예제 #1
0
파일: zlqt02.c 프로젝트: kstraube/hysim
/* Subroutine */ int zlqt02_(integer *m, integer *n, integer *k, 
	doublecomplex *a, doublecomplex *af, doublecomplex *q, doublecomplex *
	l, integer *lda, doublecomplex *tau, doublecomplex *work, integer *
	lwork, doublereal *rwork, doublereal *result)
{
    /* System generated locals */
    integer a_dim1, a_offset, af_dim1, af_offset, l_dim1, l_offset, q_dim1, 
	    q_offset, i__1;

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);

    /* Local variables */
    doublereal eps;
    integer info;
    doublereal resid, anorm;
    extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *, 
	    integer *, doublecomplex *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *), zherk_(char *, char *, integer *, 
	    integer *, doublereal *, doublecomplex *, integer *, doublereal *, 
	     doublecomplex *, integer *);
    extern doublereal dlamch_(char *), zlange_(char *, integer *, 
	    integer *, doublecomplex *, integer *, doublereal *);
    extern /* Subroutine */ int zlacpy_(char *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *), 
	    zlaset_(char *, integer *, integer *, doublecomplex *, 
	    doublecomplex *, doublecomplex *, integer *);
    extern doublereal zlansy_(char *, char *, integer *, doublecomplex *, 
	    integer *, doublereal *);
    extern /* Subroutine */ int zunglq_(integer *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *, integer *);


/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZLQT02 tests ZUNGLQ, which generates an m-by-n matrix Q with */
/*  orthonornmal rows that is defined as the product of k elementary */
/*  reflectors. */

/*  Given the LQ factorization of an m-by-n matrix A, ZLQT02 generates */
/*  the orthogonal matrix Q defined by the factorization of the first k */
/*  rows of A; it compares L(1:k,1:m) with A(1:k,1:n)*Q(1:m,1:n)', and */
/*  checks that the rows of Q are orthonormal. */

/*  Arguments */
/*  ========= */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix Q to be generated.  M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix Q to be generated. */
/*          N >= M >= 0. */

/*  K       (input) INTEGER */
/*          The number of elementary reflectors whose product defines the */
/*          matrix Q. M >= K >= 0. */

/*  A       (input) COMPLEX*16 array, dimension (LDA,N) */
/*          The m-by-n matrix A which was factorized by ZLQT01. */

/*  AF      (input) COMPLEX*16 array, dimension (LDA,N) */
/*          Details of the LQ factorization of A, as returned by ZGELQF. */
/*          See ZGELQF for further details. */

/*  Q       (workspace) COMPLEX*16 array, dimension (LDA,N) */

/*  L       (workspace) COMPLEX*16 array, dimension (LDA,M) */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the arrays A, AF, Q and L. LDA >= N. */

/*  TAU     (input) COMPLEX*16 array, dimension (M) */
/*          The scalar factors of the elementary reflectors corresponding */
/*          to the LQ factorization in AF. */

/*  WORK    (workspace) COMPLEX*16 array, dimension (LWORK) */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK. */

/*  RWORK   (workspace) DOUBLE PRECISION array, dimension (M) */

/*  RESULT  (output) DOUBLE PRECISION array, dimension (2) */
/*          The test ratios: */
/*          RESULT(1) = norm( L - A*Q' ) / ( N * norm(A) * EPS ) */
/*          RESULT(2) = norm( I - Q*Q' ) / ( N * EPS ) */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
    l_dim1 = *lda;
    l_offset = 1 + l_dim1;
    l -= l_offset;
    q_dim1 = *lda;
    q_offset = 1 + q_dim1;
    q -= q_offset;
    af_dim1 = *lda;
    af_offset = 1 + af_dim1;
    af -= af_offset;
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --tau;
    --work;
    --rwork;
    --result;

    /* Function Body */
    eps = dlamch_("Epsilon");

/*     Copy the first k rows of the factorization to the array Q */

    zlaset_("Full", m, n, &c_b1, &c_b1, &q[q_offset], lda);
    i__1 = *n - 1;
    zlacpy_("Upper", k, &i__1, &af[(af_dim1 << 1) + 1], lda, &q[(q_dim1 << 1) 
	    + 1], lda);

/*     Generate the first n columns of the matrix Q */

    s_copy(srnamc_1.srnamt, "ZUNGLQ", (ftnlen)6, (ftnlen)6);
    zunglq_(m, n, k, &q[q_offset], lda, &tau[1], &work[1], lwork, &info);

/*     Copy L(1:k,1:m) */

    zlaset_("Full", k, m, &c_b8, &c_b8, &l[l_offset], lda);
    zlacpy_("Lower", k, m, &af[af_offset], lda, &l[l_offset], lda);

/*     Compute L(1:k,1:m) - A(1:k,1:n) * Q(1:m,1:n)' */

    zgemm_("No transpose", "Conjugate transpose", k, m, n, &c_b13, &a[
	    a_offset], lda, &q[q_offset], lda, &c_b14, &l[l_offset], lda);

/*     Compute norm( L - A*Q' ) / ( N * norm(A) * EPS ) . */

    anorm = zlange_("1", k, n, &a[a_offset], lda, &rwork[1]);
    resid = zlange_("1", k, m, &l[l_offset], lda, &rwork[1]);
    if (anorm > 0.) {
	result[1] = resid / (doublereal) max(1,*n) / anorm / eps;
    } else {
	result[1] = 0.;
    }

/*     Compute I - Q*Q' */

    zlaset_("Full", m, m, &c_b8, &c_b14, &l[l_offset], lda);
    zherk_("Upper", "No transpose", m, n, &c_b22, &q[q_offset], lda, &c_b23, &
	    l[l_offset], lda);

/*     Compute norm( I - Q*Q' ) / ( N * EPS ) . */

    resid = zlansy_("1", "Upper", m, &l[l_offset], lda, &rwork[1]);

    result[2] = resid / (doublereal) max(1,*n) / eps;

    return 0;

/*     End of ZLQT02 */

} /* zlqt02_ */
예제 #2
0
/* Subroutine */ int zungbr_(char *vect, integer *m, integer *n, integer *k, 
	doublecomplex *a, integer *lda, doublecomplex *tau, doublecomplex *
	work, integer *lwork, integer *info)
{
/*  -- LAPACK routine (version 2.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    ZUNGBR generates one of the complex unitary matrices Q or P**H   
    determined by ZGEBRD when reducing a complex matrix A to bidiagonal   
    form: A = Q * B * P**H.  Q and P**H are defined as products of   
    elementary reflectors H(i) or G(i) respectively.   

