ConstantRange::ConstantRange(const APInt &L, const APInt &U) : Lower(L), Upper(U) { assert(L.getBitWidth() == U.getBitWidth() && "ConstantRange with unequal bit widths"); assert((L != U || (L.isMaxValue() || L.isMinValue())) && "Lower == Upper, but they aren't min or max value!"); }
ConstantRange ConstantRange::binaryOr(const ConstantRange &Other) const { if (isEmptySet() || Other.isEmptySet()) return ConstantRange(getBitWidth(), /*isFullSet=*/false); // TODO: replace this with something less conservative APInt umax = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin()); if (umax.isMinValue()) return ConstantRange(getBitWidth(), /*isFullSet=*/true); return ConstantRange(umax, APInt::getNullValue(getBitWidth())); }
ConstantRange ConstantRange::makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp, const APInt &C, unsigned NoWrapKind) { typedef OverflowingBinaryOperator OBO; // Computes the intersection of CR0 and CR1. It is different from // intersectWith in that the ConstantRange returned will only contain elements // in both CR0 and CR1 (i.e. SubsetIntersect(X, Y) is a *subset*, proper or // not, of both X and Y). auto SubsetIntersect = [](const ConstantRange &CR0, const ConstantRange &CR1) { return CR0.inverse().unionWith(CR1.inverse()).inverse(); }; assert(BinOp >= Instruction::BinaryOpsBegin && BinOp < Instruction::BinaryOpsEnd && "Binary operators only!"); assert((NoWrapKind == OBO::NoSignedWrap || NoWrapKind == OBO::NoUnsignedWrap || NoWrapKind == (OBO::NoUnsignedWrap | OBO::NoSignedWrap)) && "NoWrapKind invalid!"); unsigned BitWidth = C.getBitWidth(); if (BinOp != Instruction::Add) // Conservative answer: empty set return ConstantRange(BitWidth, false); if (C.isMinValue()) // Full set: nothing signed / unsigned wraps when added to 0. return ConstantRange(BitWidth); ConstantRange Result(BitWidth); if (NoWrapKind & OBO::NoUnsignedWrap) Result = SubsetIntersect(Result, ConstantRange(APInt::getNullValue(BitWidth), -C)); if (NoWrapKind & OBO::NoSignedWrap) { if (C.isStrictlyPositive()) Result = SubsetIntersect( Result, ConstantRange(APInt::getSignedMinValue(BitWidth), APInt::getSignedMinValue(BitWidth) - C)); else Result = SubsetIntersect( Result, ConstantRange(APInt::getSignedMinValue(BitWidth) - C, APInt::getSignedMinValue(BitWidth))); } return Result; }
bool GuardWideningImpl::combineRangeChecks( SmallVectorImpl<GuardWideningImpl::RangeCheck> &Checks, SmallVectorImpl<GuardWideningImpl::RangeCheck> &RangeChecksOut) { unsigned OldCount = Checks.size(); while (!Checks.empty()) { // Pick all of the range checks with a specific base and length, and try to // merge them. Value *CurrentBase = Checks.front().getBase(); Value *CurrentLength = Checks.front().getLength(); SmallVector<GuardWideningImpl::RangeCheck, 3> CurrentChecks; auto IsCurrentCheck = [&](GuardWideningImpl::RangeCheck &RC) { return RC.getBase() == CurrentBase && RC.getLength() == CurrentLength; }; copy_if(Checks, std::back_inserter(CurrentChecks), IsCurrentCheck); Checks.erase(remove_if(Checks, IsCurrentCheck), Checks.end()); assert(CurrentChecks.size() != 0 && "We know we have at least one!"); if (CurrentChecks.size() < 3) { RangeChecksOut.insert(RangeChecksOut.end(), CurrentChecks.begin(), CurrentChecks.end()); continue; } // CurrentChecks.size() will typically be 3 here, but so far there has been // no need to hard-code that fact. std::sort(CurrentChecks.begin(), CurrentChecks.end(), [&](const GuardWideningImpl::RangeCheck &LHS, const GuardWideningImpl::RangeCheck &RHS) { return LHS.getOffsetValue().slt(RHS.getOffsetValue()); }); // Note: std::sort should not invalidate the ChecksStart iterator. ConstantInt *MinOffset = CurrentChecks.front().getOffset(), *MaxOffset = CurrentChecks.back().getOffset(); unsigned BitWidth = MaxOffset->getValue().getBitWidth(); if ((MaxOffset->getValue() - MinOffset->getValue()) .ugt(APInt::getSignedMinValue(BitWidth))) return false; APInt MaxDiff = MaxOffset->getValue() - MinOffset->getValue(); const APInt &HighOffset = MaxOffset->getValue(); auto OffsetOK = [&](const GuardWideningImpl::RangeCheck &RC) { return (HighOffset - RC.getOffsetValue()).ult(MaxDiff); }; if (MaxDiff.isMinValue() || !std::all_of(std::next(CurrentChecks.begin()), CurrentChecks.end(), OffsetOK)) return false; // We have a series of f+1 checks as: // // I+k_0 u< L ... Chk_0 // I_k_1 u< L ... Chk_1 // ... // I_k_f u< L ... Chk_(f+1) // // with forall i in [0,f): k_f-k_i u< k_f-k_0 ... Precond_0 // k_f-k_0 u< INT_MIN+k_f ... Precond_1 // k_f != k_0 ... Precond_2 // // Claim: // Chk_0 AND Chk_(f+1) implies all the other checks // // Informal proof sketch: // // We will show that the integer range [I+k_0,I+k_f] does not unsigned-wrap // (i.e. going from I+k_0 to I+k_f does not cross the -1,0 boundary) and // thus I+k_f is the greatest unsigned value in that range. // // This combined with Ckh_(f+1) shows that everything in that range is u< L. // Via Precond_0 we know that all of the indices in Chk_0 through Chk_(f+1) // lie in [I+k_0,I+k_f], this proving our claim. // // To see that [I+k_0,I+k_f] is not a wrapping range, note that there are // two possibilities: I+k_0 u< I+k_f or I+k_0 >u I+k_f (they can't be equal // since k_0 != k_f). In the former case, [I+k_0,I+k_f] is not a wrapping // range by definition, and the latter case is impossible: // // 0-----I+k_f---I+k_0----L---INT_MAX,INT_MIN------------------(-1) // xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx // // For Chk_0 to succeed, we'd have to have k_f-k_0 (the range highlighted // with 'x' above) to be at least >u INT_MIN. RangeChecksOut.emplace_back(CurrentChecks.front()); RangeChecksOut.emplace_back(CurrentChecks.back()); } assert(RangeChecksOut.size() <= OldCount && "We pessimized!"); return RangeChecksOut.size() != OldCount; }