n columns */

	lp = make_lp(0, Ncol);
	if (lp == NULL)
		ret = 1;/* couldn't construct a new model... */
		
	if (ret == 0){
		//let us name our variables
		std::string s = "x";
		for (int i = 0; i < Ncol; i++){
			std::stringstream out;
			out << i;
			s = s + out.str();
			char *cpy = new char[s.size()+1] ;
			strcpy(cpy, s.c_str());			
			set_col_name(lp, i+1, cpy);
		}

		/* create space large enough for one row */
		colno = (int *) malloc(Ncol * sizeof(*colno));
    	row = (REAL *) malloc(Ncol * sizeof(*row));
		if ((colno == NULL) || (row == NULL))
      		ret = 2;
	}

	set_add_rowmode(lp, TRUE);
	//add the equation constraints
	if (ret == 0){
		/* makes building the model faster if it is done rows by row */
		if (A_equ.size() > 0){
			for (unsigned int i = 0; i < A_equ.size(); i++){//loop over the rows of equality constraints
				for (unsigned int j = 0; j < A_equ[i].size(); j++){//loop over the columns of equality constraints
					colno[j] = j+1;//add the j-th column to lpsolve
					row[j] = A_equ[i][j];
				}
				/* add the row to lpsolve */
				if(!add_constraintex(lp, A_equ[i].size(), row, colno, EQ, b_equ[i]))
					ret = 2;
			}
		}
	}
	
	//add the inequality constraints
	if (ret == 0){
		/* makes building the model faster if it is done rows by row */
		if (A_inequ.size() > 0){
			for (unsigned int i = 0; i < A_inequ.size(); i++){//loop over the rows of inequality constraints
				for (unsigned int j = 0; j < A_inequ[i].size(); j++){//loop over the columns of inequality constraints
					colno[j] = j+1;//add the j-th column to lpsolve
					row[j] = A_inequ[i][j];
				}
				/* add the row to lpsolve */
				if(!add_constraintex(lp, A_inequ[i].size(), row, colno, LE, b_inequ[i]))
					ret = 3;
			}
		}
	}

	//add the const constraint	
	if (ret == 0){
		if (b_const.size()>0){
			for (unsigned int i = 0; i < b_const.size(); i++){
				if (b_const[i] > 0){
					for (unsigned int j = 0; j < b_const.size(); j++){
						if (i == j){
							colno[j] = j+1;//add the j-th column to lpsolve
							row[j] = 1.0;						
						}				
						else{
							colno[j] = j+1;//add the j-th column to lpsolve
							row[j] = 0.0;
						}
					}
					if(!add_constraintex(lp, b_const.size(), row, colno, EQ, b_const[i]))
						ret = 4;		
				}
			}
		}
	}

	//set the variables to be integer
	if (ret == 0){
		for (int i = 0; i < Ncol; i++)
			set_int(lp, i+1, TRUE);
	}
	
	/* rowmode should be turned off again when done building the model */
	set_add_rowmode(lp, FALSE);	
	//add the objective function
	if (ret == 0){
		//set the objective function
		for (unsigned int i = 0; i < coefficients.size(); i++){
			colno[i] = i+1;
			row[i] = coefficients[i];
		}
		//set the objective in lpsolve
		if(!set_obj_fnex(lp, coefficients.size(), row, colno))
      		ret = 4;
	}

	//set the objective to minimize
	if (ret == 0){
		set_minim(lp);

		/* just out of curioucity, now show the model in lp format on screen */
    	/* this only works if this is a console application. If not, use write_lp and a filename */
    	write_LP(lp, stdout);

		/* I only want to see important messages on screen while solving */
    	set_verbose(lp, IMPORTANT);

    	/* Now let lpsolve calculate a solution */
    	ret = solve(lp);
    	if(ret == OPTIMAL)
      		ret = 0;
    	else
      		ret = 5;
	}

	//get some results
	if (ret == 0){
		/* a solution is calculated, now lets get some results */

    	/* objective value */
    	std::cout << "Objective value: " << get_objective(lp) << std::endl;

		/* variable values */
    	get_variables(lp, row);

		/* variable values */
		variables.resize(Ncol);
		for(j = 0; j < Ncol; j++)
			variables[j] = row[j];

		/* we are done now */
	}
	else{
		std::cout << "The optimal value can't be solved for linear programming, please check the constraints!!\n";
		exit(1);

	}
		
	
	std::cout << "print the result\t # of line segments is \n";
	for (int i = 0; i < Ncol; i++)
		std::cout << "index = " << i << "\t# = " << variables[i] << std::endl;