    If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q   
    is of order M:   
    if m >= k, Q = H(1) H(2) . . . H(k) and ZUNGBR returns the first n   
    columns of Q, where m >= n >= k;   
    if m < k, Q = H(1) H(2) . . . H(m-1) and ZUNGBR returns Q as an   
    M-by-M matrix.   

    If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**H   
    is of order N:   
    if k < n, P**H = G(k) . . . G(2) G(1) and ZUNGBR returns the first m 
  
    rows of P**H, where n >= m >= k;   
    if k >= n, P**H = G(n-1) . . . G(2) G(1) and ZUNGBR returns P**H as   
    an N-by-N matrix.   

    Arguments   
    =========   

    VECT    (input) CHARACTER*1   
            Specifies whether the matrix Q or the matrix P**H is   
            required, as defined in the transformation applied by ZGEBRD: 
  
            = 'Q':  generate Q;   
            = 'P':  generate P**H.   

    M       (input) INTEGER   
            The number of rows of the matrix Q or P**H to be returned.   
            M >= 0.   

    N       (input) INTEGER   
            The number of columns of the matrix Q or P**H to be returned. 
  
            N >= 0.   
            If VECT = 'Q', M >= N >= min(M,K);   
            if VECT = 'P', N >= M >= min(N,K).   

    K       (input) INTEGER   
            If VECT = 'Q', the number of columns in the original M-by-K   
            matrix reduced by ZGEBRD.   
            If VECT = 'P', the number of rows in the original K-by-N   
            matrix reduced by ZGEBRD.   
            K >= 0.   

    A       (input/output) COMPLEX*16 array, dimension (LDA,N)   
            On entry, the vectors which define the elementary reflectors, 
  
            as returned by ZGEBRD.   
            On exit, the M-by-N matrix Q or P**H.   

    LDA     (input) INTEGER   
            The leading dimension of the array A. LDA >= M.   

    TAU     (input) COMPLEX*16 array, dimension   
                                  (min(M,K)) if VECT = 'Q'   
                                  (min(N,K)) if VECT = 'P'   
            TAU(i) must contain the scalar factor of the elementary   
            reflector H(i) or G(i), which determines Q or P**H, as   
            returned by ZGEBRD in its array argument TAUQ or TAUP.   

    WORK    (workspace/output) COMPLEX*16 array, dimension (LWORK)   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The dimension of the array WORK. LWORK >= max(1,min(M,N)).   
            For optimum performance LWORK >= min(M,N)*NB, where NB   
            is the optimal blocksize.   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   

    ===================================================================== 
  


       Test the input arguments   

    
   Parameter adjustments   
       Function Body */
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3;
    /* Local variables */
    static integer i, j;
    extern logical lsame_(char *, char *);
    static integer iinfo;
    static logical wantq;
    extern /* Subroutine */ int xerbla_(char *, integer *), zunglq_(
	    integer *, integer *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, doublecomplex *, integer *, integer *), zungqr_(
	    integer *, integer *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, doublecomplex *, integer *, integer *);


#define TAU(I) tau[(I)-1]
#define WORK(I) work[(I)-1]

#define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)]

    *info = 0;
    wantq = lsame_(vect, "Q");
    if (! wantq && ! lsame_(vect, "P")) {
	*info = -1;
    } else if (*m < 0) {
	*info = -2;
    } else if (*n < 0 || wantq && (*n > *m || *n < min(*m,*k)) || ! wantq && (
	    *m > *n || *m < min(*n,*k))) {
	*info = -3;
    } else if (*k < 0) {
	*info = -4;
    } else if (*lda < max(1,*m)) {
	*info = -6;
    } else /* if(complicated condition) */ {
/* Computing MAX */
	i__1 = 1, i__2 = min(*m,*n);
	if (*lwork < max(i__1,i__2)) {
	    *info = -9;
	}
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZUNGBR", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*m == 0 || *n == 0) {
	WORK(1).r = 1., WORK(1).i = 0.;
	return 0;
    }

    if (wantq) {

/*        Form Q, determined by a call to ZGEBRD to reduce an m-by-k 
  
          matrix */

	if (*m >= *k) {

/*           If m >= k, assume m >= n >= k */

	    zungqr_(m, n, k, &A(1,1), lda, &TAU(1), &WORK(1), lwork, &
		    iinfo);

	} else {

/*           If m < k, assume m = n   

             Shift the vectors which define the elementary reflect
ors one   
             column to the right, and set the first row and column
 of Q   
             to those of the unit matrix */

	    for (j = *m; j >= 2; --j) {
		i__1 = j * a_dim1 + 1;
		A(1,j).r = 0., A(1,j).i = 0.;
		i__1 = *m;
		for (i = j + 1; i <= *m; ++i) {
		    i__2 = i + j * a_dim1;
		    i__3 = i + (j - 1) * a_dim1;
		    A(i,j).r = A(i,j-1).r, A(i,j).i = A(i,j-1).i;
/* L10: */
		}
/* L20: */
	    }
	    i__1 = a_dim1 + 1;
	    A(1,1).r = 1., A(1,1).i = 0.;
	    i__1 = *m;
	    for (i = 2; i <= *m; ++i) {
		i__2 = i + a_dim1;
		A(i,1).r = 0., A(i,1).i = 0.;
/* L30: */
	    }
	    if (*m > 1) {

/*              Form Q(2:m,2:m) */

		i__1 = *m - 1;
		i__2 = *m - 1;
		i__3 = *m - 1;
		zungqr_(&i__1, &i__2, &i__3, &A(2,2), lda, &TAU(
			1), &WORK(1), lwork, &iinfo);
	    }
	}
    } else {

/*        Form P', determined by a call to ZGEBRD to reduce a k-by-n 
  
          matrix */

	if (*k < *n) {

/*           If k < n, assume k <= m <= n */

	    zunglq_(m, n, k, &A(1,1), lda, &TAU(1), &WORK(1), lwork, &
		    iinfo);

	} else {

/*           If k >= n, assume m = n   

             Shift the vectors which define the elementary reflect
ors one   
             row downward, and set the first row and column of P' 
to   
             those of the unit matrix */

	    i__1 = a_dim1 + 1;
	    A(1,1).r = 1., A(1,1).i = 0.;
	    i__1 = *n;
	    for (i = 2; i <= *n; ++i) {
		i__2 = i + a_dim1;
		A(i,1).r = 0., A(i,1).i = 0.;
/* L40: */
	    }
	    i__1 = *n;
	    for (j = 2; j <= *n; ++j) {
		for (i = j - 1; i >= 2; --i) {
		    i__2 = i + j * a_dim1;
		    i__3 = i - 1 + j * a_dim1;
		    A(i,j).r = A(i-1,j).r, A(i,j).i = A(i-1,j).i;
/* L50: */
		}
		i__2 = j * a_dim1 + 1;
		A(1,j).r = 0., A(1,j).i = 0.;
/* L60: */
	    }
	    if (*n > 1) {

