/* Subroutine */ int zerrlq_(char *path, integer *nunit) { /* System generated locals */ integer i__1; doublereal d__1, d__2; doublecomplex z__1; /* Builtin functions */ integer s_wsle(cilist *), e_wsle(void); /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); /* Local variables */ doublecomplex a[4] /* was [2][2] */, b[2]; integer i__, j; doublecomplex w[2], x[2], af[4] /* was [2][2] */; integer info; extern /* Subroutine */ int zgelq2_(integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *), zungl2_( integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *), zunml2_(char *, char *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *), alaesm_(char *, logical *, integer *), chkxer_(char *, integer *, integer *, logical *, logical *), zgelqf_(integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, integer *) , zgelqs_(integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, integer *), zunglq_(integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, integer *), zunmlq_(char *, char *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, integer *); /* Fortran I/O blocks */ static cilist io___1 = { 0, 0, 0, 0, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZERRLQ tests the error exits for the COMPLEX*16 routines */ /* that use the LQ decomposition of a general matrix. */ /* Arguments */ /* ========= */ /* PATH (input) CHARACTER*3 */ /* The LAPACK path name for the routines to be tested. */ /* NUNIT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ infoc_1.nout = *nunit; io___1.ciunit = infoc_1.nout; s_wsle(&io___1); e_wsle(); /* Set the variables to innocuous values. */ for (j = 1; j <= 2; ++j) { for (i__ = 1; i__ <= 2; ++i__) { i__1 = i__ + (j << 1) - 3; d__1 = 1. / (doublereal) (i__ + j); d__2 = -1. / (doublereal) (i__ + j); z__1.r = d__1, z__1.i = d__2; a[i__1].r = z__1.r, a[i__1].i = z__1.i; i__1 = i__ + (j << 1) - 3; d__1 = 1. / (doublereal) (i__ + j); d__2 = -1. / (doublereal) (i__ + j); z__1.r = d__1, z__1.i = d__2; af[i__1].r = z__1.r, af[i__1].i = z__1.i; /* L10: */ } i__1 = j - 1; b[i__1].r = 0., b[i__1].i = 0.; i__1 = j - 1; w[i__1].r = 0., w[i__1].i = 0.; i__1 = j - 1; x[i__1].r = 0., x[i__1].i = 0.; /* L20: */ } infoc_1.ok = TRUE_; /* Error exits for LQ factorization */ /* ZGELQF */ s_copy(srnamc_1.srnamt, "ZGELQF", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; zgelqf_(&c_n1, &c__0, a, &c__1, b, w, &c__1, &info); chkxer_("ZGELQF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zgelqf_(&c__0, &c_n1, a, &c__1, b, w, &c__1, &info); chkxer_("ZGELQF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; zgelqf_(&c__2, &c__1, a, &c__1, b, w, &c__2, &info); chkxer_("ZGELQF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; zgelqf_(&c__2, &c__1, a, &c__2, b, w, &c__1, &info); chkxer_("ZGELQF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZGELQ2 */ s_copy(srnamc_1.srnamt, "ZGELQ2", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; zgelq2_(&c_n1, &c__0, a, &c__1, b, w, &info); chkxer_("ZGELQ2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zgelq2_(&c__0, &c_n1, a, &c__1, b, w, &info); chkxer_("ZGELQ2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; zgelq2_(&c__2, &c__1, a, &c__1, b, w, &info); chkxer_("ZGELQ2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZGELQS */ s_copy(srnamc_1.srnamt, "ZGELQS", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; zgelqs_(&c_n1, &c__0, &c__0, a, &c__1, x, b, &c__1, w, &c__1, &info); chkxer_("ZGELQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zgelqs_(&c__0, &c_n1, &c__0, a, &c__1, x, b, &c__1, w, &c__1, &info); chkxer_("ZGELQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zgelqs_(&c__2, &c__1, &c__0, a, &c__2, x, b, &c__1, w, &c__1, &info); chkxer_("ZGELQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; zgelqs_(&c__0, &c__0, &c_n1, a, &c__1, x, b, &c__1, w, &c__1, &info); chkxer_("ZGELQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; zgelqs_(&c__2, &c__2, &c__0, a, &c__1, x, b, &c__2, w, &c__1, &info); chkxer_("ZGELQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 8; zgelqs_(&c__1, &c__2, &c__0, a, &c__1, x, b, &c__1, w, &c__1, &info); chkxer_("ZGELQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 10; zgelqs_(&c__1, &c__1, &c__2, a, &c__1, x, b, &c__1, w, &c__1, &info); chkxer_("ZGELQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZUNGLQ */ s_copy(srnamc_1.srnamt, "ZUNGLQ", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; zunglq_(&c_n1, &c__0, &c__0, a, &c__1, x, w, &c__1, &info); chkxer_("ZUNGLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zunglq_(&c__0, &c_n1, &c__0, a, &c__1, x, w, &c__1, &info); chkxer_("ZUNGLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zunglq_(&c__2, &c__1, &c__0, a, &c__2, x, w, &c__2, &info); chkxer_("ZUNGLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; zunglq_(&c__0, &c__0, &c_n1, a, &c__1, x, w, &c__1, &info); chkxer_("ZUNGLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; zunglq_(&c__1, &c__1, &c__2, a, &c__1, x, w, &c__1, &info); chkxer_("ZUNGLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; zunglq_(&c__2, &c__2, &c__0, a, &c__1, x, w, &c__2, &info); chkxer_("ZUNGLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 8; zunglq_(&c__2, &c__2, &c__0, a, &c__2, x, w, &c__1, &info); chkxer_("ZUNGLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZUNGL2 */ s_copy(srnamc_1.srnamt, "ZUNGL2", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; zungl2_(&c_n1, &c__0, &c__0, a, &c__1, x, w, &info); chkxer_("ZUNGL2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zungl2_(&c__0, &c_n1, &c__0, a, &c__1, x, w, &info); chkxer_("ZUNGL2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zungl2_(&c__2, &c__1, &c__0, a, &c__2, x, w, &info); chkxer_("ZUNGL2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; zungl2_(&c__0, &c__0, &c_n1, a, &c__1, x, w, &info); chkxer_("ZUNGL2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; zungl2_(&c__1, &c__1, &c__2, a, &c__1, x, w, &info); chkxer_("ZUNGL2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; zungl2_(&c__2, &c__2, &c__0, a, &c__1, x, w, &info); chkxer_("ZUNGL2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZUNMLQ */ s_copy(srnamc_1.srnamt, "ZUNMLQ", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; zunmlq_("/", "N", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("ZUNMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zunmlq_("L", "/", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("ZUNMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; zunmlq_("L", "N", &c_n1, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("ZUNMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; zunmlq_("L", "N", &c__0, &c_n1, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("ZUNMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; zunmlq_("L", "N", &c__0, &c__0, &c_n1, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("ZUNMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; zunmlq_("L", "N", &c__0, &c__1, &c__1, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("ZUNMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; zunmlq_("R", "N", &c__1, &c__0, &c__1, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("ZUNMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; zunmlq_("L", "N", &c__2, &c__0, &c__2, a, &c__1, x, af, &c__2, w, &c__1, & info); chkxer_("ZUNMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; zunmlq_("R", "N", &c__0, &c__2, &c__2, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("ZUNMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 10; zunmlq_("L", "N", &c__2, &c__1, &c__0, a, &c__2, x, af, &c__1, w, &c__1, & info); chkxer_("ZUNMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 12; zunmlq_("L", "N", &c__1, &c__2, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("ZUNMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 12; zunmlq_("R", "N", &c__2, &c__1, &c__0, a, &c__1, x, af, &c__2, w, &c__1, & info); chkxer_("ZUNMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZUNML2 */ s_copy(srnamc_1.srnamt, "ZUNML2", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; zunml2_("/", "N", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info); chkxer_("ZUNML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zunml2_("L", "/", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info); chkxer_("ZUNML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; zunml2_("L", "N", &c_n1, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info); chkxer_("ZUNML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; zunml2_("L", "N", &c__0, &c_n1, &c__0, a, &c__1, x, af, &c__1, w, &info); chkxer_("ZUNML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; zunml2_("L", "N", &c__0, &c__0, &c_n1, a, &c__1, x, af, &c__1, w, &info); chkxer_("ZUNML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; zunml2_("L", "N", &c__0, &c__1, &c__1, a, &c__1, x, af, &c__1, w, &info); chkxer_("ZUNML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; zunml2_("R", "N", &c__1, &c__0, &c__1, a, &c__1, x, af, &c__1, w, &info); chkxer_("ZUNML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; zunml2_("L", "N", &c__2, &c__1, &c__2, a, &c__1, x, af, &c__2, w, &info); chkxer_("ZUNML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; zunml2_("R", "N", &c__1, &c__2, &c__2, a, &c__1, x, af, &c__1, w, &info); chkxer_("ZUNML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 