	/* free allocated memory */
  	if(row != NULL)
    	free(row);
  	if(colno != NULL)
    	free(colno);

	/* clean up such that all used memory by lpsolve is freed */
	if (lp != NULL)
		delete_lp(lp);

	return ret;
}
예제 #4
0
double solve_constraints(int this_task)
{
	lprec *lp;
	int numVar = 0, *var = NULL, ret = 0, i, j, k, var_count;
	double *coeff = NULL, lhs,rhs, obj;
	char col_name[10];

	/* Creating a model */
	for(i = 1;i < this_task; i++)
		numVar+=i;	
	lp = make_lp(0, numVar);
	if(lp == NULL)
		ret = 1; /* Couldn't construct a new model */
		
	if(ret == 0) {
		var_count = 1;
		for(i = 1 ; i < this_task; i++){
			for(j = i+1 ; j <= this_task; j++)
			{
				sprintf(col_name, "%dNNP%d_%d", this_task, i, j);
				set_col_name(lp, var_count, col_name);
				var_count++;			
			}
		}
		/* create space large enough for one row(i.e. equation) */
		var = (int *) malloc(numVar * sizeof(*var));
		coeff = (double *) malloc(numVar * sizeof(*coeff));
		if((var == NULL) || (coeff == NULL))
			ret = 2;
	}	
	
	/* add the equations to lpsolve */
	if(ret == 0) {
		set_add_rowmode(lp, TRUE);
		/* --------------------adding EQN-D-------------------- */
		for(j = 2;j <= this_task;j++){
			var_count = 0;
			for(i = 1; i < j; i++){
				sprintf(col_name,"%dNNP%d_%d",this_task, i, j);
				var[var_count] = get_nameindex(lp, col_name, FALSE);
				coeff[var_count] = 1;
				var_count++;
			}

			lhs= 0;
			for(i = 1; i < j; i++)
				lhs+= nnp_min[i][j];
			lhs*= floor(R[this_task]/task[j].p);			
			
			rhs = 0;
			for(i = 1; i < j; i++)
				rhs += nnp_max[i][j];
			rhs *= ceil(R[this_task]/task[j].p);
			
			if(!add_constraintex(lp, var_count, coeff, var, GE, lhs))
				ret = 3;
			if(!add_constraintex(lp, var_count, coeff, var, LE, rhs))
				ret = 3;			
		}
	}
	
	if(ret == 0) {	
		/* --------------------adding EQN-E-------------------- */
		for(k = 2;k <= this_task;k++)
		{			
			var_count = 0;
			for(j = 2; j <= k; j++){
				for(i = 1; i < j; i++){
					sprintf(col_name,"%dNNP%d_%d",this_task, i, j);
					var[var_count] = get_nameindex(lp, col_name, FALSE);
					coeff[var_count] = 1;
					var_count++;
				}
			}
			
			rhs = 0;
			for(i = 1; i < k; i++)
				rhs += ceil(R[this_task]/task[i].p);
			if(!add_constraintex(lp, var_count, coeff, var, LE,rhs))
				ret = 3;
		}
	}
	
	if(ret == 0) {
		/* ------------------adding EQN-G & H------------------ */
		for(j = 2; j <= this_task ; j++){
			for(i = 1; i < j; i++){
				lhs= floor(R[this_task]/task[j].p) * nnp_min[i][j];
				sprintf(col_name,"%dNNP%d_%d",this_task, i, j);
				var[0] = get_nameindex(lp, col_name, FALSE);
				coeff[0] = 1;
				if(!add_constraintex(lp, 1, coeff, var, GE, lhs))
					ret = 3;
				
				rhs = min(ceil(R[this_task]/task[i].p), ceil(R[this_task]/task[j].p) * ceil(R[j]/task[i].p), ceil(R[this_task]/task[j].p) * nnp_max[i][j]);
				if(!add_constraintex(lp, 1, coeff, var, LE,rhs))
					ret = 3;
			}
		}
	}
	
	if(ret == 0) {
 		/* --------------------adding EQN-I-------------------- */
		for(i = 1; i < this_task; i++){
			var_count = 0;
			for(j = i+1; j <= this_task; j++){
				sprintf(col_name,"%dNNP%d_%d",this_task, i, j);
				var[var_count] = get_nameindex(lp, col_name, FALSE);
				coeff[var_count] = 1;
				var_count++;				
			}
			rhs = ceil(R[this_task]/task[i].p);
			if(!add_constraintex(lp, var_count, coeff, var, LE,rhs))
				ret = 3;
		}
	}
		