/*              Form P'(2:n,2:n) */

		i__1 = *n - 1;
		i__2 = *n - 1;
		i__3 = *n - 1;
		zunglq_(&i__1, &i__2, &i__3, &A(2,2), lda, &TAU(
			1), &WORK(1), lwork, &iinfo);
	    }
	}
    }
    return 0;

/*     End of ZUNGBR */

} /* zungbr_ */
예제 #3
0
int main(void)
{
    /* Local scalars */
    lapack_int m, m_i;
    lapack_int n, n_i;
    lapack_int k, k_i;
    lapack_int lda, lda_i;
    lapack_int lda_r;
    lapack_int lwork, lwork_i;
    lapack_int info, info_i;
    lapack_int i;
    int failed;

    /* Local arrays */
    lapack_complex_double *a = NULL, *a_i = NULL;
    lapack_complex_double *tau = NULL, *tau_i = NULL;
    lapack_complex_double *work = NULL, *work_i = NULL;
    lapack_complex_double *a_save = NULL;
    lapack_complex_double *a_r = NULL;

    /* Iniitialize the scalar parameters */
    init_scalars_zunglq( &m, &n, &k, &lda, &lwork );
    lda_r = n+2;
    m_i = m;
    n_i = n;
    k_i = k;
    lda_i = lda;
    lwork_i = lwork;

    /* Allocate memory for the LAPACK routine arrays */
    a = (lapack_complex_double *)
        LAPACKE_malloc( lda*n * sizeof(lapack_complex_double) );
    tau = (lapack_complex_double *)
        LAPACKE_malloc( k * sizeof(lapack_complex_double) );
    work = (lapack_complex_double *)
        LAPACKE_malloc( lwork * sizeof(lapack_complex_double) );

    /* Allocate memory for the C interface function arrays */
    a_i = (lapack_complex_double *)
        LAPACKE_malloc( lda*n * sizeof(lapack_complex_double) );
    tau_i = (lapack_complex_double *)
        LAPACKE_malloc( k * sizeof(lapack_complex_double) );
    work_i = (lapack_complex_double *)
        LAPACKE_malloc( lwork * sizeof(lapack_complex_double) );

    /* Allocate memory for the backup arrays */
    a_save = (lapack_complex_double *)
        LAPACKE_malloc( lda*n * sizeof(lapack_complex_double) );

    /* Allocate memory for the row-major arrays */
    a_r = (lapack_complex_double *)
        LAPACKE_malloc( m*(n+2) * sizeof(lapack_complex_double) );

    /* Initialize input arrays */
    init_a( lda*n, a );
    init_tau( k, tau );
    init_work( lwork, work );

    /* Backup the ouptut arrays */
    for( i = 0; i < lda*n; i++ ) {
        a_save[i] = a[i];
    }

    /* Call the LAPACK routine */
    zunglq_( &m, &n, &k, a, &lda, tau, work, &lwork, &info );

    /* Initialize input data, call the column-major middle-level
     * interface to LAPACK routine and check the results */
    for( i = 0; i < lda*n; i++ ) {
        a_i[i] = a_save[i];
    }
    for( i = 0; i < k; i++ ) {
        tau_i[i] = tau[i];
    }
    for( i = 0; i < lwork; i++ ) {
        work_i[i] = work[i];
    }
    info_i = LAPACKE_zunglq_work( LAPACK_COL_MAJOR, m_i, n_i, k_i, a_i, lda_i,
                                  tau_i, work_i, lwork_i );

    failed = compare_zunglq( a, a_i, info, info_i, lda, n );
    if( failed == 0 ) {
        printf( "PASSED: column-major middle-level interface to zunglq\n" );
    } else {
        printf( "FAILED: column-major middle-level interface to zunglq\n" );
    }

    /* Initialize input data, call the column-major high-level
     * interface to LAPACK routine and check the results */
    for( i = 0; i < lda*n; i++ ) {
        a_i[i] = a_save[i];
    }
    for( i = 0; i < k; i++ ) {
        tau_i[i] = tau[i];
    }
    for( i = 0; i < lwork; i++ ) {
        work_i[i] = work[i];
    }
    info_i = LAPACKE_zunglq( LAPACK_COL_MAJOR, m_i, n_i, k_i, a_i, lda_i,
                             tau_i );

    failed = compare_zunglq( a, a_i, info, info_i, lda, n );
    if( failed == 0 ) {
        printf( "PASSED: column-major high-level interface to zunglq\n" );
    } else {
        printf( "FAILED: column-major high-level interface to zunglq\n" );
    }

    /* Initialize input data, call the row-major middle-level
     * interface to LAPACK routine and check the results */
    for( i = 0; i < lda*n; i++ ) {
        a_i[i] = a_save[i];
    }
    for( i = 0; i < k; i++ ) {
        tau_i[i] = tau[i];
    }
    for( i = 0; i < lwork; i++ ) {
        work_i[i] = work[i];
    }

    LAPACKE_zge_trans( LAPACK_COL_MAJOR, m, n, a_i, lda, a_r, n+2 );
    info_i = LAPACKE_zunglq_work( LAPACK_ROW_MAJOR, m_i, n_i, k_i, a_r, lda_r,
                                  tau_i, work_i, lwork_i );

    LAPACKE_zge_trans( LAPACK_ROW_MAJOR, m, n, a_r, n+2, a_i, lda );

    failed = compare_zunglq( a, a_i, info, info_i, lda, n );
    if( failed == 0 ) {
        printf( "PASSED: row-major middle-level interface to zunglq\n" );
    } else {
        printf( "FAILED: row-major middle-level interface to zunglq\n" );
    }

    /* Initialize input data, call the row-major high-level
     * interface to LAPACK routine and check the results */
    for( i = 0; i < lda*n; i++ ) {
        a_i[i] = a_save[i];
    }
    for( i = 0; i < k; i++ ) {
        tau_i[i] = tau[i];
    }
    for( i = 0; i < lwork; i++ ) {
        work_i[i] = work[i];
    }

    /* Init row_major arrays */
    LAPACKE_zge_trans( LAPACK_COL_MAJOR, m, n, a_i, lda, a_r, n+2 );
    info_i = LAPACKE_zunglq( LAPACK_ROW_MAJOR, m_i, n_i, k_i, a_r, lda_r,
                             tau_i );