10; zunml2_("L", "N", &c__2, &c__1, &c__0, a, &c__2, x, af, &c__1, w, &info); chkxer_("ZUNML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* Print a summary line. */ alaesm_(path, &infoc_1.ok, &infoc_1.nout); return 0; /* End of ZERRLQ */ } /* zerrlq_ */
/* Subroutine */ int zchklq_(logical *dotype, integer *nm, integer *mval, integer *nn, integer *nval, integer *nnb, integer *nbval, integer * nxval, integer *nrhs, doublereal *thresh, logical *tsterr, integer * nmax, doublecomplex *a, doublecomplex *af, doublecomplex *aq, doublecomplex *al, doublecomplex *ac, doublecomplex *b, doublecomplex *x, doublecomplex *xact, doublecomplex *tau, doublecomplex *work, doublereal *rwork, integer *iwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; /* Format strings */ static char fmt_9999[] = "(\002 M=\002,i5,\002, N=\002,i5,\002, K=\002,i" "5,\002, NB=\002,i4,\002, NX=\002,i5,\002, type \002,i2,\002, tes" "t(\002,i2,\002)=\002,g12.5)"; /* System generated locals */ integer i__1, i__2, i__3, i__4, i__5; /* Local variables */ integer i__, k, m, n, nb, ik, im, in, kl, nk, ku, nt, nx, lda, inb, mode, imat, info; char path[3]; integer kval[4]; char dist[1], type__[1]; integer nrun; integer nfail, iseed[4]; doublereal anorm; integer minmn, nerrs; integer lwork; doublereal cndnum; doublereal result[8]; /* Fortran I/O blocks */ static cilist io___33 = { 0, 0, 0, fmt_9999, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZCHKLQ tests ZGELQF, ZUNGLQ and CUNMLQ. */ /* Arguments */ /* ========= */ /* DOTYPE (input) LOGICAL array, dimension (NTYPES) */ /* The matrix types to be used for testing. Matrices of type j */ /* (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */ /* .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */ /* NM (input) INTEGER */ /* The number of values of M contained in the vector MVAL. */ /* MVAL (input) INTEGER array, dimension (NM) */ /* The values of the matrix row dimension M. */ /* NN (input) INTEGER */ /* The number of values of N contained in the vector NVAL. */ /* NVAL (input) INTEGER array, dimension (NN) */ /* The values of the matrix column dimension N. */ /* NNB (input) INTEGER */ /* The number of values of NB and NX contained in the */ /* vectors NBVAL and NXVAL. The blocking parameters are used */ /* in pairs (NB,NX). */ /* NBVAL (input) INTEGER array, dimension (NNB) */ /* The values of the blocksize NB. */ /* NXVAL (input) INTEGER array, dimension (NNB) */ /* The values of the crossover point NX. */ /* NRHS (input) INTEGER */ /* The number of right hand side vectors to be generated for */ /* each linear system. */ /* THRESH (input) DOUBLE PRECISION */ /* The threshold value for the test ratios. A result is */ /* included in the output file if RESULT >= THRESH. To have */ /* every test ratio printed, use THRESH = 0. */ /* TSTERR (input) LOGICAL */ /* Flag that indicates whether error exits are to be tested. */ /* NMAX (input) INTEGER */ /* The maximum value permitted for M or N, used in dimensioning */ /* the work arrays. */ /* A (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) */ /* AF (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) */ /* AQ (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) */ /* AL (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) */ /* AC (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) */ /* B (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) */ /* X (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) */ /* XACT (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) */ /* TAU (workspace) COMPLEX*16 array, dimension (NMAX) */ /* WORK (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) */ /* RWORK (workspace) DOUBLE PRECISION array, dimension (NMAX) */ /* IWORK (workspace) INTEGER array, dimension (NMAX) */ /* NOUT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ --iwork; --rwork; --work; --tau; --xact; --x; --b; --ac; --al; --aq; --af; --a; --nxval; --nbval; --nval; --mval; --dotype; /* Function Body */ /* .. */ /* .. Executable Statements .. */ /* Initialize constants and the random number seed. */ s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17); s_copy(path + 1, "LQ", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ if (*tsterr) { zerrlq_(path, nout); } infoc_1.infot = 0; xlaenv_(&c__2, &c__2); lda = *nmax; lwork = *nmax * max(*nmax,*nrhs); /* Do for each value of M in MVAL. */ i__1 = *nm; for (im = 1; im <= i__1; ++im) { m = mval[im]; /* Do for each value of N in NVAL. */ i__2 = *nn; for (in = 1; in <= i__2; ++in) { n = nval[in]; minmn = min(m,n); for (imat = 1; imat <= 8; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L50; } /* Set up parameters with ZLATB4 and generate a test matrix */ /* with ZLATMS. */ zlatb4_(path, &imat, &m, &n, type__, &kl, &ku, &anorm, &mode, &cndnum, dist); s_copy(srnamc_1.srnamt, "ZLATMS", (ftnlen)32, (ftnlen)6); zlatms_(&m, &n, dist, iseed, type__, &rwork[1], &mode, & cndnum, &anorm, &kl, &ku, "No packing", &a[1], &lda, & work[1], &info); /* Check error code from ZLATMS. */ if (info != 0) { alaerh_(path, "ZLATMS", &info, &c__0, " ", &m, &n, &c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); goto L50; } /* Set some values for K: the first value must be MINMN, */ /* corresponding to the call of ZLQT01; other values are */ /* used in the calls of ZLQT02, and must not exceed MINMN. */ kval[0] = minmn; kval[1] = 0; kval[2] = 1; kval[3] = minmn / 2; if (minmn == 0) { nk = 1; } else if (minmn == 1) { nk = 2; } else if (minmn <= 3) { nk = 3; } else { nk = 4; } /* Do for each value of K in KVAL */ i__3 = nk; for (ik = 1; ik <= i__3; ++ik) { k = kval[ik - 1]; /* Do for each pair of values (NB,NX) in NBVAL and NXVAL. */ i__4 = *nnb; for (inb = 1; inb <= i__4; ++inb) { nb = nbval[inb]; xlaenv_(&c__1, &nb); nx = nxval[inb]; xlaenv_(&c__3, &nx); for (i__ = 1; i__ <= 8; ++i__) { result[i__ - 1] = 0.; } nt = 2; if (ik == 1) { /* Test ZGELQF */ zlqt01_(&m, &n, &a[1], &af[1], &aq[1], &al[1], & lda, &tau[1], &work[1], &lwork, &rwork[1], result); if (! zgennd_(&m, &n, &af[1], &lda)) { result[7] = *thresh * 2; } ++nt; } else if (m <= n) { /* Test ZUNGLQ, using factorization */ /* returned by ZLQT01 */ zlqt02_(&m, &n, &k, &a[1], &af[1], &aq[1], &al[1], &lda, &tau[1], &work[1], &lwork, &rwork[ 1], result); } else { result[0] = 0.; result[1] = 0.; } if (m >= k) { /* Test ZUNMLQ, using factorization returned */ /* by ZLQT01 */ zlqt03_(&m, &n, &k, &af[1], &ac[1], &al[1], &aq[1] , &lda, &tau[1], &work[1], &lwork, &rwork[ 1], &result[2]); nt += 4; /* If M>=N and K=N, call ZGELQS to solve a system */ /* with NRHS right hand sides and compute the */ /* residual. */ if (k == m && inb == 1) { /* Generate a solution and set the right */ /* hand side. */ s_copy(srnamc_1.srnamt, "ZLARHS", (ftnlen)32, (ftnlen)6); zlarhs_(path, "New", "Full", "No transpose", & m, &n, &c__0, &c__0, nrhs, &a[1], & lda, &xact[1], &lda, &b[1], &lda, iseed, &info); zlacpy_("Full", &m, nrhs, &b[1], &lda, &x[1], &lda); s_copy(srnamc_1.srnamt, "ZGELQS", (ftnlen)32, (ftnlen)6); zgelqs_(&m, &n, nrhs, &af[1], &lda, &tau[1], & x[1], &lda, &work[1], &lwork, &info); /* Check error code from ZGELQS. */ if (info != 0) { alaerh_(path, "ZGELQS", &info, &c__0, " ", &m, &n, nrhs, &c_n1, &nb, & imat, &nfail, &nerrs, nout); } zget02_("No transpose", &m, &n, nrhs, &a[1], & lda, &x[1], &lda, &b[1], &lda, &rwork[ 1], &result[6]); ++nt; } else { result[6] = 0.; } } else { result[2] = 0.; result[3] = 0.; result[4] = 0.; result[5] = 0.; } /* Print information about the tests that did not */ /* pass the threshold. */ i__5 = nt; for (i__ = 1; i__ <= i__5; ++i__) { if (result[i__ - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___33.ciunit = *nout; s_wsfe(&io___33); do_fio(&c__1, (char *)&m, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&nb, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&nx, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&i__, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[i__ - 1], ( ftnlen)sizeof(doublereal)); e_wsfe(); ++nfail; } /* L20: */ } nrun += nt; /* L30: */ } /* L40: */ } L50: ; } /* L60: */ } /* L70: */ } /* Print a summary of the results. */ alasum_(path, nout, &nfail, &nrun, &nerrs); return 0; /* End of ZCHKLQ */ } /* zchklq_ */