	set_add_rowmode(lp, FALSE);
	if(ret == 0) {
		/* -----------------set the objective----------------- */
		var_count = 0;
		for(i = 1 ; i < this_task; i++){
			for(j = i+1 ; j<= this_task; j++){
				sprintf(col_name,"%dNNP%d_%d",this_task, i, j);
				var[var_count] = get_nameindex(lp, col_name, FALSE);
				coeff[var_count] = get_f(this_task, i, j);
				var_count++;
			}			
		}
		if(!set_obj_fnex(lp, var_count, coeff, var))
			ret = 4;
		set_maxim(lp);
		write_LP(lp, stdout);
		set_verbose(lp, IMPORTANT);
		ret = solve(lp);
		if(ret == OPTIMAL)
			ret = 0;
		else
			ret = 5;
	}
	if(ret == 0) {
		obj = get_objective(lp);
		/* Displaying calculated values */		
		/* variable values */
		printf("\nVariable values:\n");
		get_variables(lp, coeff);
		printf("\n");
		for(j = 0; j < numVar; j++)
			printf("%s: %f\n", get_col_name(lp, j + 1), coeff[j]);		
		/* objective value */
		printf("\nObjective value: %f\n\n", obj);
	}
	printf("LP ERROR = %d\n\n", ret);
	
	/* free allocated memory */
	if(coeff != NULL)
		free(coeff);
	if(var != NULL)
		free(var);
	if(lp != NULL) 		
		delete_lp(lp);
	
	return ret == 0 ? obj : 0;
}
예제 #5
0
    int  calculate (IN  int nCols /* variables in the model */,
                    IN  int nRows,
                    IN  double** rows,
                    IN  double*  rights,
                    IN  double*  objectives,
                    OUT int* answer,
                    IN  int verbose)
    {
      lprec *lp;
      int result = 0;

      char *str = NULL;
      int *colno = NULL;
      double *row = NULL;

      /*  We will build the model row by row
       *  So we start with creating a model
       *  with 0 rows and 2 columns
       */
      if ( !(lp = make_lp (0, nCols)) )
      { 
        /* couldn't construct a new model... */
        result = 1;
        goto RESULT;
      }

      if ( !(str = (char*) malloc ((log10 (nCols) + 10) * sizeof (*str))) )
      {
        result = 2;
        goto RESULT;
      }

      /*  let us name our variables. Not required, 
       *  but can be useful for debugging
       */
      for ( int i = 1; i <= nCols; ++i )
      {       
        str[0] = 't';
        _itoa (i, str + 1, 10);

        set_col_name (lp, i, str);
        // set_int (lp, i, TRUE);
      }

      /* create space large enough for one row */
      colno = (int   *) malloc (nCols * sizeof (*colno));
      row   = (double*) malloc (nCols * sizeof (*row));

      if ( (colno == NULL) || (row == NULL) )
      {
        result = 2;
        goto RESULT;
      }

      for ( int j = 0; j < nCols; ++j )
      { colno[j] = j + 1; /* (j + 1) column */ }

      /* makes building the model faster if it is done rows by row */
      set_add_rowmode (lp, TRUE);
      
      for ( int i = 0; i < nRows; ++i )
      {
        // /* construct j row */
        // for ( int j = 0; j < nCols; ++j )
        // { row[j] = ??? ; }

        /* (210 * t2 + 156 * t3 == 0.0178) */
        /* (230 * t2 + 160 * t3 == 0.0176) */

        /* add the row to lp_solve */
        if ( !add_constraintex (lp, nCols, rows[i], colno, EQ, rights[i]) )
        {
          result = 3;
          goto RESULT;
        }
      }

      /* rowmode should be turned off again when done building the model */
      set_add_rowmode (lp, FALSE); 

      // /* set the objective function  */
      // for ( int j = 0; j < nCols; ++j )
      // { row[j] = objectives[j]; }

      /* (t1 + t2 + t3 + t4) */

      /* set the objective in lp_solve */
      if ( !set_obj_fnex (lp, nCols, objectives, colno) )
      {
        result = 4;
        goto RESULT;
      }
      
      /* set the object direction to maximize */
      set_minim (lp);

      if ( verbose )
      {
        /* just out of curioucity, now show the model in lp format on screen */
        /* this only works if this is a console application. If not, use write_lp and a filename */
        write_LP (lp, stdout);
        /* write_lp(lp, "model.lp"); */
      }
      
      /* I only want to see important messages on screen while solving */
      set_verbose (lp, IMPORTANT);
      