    LAPACKE_zge_trans( LAPACK_ROW_MAJOR, m, n, a_r, n+2, a_i, lda );

    failed = compare_zunglq( a, a_i, info, info_i, lda, n );
    if( failed == 0 ) {
        printf( "PASSED: row-major high-level interface to zunglq\n" );
    } else {
        printf( "FAILED: row-major high-level interface to zunglq\n" );
    }

    /* Release memory */
    if( a != NULL ) {
        LAPACKE_free( a );
    }
    if( a_i != NULL ) {
        LAPACKE_free( a_i );
    }
    if( a_r != NULL ) {
        LAPACKE_free( a_r );
    }
    if( a_save != NULL ) {
        LAPACKE_free( a_save );
    }
    if( tau != NULL ) {
        LAPACKE_free( tau );
    }
    if( tau_i != NULL ) {
        LAPACKE_free( tau_i );
    }
    if( work != NULL ) {
        LAPACKE_free( work );
    }
    if( work_i != NULL ) {
        LAPACKE_free( work_i );
    }

    return 0;
}
예제 #4
0
파일: zerrlq.c 프로젝트: 3deggi/levmar-ndk
/* Subroutine */ int zerrlq_(char *path, integer *nunit)
{
    /* System generated locals */
    integer i__1;
    doublereal d__1, d__2;
    doublecomplex z__1;

    /* Builtin functions */
    integer s_wsle(cilist *), e_wsle(void);
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);

    /* Local variables */
    doublecomplex a[4]	/* was [2][2] */, b[2];
    integer i__, j;
    doublecomplex w[2], x[2], af[4]	/* was [2][2] */;
    integer info;
    extern /* Subroutine */ int zgelq2_(integer *, integer *, doublecomplex *, 
	     integer *, doublecomplex *, doublecomplex *, integer *), zungl2_(
	    integer *, integer *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, doublecomplex *, integer *), zunml2_(char *, 
	    char *, integer *, integer *, integer *, doublecomplex *, integer 
	    *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, 
	    integer *), alaesm_(char *, logical *, integer *), chkxer_(char *, integer *, integer *, logical *, logical 
	    *), zgelqf_(integer *, integer *, doublecomplex *, 
	    integer *, doublecomplex *, doublecomplex *, integer *, integer *)
	    , zgelqs_(integer *, integer *, integer *, doublecomplex *, 
	    integer *, doublecomplex *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, integer *), zunglq_(integer *, 
	    integer *, integer *, doublecomplex *, integer *, doublecomplex *, 
	     doublecomplex *, integer *, integer *), zunmlq_(char *, char *, 
	    integer *, integer *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, doublecomplex *, integer *, doublecomplex *, 
	    integer *, integer *);

    /* Fortran I/O blocks */
    static cilist io___1 = { 0, 0, 0, 0, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZERRLQ tests the error exits for the COMPLEX*16 routines */
/*  that use the LQ decomposition of a general matrix. */

/*  Arguments */
/*  ========= */

/*  PATH    (input) CHARACTER*3 */
/*          The LAPACK path name for the routines to be tested. */

/*  NUNIT   (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    infoc_1.nout = *nunit;
    io___1.ciunit = infoc_1.nout;
    s_wsle(&io___1);
    e_wsle();

/*     Set the variables to innocuous values. */

    for (j = 1; j <= 2; ++j) {
	for (i__ = 1; i__ <= 2; ++i__) {
	    i__1 = i__ + (j << 1) - 3;
	    d__1 = 1. / (doublereal) (i__ + j);
	    d__2 = -1. / (doublereal) (i__ + j);
	    z__1.r = d__1, z__1.i = d__2;
	    a[i__1].r = z__1.r, a[i__1].i = z__1.i;
	    i__1 = i__ + (j << 1) - 3;
	    d__1 = 1. / (doublereal) (i__ + j);
	    d__2 = -1. / (doublereal) (i__ + j);
	    z__1.r = d__1, z__1.i = d__2;
	    af[i__1].r = z__1.r, af[i__1].i = z__1.i;
/* L10: */
	}
	i__1 = j - 1;
	b[i__1].r = 0., b[i__1].i = 0.;
	i__1 = j - 1;
	w[i__1].r = 0., w[i__1].i = 0.;
	i__1 = j - 1;
	x[i__1].r = 0., x[i__1].i = 0.;
/* L20: */
    }
    infoc_1.ok = TRUE_;

/*     Error exits for LQ factorization */

/*     ZGELQF */

    s_copy(srnamc_1.srnamt, "ZGELQF", (ftnlen)32, (ftnlen)6);
    infoc_1.infot = 1;
    zgelqf_(&c_n1, &c__0, a, &c__1, b, w, &c__1, &info);
    chkxer_("ZGELQF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    zgelqf_(&c__0, &c_n1, a, &c__1, b, w, &c__1, &info);
    chkxer_("ZGELQF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 4;
    zgelqf_(&c__2, &c__1, a, &c__1, b, w, &c__2, &info);
    chkxer_("ZGELQF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 7;
    zgelqf_(&c__2, &c__1, a, &c__2, b, w, &c__1, &info);
    chkxer_("ZGELQF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);

/*     ZGELQ2 */

    s_copy(srnamc_1.srnamt, "ZGELQ2", (ftnlen)32, (ftnlen)6);
    infoc_1.infot = 1;
    zgelq2_(&c_n1, &c__0, a, &c__1, b, w, &info);
    chkxer_("ZGELQ2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    zgelq2_(&c__0, &c_n1, a, &c__1, b, w, &info);
    chkxer_("ZGELQ2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 4;
    zgelq2_(&c__2, &c__1, a, &c__1, b, w, &info);
    chkxer_("ZGELQ2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);

/*     ZGELQS */

    s_copy(srnamc_1.srnamt, "ZGELQS", (ftnlen)32, (ftnlen)6);
    infoc_1.infot = 1;
    zgelqs_(&c_n1, &c__0, &c__0, a, &c__1, x, b, &c__1, w, &c__1, &info);
    chkxer_("ZGELQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    zgelqs_(&c__0, &c_n1, &c__0, a, &c__1, x, b, &c__1, w, &c__1, &info);
    chkxer_("ZGELQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    zgelqs_(&c__2, &c__1, &c__0, a, &c__2, x, b, &c__1, w, &c__1, &info);
    chkxer_("ZGELQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 3;
    zgelqs_(&c__0, &c__0, &c_n1, a, &c__1, x, b, &c__1, w, &c__1, &info);
    chkxer_("ZGELQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    zgelqs_(&c__2, &c__2, &c__0, a, &c__1, x, b, &c__2, w, &c__1, &info);
    chkxer_("ZGELQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 8;
    zgelqs_(&c__1, &c__2, &c__0, a, &c__1, x, b, &c__1, w, &c__1, &info);
    chkxer_("ZGELQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 10;
    zgelqs_(&c__1, &c__1, &c__2, a, &c__1, x, b, &c__1, w, &c__1, &info);
    chkxer_("ZGELQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);

/*     ZUNGLQ */

    s_copy(srnamc_1.srnamt, "ZUNGLQ", (ftnlen)32, (ftnlen)6);
    infoc_1.infot = 1;
    zunglq_(&c_n1, &c__0, &c__0, a, &c__1, x, w, &c__1, &info);
    chkxer_("ZUNGLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    zunglq_(&c__0, &c_n1, &c__0, a, &c__1, x, w, &c__1, &info);
    chkxer_("ZUNGLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    zunglq_(&c__2, &c__1, &c__0, a, &c__2, x, w, &c__2, &info);
    chkxer_("ZUNGLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 3;
    zunglq_(&c__0, &c__0, &c_n1, a, &c__1, x, w, &c__1, &info);
    chkxer_("ZUNGLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 3;
    zunglq_(&c__1, &c__1, &c__2, a, &c__1, x, w, &c__1, &info);
    chkxer_("ZUNGLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    zunglq_(&c__2, &c__2, &c__0, a, &c__1, x, w, &c__2, &info);
    chkxer_("ZUNGLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 8;
    zunglq_(&c__2, &c__2, &c__0, a, &c__2, x, w, &c__1, &info);
    chkxer_("ZUNGLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);

/*     ZUNGL2 */

    s_copy(srnamc_1.srnamt, "ZUNGL2", (ftnlen)32, (ftnlen)6);
    infoc_1.infot = 1;
    zungl2_(&c_n1, &c__0, &c__0, a, &c__1, x, w, &info);
    chkxer_("ZUNGL2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    zungl2_(&c__0, &c_n1, &c__0, a, &c__1, x, w, &info);
    chkxer_("ZUNGL2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    zungl2_(&c__2, &c__1, &c__0, a, &c__2, x, w, &info);
    chkxer_("ZUNGL2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 3;
    zungl2_(&c__0, &c__0, &c_n1, a, &c__1, x, w, &info);
    chkxer_("ZUNGL2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 3;
    zungl2_(&c__1, &c__1, &c__2, a, &c__1, x, w, &info);
    chkxer_("ZUNGL2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    zungl2_(&c__2, &c__2, &c__0, a, &c__1, x, w, &info);
    chkxer_("ZUNGL2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);

/*     ZUNMLQ */

    s_copy(srnamc_1.srnamt, "ZUNMLQ", (ftnlen)32, (ftnlen)6);
    infoc_1.infot = 1;
    zunmlq_("/", "N", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("ZUNMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    zunmlq_("L", "/", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("ZUNMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 3;
    zunmlq_("L", "N", &c_n1, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("ZUNMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 4;
    zunmlq_("L", "N", &c__0, &c_n1, &c__0, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("ZUNMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    zunmlq_("L", "N", &c__0, &c__0, &c_n1, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("ZUNMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    zunmlq_("L", "N", &c__0, &c__1, &c__1, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("ZUNMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    zunmlq_("R", "N", &c__1, &c__0, &c__1, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("ZUNMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 7;
    zunmlq_("L", "N", &c__2, &c__0, &c__2, a, &c__1, x, af, &c__2, w, &c__1, &
	    info);
    chkxer_("ZUNMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 7;
    zunmlq_("R", "N", &c__0, &c__2, &c__2, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("ZUNMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 10;
    zunmlq_("L", "N", &c__2, &c__1, &c__0, a, &c__2, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("ZUNMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 12;
    zunmlq_("L", "N", &c__1, &c__2, &c__0, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("ZUNMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 12;
    zunmlq_("R", "N", &c__2, &c__1, &c__0, a, &c__1, x, af, &c__2, w, &c__1, &
	    info);
    chkxer_("ZUNMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);

/*     ZUNML2 */

    s_copy(srnamc_1.srnamt, "ZUNML2", (ftnlen)32, (ftnlen)6);
    infoc_1.infot = 1;
    zunml2_("/", "N", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("ZUNML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    zunml2_("L", "/", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("ZUNML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 3;
    zunml2_("L", "N", &c_n1, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("ZUNML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 4;
    zunml2_("L", "N", &c__0, &c_n1, &c__0, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("ZUNML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    zunml2_("L", "N", &c__0, &c__0, &c_n1, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("ZUNML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    zunml2_("L", "N", &c__0, &c__1, &c__1, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("ZUNML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    zunml2_("R", "N", &c__1, &c__0, &c__1, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("ZUNML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 7;
    zunml2_("L", "N", &c__2, &c__1, &c__2, a, &c__1, x, af, &c__2, w, &info);
    chkxer_("ZUNML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 7;
    zunml2_("R", "N", &c__1, &c__2, &c__2, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("ZUNML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 10;
    zunml2_("L", "N", &c__2, &c__1, &c__0, a, &c__2, x, af, &c__1, w, &info);
    chkxer_("ZUNML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);

/*     Print a summary line. */

    alaesm_(path, &infoc_1.ok, &infoc_1.nout);

    return 0;

/*     End of ZERRLQ */

} /* zerrlq_ */
예제 #5
0
/* Subroutine */ int zungbr_(char *vect, integer *m, integer *n, integer *k, 
	doublecomplex *a, integer *lda, doublecomplex *tau, doublecomplex *
	work, integer *lwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3;

    /* Local variables */
    integer i__, j, nb, mn;
    extern logical lsame_(char *, char *);
    integer iinfo;
    logical wantq;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *);
    integer lwkopt;
    logical lquery;
    extern /* Subroutine */ int zunglq_(integer *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *, integer *), zungqr_(integer *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *, integer *);


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZUNGBR generates one of the complex unitary matrices Q or P**H */
/*  determined by ZGEBRD when reducing a complex matrix A to bidiagonal */
/*  form: A = Q * B * P**H.  Q and P**H are defined as products of */
/*  elementary reflectors H(i) or G(i) respectively. */

/*  If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q */
/*  is of order M: */
/*  if m >= k, Q = H(1) H(2) . . . H(k) and ZUNGBR returns the first n */
/*  columns of Q, where m >= n >= k; */
/*  if m < k, Q = H(1) H(2) . . . H(m-1) and ZUNGBR returns Q as an */
/*  M-by-M matrix. */