      /* Now let lpsolve calculate a solution */
      result = solve (lp);
      if ( result == OPTIMAL )
      { result = 0; }
      else
      {
        result = 5;
        goto RESULT;
      }

      /*  a solution is calculated,
       *  now lets get some results
       */
      if ( verbose )
      {
        /* objective value */
        printf ("Objective value: %f\n", get_objective (lp));
      }

      /* variable values */
      get_variables (lp, row);
      for ( int j = 0; j < nCols; j++ )
      {
        if ( verbose )
          printf ("%s: %f\n", get_col_name (lp, j + 1), row[j]);
        
        answer[j] = row[j];
      }
      /* we are done now */

RESULT:;
      /* free allocated memory */
      if ( str != NULL )free (str);
      if ( row != NULL ) free (row);
      if ( colno != NULL ) free (colno);

      if ( lp != NULL )
      {
        /* clean up such that all used memory by lpsolve is freed */
        delete_lp (lp);
      }

      return result;
    }
예제 #6
0
int demo()
{
    lprec *lp;
    int Ncol, *colno = NULL, j, ret = 0;
    REAL *row = NULL;

    /* We will build the model row by row
       So we start with creating a model with 0 rows and 2 columns */
    Ncol = 2; /* there are two variables in the model */
    lp = make_lp(0, Ncol);
    if(lp == NULL)
        ret = 1; /* couldn't construct a new model... */

    if(ret == 0) {
        /* let us name our variables. Not required, but can be useful for debugging */
        set_col_name(lp, 1, "x");
        set_col_name(lp, 2, "y");

        /* create space large enough for one row */
        colno = (int *) malloc(Ncol * sizeof(*colno));
        row = (REAL *) malloc(Ncol * sizeof(*row));
        if((colno == NULL) || (row == NULL))
            ret = 2;
    }

    if(ret == 0) {
        set_add_rowmode(lp, TRUE);  /* makes building the model faster if it is done rows by row */

        /* construct first row (120 x + 210 y <= 15000) */
        j = 0;

        colno[j] = 1; /* first column */
        row[j++] = 120;

        colno[j] = 2; /* second column */
        row[j++] = 210;

        /* add the row to lpsolve */
        if(!add_constraintex(lp, j, row, colno, LE, 15000))
            ret = 3;
    }

    if(ret == 0) {
        /* construct second row (110 x + 30 y <= 4000) */
        j = 0;

        colno[j] = 1; /* first column */
        row[j++] = 110;

        colno[j] = 2; /* second column */
        row[j++] = 30;

        /* add the row to lpsolve */
        if(!add_constraintex(lp, j, row, colno, LE, 4000))
            ret = 3;
    }

    if(ret == 0) {
        /* construct third row (x + y <= 75) */
        j = 0;

        colno[j] = 1; /* first column */
        row[j++] = 1;

        colno[j] = 2; /* second column */
        row[j++] = 1;

        /* add the row to lpsolve */
        if(!add_constraintex(lp, j, row, colno, LE, 75))
            ret = 3;
    }

    if(ret == 0) {
        set_add_rowmode(lp, FALSE); /* rowmode should be turned off again when done building the model */

        /* set the objective function (143 x + 60 y) */
        j = 0;

        colno[j] = 1; /* first column */
        row[j++] = 143;

        colno[j] = 2; /* second column */
        row[j++] = 60;

        /* set the objective in lpsolve */
        if(!set_obj_fnex(lp, j, row, colno))
            ret = 4;
    }

    if(ret == 0) {
        /* set the object direction to maximize */
        set_maxim(lp);

        /* just out of curioucity, now show the model in lp format on screen */
        /* this only works if this is a console application. If not, use write_lp and a filename */
        write_LP(lp, stdout);
        /* write_lp(lp, "model.lp"); */

        /* I only want to see important messages on screen while solving */
        set_verbose(lp, IMPORTANT);

        /* Now let lpsolve calculate a solution */
        ret = solve(lp);
        if(ret == OPTIMAL)
            ret = 0;
        else
            ret = 5;
    }

    if(ret == 0) {
        /* a solution is calculated, now lets get some results */

        /* objective value */
        printf("Objective value: %f\n", get_objective(lp));

        /* variable values */
        get_variables(lp, row);
        for(j = 0; j < Ncol; j++)
            printf("%s: %f\n", get_col_name(lp, j + 1), row[j]);

        /* we are done now */
    }

    /* free allocated memory */
    if(row != NULL)
        free(row);
    if(colno != NULL)
        free(colno);

    if(lp != NULL) {
        /* clean up such that all used memory by lpsolve is freed */
        delete_lp(lp);
    }

    return(ret);
}