/*  If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**H */
/*  is of order N: */
/*  if k < n, P**H = G(k) . . . G(2) G(1) and ZUNGBR returns the first m */
/*  rows of P**H, where n >= m >= k; */
/*  if k >= n, P**H = G(n-1) . . . G(2) G(1) and ZUNGBR returns P**H as */
/*  an N-by-N matrix. */

/*  Arguments */
/*  ========= */

/*  VECT    (input) CHARACTER*1 */
/*          Specifies whether the matrix Q or the matrix P**H is */
/*          required, as defined in the transformation applied by ZGEBRD: */
/*          = 'Q':  generate Q; */
/*          = 'P':  generate P**H. */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix Q or P**H to be returned. */
/*          M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix Q or P**H to be returned. */
/*          N >= 0. */
/*          If VECT = 'Q', M >= N >= lmin(M,K); */
/*          if VECT = 'P', N >= M >= lmin(N,K). */

/*  K       (input) INTEGER */
/*          If VECT = 'Q', the number of columns in the original M-by-K */
/*          matrix reduced by ZGEBRD. */
/*          If VECT = 'P', the number of rows in the original K-by-N */
/*          matrix reduced by ZGEBRD. */
/*          K >= 0. */

/*  A       (input/output) COMPLEX*16 array, dimension (LDA,N) */
/*          On entry, the vectors which define the elementary reflectors, */
/*          as returned by ZGEBRD. */
/*          On exit, the M-by-N matrix Q or P**H. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A. LDA >= M. */

/*  TAU     (input) COMPLEX*16 array, dimension */
/*                                (min(M,K)) if VECT = 'Q' */
/*                                (min(N,K)) if VECT = 'P' */
/*          TAU(i) must contain the scalar factor of the elementary */
/*          reflector H(i) or G(i), which determines Q or P**H, as */
/*          returned by ZGEBRD in its array argument TAUQ or TAUP. */

/*  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK. LWORK >= lmax(1,min(M,N)). */
/*          For optimum performance LWORK >= lmin(M,N)*NB, where NB */
/*          is the optimal blocksize. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input arguments */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --tau;
    --work;

    /* Function Body */
    *info = 0;
    wantq = lsame_(vect, "Q");
    mn = lmin(*m,*n);
    lquery = *lwork == -1;
    if (! wantq && ! lsame_(vect, "P")) {
	*info = -1;
    } else if (*m < 0) {
	*info = -2;
    } else if (*n < 0 || wantq && (*n > *m || *n < lmin(*m,*k)) || ! wantq && (
	    *m > *n || *m < lmin(*n,*k))) {
	*info = -3;
    } else if (*k < 0) {
	*info = -4;
    } else if (*lda < lmax(1,*m)) {
	*info = -6;
    } else if (*lwork < lmax(1,mn) && ! lquery) {
	*info = -9;
    }

    if (*info == 0) {
	if (wantq) {
	    nb = ilaenv_(&c__1, "ZUNGQR", " ", m, n, k, &c_n1);
	} else {
	    nb = ilaenv_(&c__1, "ZUNGLQ", " ", m, n, k, &c_n1);
	}
	lwkopt = lmax(1,mn) * nb;
	work[1].r = (doublereal) lwkopt, work[1].i = 0.;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZUNGBR", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*m == 0 || *n == 0) {
	work[1].r = 1., work[1].i = 0.;
	return 0;
    }

    if (wantq) {

/*        Form Q, determined by a call to ZGEBRD to reduce an m-by-k */
/*        matrix */

	if (*m >= *k) {

/*           If m >= k, assume m >= n >= k */

	    zungqr_(m, n, k, &a[a_offset], lda, &tau[1], &work[1], lwork, &
		    iinfo);

	} else {

/*           If m < k, assume m = n */

/*           Shift the vectors which define the elementary reflectors one */
/*           column to the right, and set the first row and column of Q */
/*           to those of the unit matrix */

	    for (j = *m; j >= 2; --j) {
		i__1 = j * a_dim1 + 1;
		a[i__1].r = 0., a[i__1].i = 0.;
		i__1 = *m;
		for (i__ = j + 1; i__ <= i__1; ++i__) {
		    i__2 = i__ + j * a_dim1;
		    i__3 = i__ + (j - 1) * a_dim1;
		    a[i__2].r = a[i__3].r, a[i__2].i = a[i__3].i;
/* L10: */
		}
/* L20: */
	    }
	    i__1 = a_dim1 + 1;
	    a[i__1].r = 1., a[i__1].i = 0.;
	    i__1 = *m;
	    for (i__ = 2; i__ <= i__1; ++i__) {
		i__2 = i__ + a_dim1;
		a[i__2].r = 0., a[i__2].i = 0.;
/* L30: */
	    }
	    if (*m > 1) {

/*              Form Q(2:m,2:m) */

		i__1 = *m - 1;
		i__2 = *m - 1;
		i__3 = *m - 1;
		zungqr_(&i__1, &i__2, &i__3, &a[(a_dim1 << 1) + 2], lda, &tau[
			1], &work[1], lwork, &iinfo);
	    }
	}
    } else {

/*        Form P', determined by a call to ZGEBRD to reduce a k-by-n */
/*        matrix */

	if (*k < *n) {

/*           If k < n, assume k <= m <= n */

	    zunglq_(m, n, k, &a[a_offset], lda, &tau[1], &work[1], lwork, &
		    iinfo);

	} else {

/*           If k >= n, assume m = n */

/*           Shift the vectors which define the elementary reflectors one */
/*           row downward, and set the first row and column of P' to */
/*           those of the unit matrix */

	    i__1 = a_dim1 + 1;
	    a[i__1].r = 1., a[i__1].i = 0.;
	    i__1 = *n;
	    for (i__ = 2; i__ <= i__1; ++i__) {
		i__2 = i__ + a_dim1;
		a[i__2].r = 0., a[i__2].i = 0.;
/* L40: */
	    }
	    i__1 = *n;
	    for (j = 2; j <= i__1; ++j) {
		for (i__ = j - 1; i__ >= 2; --i__) {
		    i__2 = i__ + j * a_dim1;
		    i__3 = i__ - 1 + j * a_dim1;
		    a[i__2].r = a[i__3].r, a[i__2].i = a[i__3].i;
/* L50: */
		}
		i__2 = j * a_dim1 + 1;
		a[i__2].r = 0., a[i__2].i = 0.;
/* L60: */
	    }
	    if (*n > 1) {

/*              Form P'(2:n,2:n) */

		i__1 = *n - 1;
		i__2 = *n - 1;
		i__3 = *n - 1;
		zunglq_(&i__1, &i__2, &i__3, &a[(a_dim1 << 1) + 2], lda, &tau[
			1], &work[1], lwork, &iinfo);
	    }
	}
    }
    work[1].r = (doublereal) lwkopt, work[1].i = 0.;
    return 0;

/*     End of ZUNGBR */

} /* zungbr_ */
예제 #6
0
파일: zlqt01.c 프로젝트: 3deggi/levmar-ndk
/* Subroutine */ int zlqt01_(integer *m, integer *n, doublecomplex *a, 
	doublecomplex *af, doublecomplex *q, doublecomplex *l, integer *lda, 
	doublecomplex *tau, doublecomplex *work, integer *lwork, doublereal *
	rwork, doublereal *result)
{
    /* System generated locals */
    integer a_dim1, a_offset, af_dim1, af_offset, l_dim1, l_offset, q_dim1, 
	    q_offset, i__1;

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);

    /* Local variables */
    doublereal eps;
    integer info;
    doublereal resid, anorm;
    integer minmn;
    extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *, 
	    integer *, doublecomplex *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *), zherk_(char *, char *, integer *, 
	    integer *, doublereal *, doublecomplex *, integer *, doublereal *, 
	     doublecomplex *, integer *);
    extern doublereal dlamch_(char *), zlange_(char *, integer *, 
	    integer *, doublecomplex *, integer *, doublereal *);
    extern /* Subroutine */ int zgelqf_(integer *, integer *, doublecomplex *, 
	     integer *, doublecomplex *, doublecomplex *, integer *, integer *
), zlacpy_(char *, integer *, integer *, doublecomplex *, integer 
	    *, doublecomplex *, integer *), zlaset_(char *, integer *, 
	     integer *, doublecomplex *, doublecomplex *, doublecomplex *, 
	    integer *);
    extern doublereal zlansy_(char *, char *, integer *, doublecomplex *, 
	    integer *, doublereal *);
    extern /* Subroutine */ int zunglq_(integer *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *, integer *);


/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZLQT01 tests ZGELQF, which computes the LQ factorization of an m-by-n */
/*  matrix A, and partially tests ZUNGLQ which forms the n-by-n */
/*  orthogonal matrix Q. */

/*  ZLQT01 compares L with A*Q', and checks that Q is orthogonal. */

/*  Arguments */
/*  ========= */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix A.  M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix A.  N >= 0. */

/*  A       (input) COMPLEX*16 array, dimension (LDA,N) */
/*          The m-by-n matrix A. */

/*  AF      (output) COMPLEX*16 array, dimension (LDA,N) */
/*          Details of the LQ factorization of A, as returned by ZGELQF. */
/*          See ZGELQF for further details. */

/*  Q       (output) COMPLEX*16 array, dimension (LDA,N) */
/*          The n-by-n orthogonal matrix Q. */

/*  L       (workspace) COMPLEX*16 array, dimension (LDA,max(M,N)) */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the arrays A, AF, Q and L. */
/*          LDA >= max(M,N). */

/*  TAU     (output) COMPLEX*16 array, dimension (min(M,N)) */
/*          The scalar factors of the elementary reflectors, as returned */
/*          by ZGELQF. */

/*  WORK    (workspace) COMPLEX*16 array, dimension (LWORK) */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK. */

/*  RWORK   (workspace) DOUBLE PRECISION array, dimension (max(M,N)) */

/*  RESULT  (output) DOUBLE PRECISION array, dimension (2) */
/*          The test ratios: */
/*          RESULT(1) = norm( L - A*Q' ) / ( N * norm(A) * EPS ) */
/*          RESULT(2) = norm( I - Q*Q' ) / ( N * EPS ) */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
    l_dim1 = *lda;
    l_offset = 1 + l_dim1;
    l -= l_offset;
    q_dim1 = *lda;
    q_offset = 1 + q_dim1;
    q -= q_offset;
    af_dim1 = *lda;
    af_offset = 1 + af_dim1;
    af -= af_offset;
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --tau;
    --work;
    --rwork;
    --result;

    /* Function Body */
    minmn = min(*m,*n);
    eps = dlamch_("Epsilon");

/*     Copy the matrix A to the array AF. */

    zlacpy_("Full", m, n, &a[a_offset], lda, &af[af_offset], lda);

/*     Factorize the matrix A in the array AF. */

    s_copy(srnamc_1.srnamt, "ZGELQF", (ftnlen)32, (ftnlen)6);
    zgelqf_(m, n, &af[af_offset], lda, &tau[1], &work[1], lwork, &info);

/*     Copy details of Q */

    zlaset_("Full", n, n, &c_b1, &c_b1, &q[q_offset], lda);
    if (*n > 1) {
	i__1 = *n - 1;
	zlacpy_("Upper", m, &i__1, &af[(af_dim1 << 1) + 1], lda, &q[(q_dim1 <<
		 1) + 1], lda);
    }

/*     Generate the n-by-n matrix Q */

    s_copy(srnamc_1.srnamt, "ZUNGLQ", (ftnlen)32, (ftnlen)6);
    zunglq_(n, n, &minmn, &q[q_offset], lda, &tau[1], &work[1], lwork, &info);

/*     Copy L */

    zlaset_("Full", m, n, &c_b10, &c_b10, &l[l_offset], lda);
    zlacpy_("Lower", m, n, &af[af_offset], lda, &l[l_offset], lda);

/*     Compute L - A*Q' */

    zgemm_("No transpose", "Conjugate transpose", m, n, n, &c_b15, &a[
	    a_offset], lda, &q[q_offset], lda, &c_b16, &l[l_offset], lda);

/*     Compute norm( L - Q'*A ) / ( N * norm(A) * EPS ) . */

    anorm = zlange_("1", m, n, &a[a_offset], lda, &rwork[1]);
    resid = zlange_("1", m, n, &l[l_offset], lda, &rwork[1]);
    if (anorm > 0.) {
	result[1] = resid / (doublereal) max(1,*n) / anorm / eps;
    } else {
	result[1] = 0.;
    }

/*     Compute I - Q*Q' */

    zlaset_("Full", n, n, &c_b10, &c_b16, &l[l_offset], lda);
    zherk_("Upper", "No transpose", n, n, &c_b24, &q[q_offset], lda, &c_b25, &
	    l[l_offset], lda);

/*     Compute norm( I - Q*Q' ) / ( N * EPS ) . */

    resid = zlansy_("1", "Upper", n, &l[l_offset], lda, &rwork[1]);

    result[2] = resid / (doublereal) max(1,*n) / eps;

    return 0;

/*     End of ZLQT01 */

} /* zlqt01_ */
예제 #7
0
파일: zlqt02.c 프로젝트: zangel/uquad
/* Subroutine */ int zlqt02_(integer *m, integer *n, integer *k, 
	doublecomplex *a, doublecomplex *af, doublecomplex *q, doublecomplex *
	l, integer *lda, doublecomplex *tau, doublecomplex *work, integer *
	lwork, doublereal *rwork, doublereal *result)
{
    /* System generated locals */
    integer a_dim1, a_offset, af_dim1, af_offset, l_dim1, l_offset, q_dim1, 
	    q_offset, i__1;

    /* Builtin functions   
       Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);

    /* Local variables */
    static integer info;
    static doublereal resid, anorm;
    extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *, 
	    integer *, doublecomplex *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *), zherk_(char *, char *, integer *, 
	    integer *, doublereal *, doublecomplex *, integer *, doublereal *,
	     doublecomplex *, integer *);
    extern doublereal dlamch_(char *), zlange_(char *, integer *, 
	    integer *, doublecomplex *, integer *, doublereal *);
    extern /* Subroutine */ int zlacpy_(char *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *), 
	    zlaset_(char *, integer *, integer *, doublecomplex *, 
	    doublecomplex *, doublecomplex *, integer *);
    extern doublereal zlansy_(char *, char *, integer *, doublecomplex *, 
	    integer *, doublereal *);
    extern /* Subroutine */ int zunglq_(integer *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *, integer *);
    static doublereal eps;


#define q_subscr(a_1,a_2) (a_2)*q_dim1 + a_1
#define q_ref(a_1,a_2) q[q_subscr(a_1,a_2)]
#define af_subscr(a_1,a_2) (a_2)*af_dim1 + a_1
#define af_ref(a_1,a_2) af[af_subscr(a_1,a_2)]


/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    ZLQT02 tests ZUNGLQ, which generates an m-by-n matrix Q with   
    orthonornmal rows that is defined as the product of k elementary   
    reflectors.   

    Given the LQ factorization of an m-by-n matrix A, ZLQT02 generates   
    the orthogonal matrix Q defined by the factorization of the first k   
    rows of A; it compares L(1:k,1:m) with A(1:k,1:n)*Q(1:m,1:n)', and   
    checks that the rows of Q are orthonormal.   

    Arguments   
    =========   

    M       (input) INTEGER   
            The number of rows of the matrix Q to be generated.  M >= 0.   

    N       (input) INTEGER   
            The number of columns of the matrix Q to be generated.   
            N >= M >= 0.   

    K       (input) INTEGER   
            The number of elementary reflectors whose product defines the   
            matrix Q. M >= K >= 0.   

    A       (input) COMPLEX*16 array, dimension (LDA,N)   
            The m-by-n matrix A which was factorized by ZLQT01.   

    AF      (input) COMPLEX*16 array, dimension (LDA,N)   
            Details of the LQ factorization of A, as returned by ZGELQF.   
            See ZGELQF for further details.   

    Q       (workspace) COMPLEX*16 array, dimension (LDA,N)   

    L       (workspace) COMPLEX*16 array, dimension (LDA,M)   

    LDA     (input) INTEGER   
            The leading dimension of the arrays A, AF, Q and L. LDA >= N.   

    TAU     (input) COMPLEX*16 array, dimension (M)   
            The scalar factors of the elementary reflectors corresponding   
            to the LQ factorization in AF.   

    WORK    (workspace) COMPLEX*16 array, dimension (LWORK)   

    LWORK   (input) INTEGER   
            The dimension of the array WORK.   

    RWORK   (workspace) DOUBLE PRECISION array, dimension (M)   

    RESULT  (output) DOUBLE PRECISION array, dimension (2)   
            The test ratios:   
            RESULT(1) = norm( L - A*Q' ) / ( N * norm(A) * EPS )   
            RESULT(2) = norm( I - Q*Q' ) / ( N * EPS )   

    =====================================================================   


       Parameter adjustments */
    l_dim1 = *lda;
    l_offset = 1 + l_dim1 * 1;
    l -= l_offset;
    q_dim1 = *lda;
    q_offset = 1 + q_dim1 * 1;
    q -= q_offset;
    af_dim1 = *lda;
    af_offset = 1 + af_dim1 * 1;
    af -= af_offset;
    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    --tau;
    --work;
    --rwork;
    --result;

    /* Function Body */
    eps = dlamch_("Epsilon");

/*     Copy the first k rows of the factorization to the array Q */

    zlaset_("Full", m, n, &c_b1, &c_b1, &q[q_offset], lda);
    i__1 = *n - 1;
    zlacpy_("Upper", k, &i__1, &af_ref(1, 2), lda, &q_ref(1, 2), lda);

/*     Generate the first n columns of the matrix Q */

    s_copy(srnamc_1.srnamt, "ZUNGLQ", (ftnlen)6, (ftnlen)6);
    zunglq_(m, n, k, &q[q_offset], lda, &tau[1], &work[1], lwork, &info);

/*     Copy L(1:k,1:m) */

    zlaset_("Full", k, m, &c_b8, &c_b8, &l[l_offset], lda);
    zlacpy_("Lower", k, m, &af[af_offset], lda, &l[l_offset], lda);

/*     Compute L(1:k,1:m) - A(1:k,1:n) * Q(1:m,1:n)' */

    zgemm_("No transpose", "Conjugate transpose", k, m, n, &c_b13, &a[
	    a_offset], lda, &q[q_offset], lda, &c_b14, &l[l_offset], lda);

/*     Compute norm( L - A*Q' ) / ( N * norm(A) * EPS ) . */

    anorm = zlange_("1", k, n, &a[a_offset], lda, &rwork[1]);
    resid = zlange_("1", k, m, &l[l_offset], lda, &rwork[1]);
    if (anorm > 0.) {
	result[1] = resid / (doublereal) max(1,*n) / anorm / eps;
    } else {
	result[1] = 0.;
    }

/*     Compute I - Q*Q' */

    zlaset_("Full", m, m, &c_b8, &c_b14, &l[l_offset], lda);
    zherk_("Upper", "No transpose", m, n, &c_b22, &q[q_offset], lda, &c_b23, &
	    l[l_offset], lda);

/*     Compute norm( I - Q*Q' ) / ( N * EPS ) . */

    resid = zlansy_("1", "Upper", m, &l[l_offset], lda, &rwork[1]);

    result[2] = resid / (doublereal) max(1,*n) / eps;

    return 0;

/*     End of ZLQT02 */

} /* zlqt02_ */