예제 #1
0
void GCS_MAVLINK::send_raw_imu(const AP_InertialSensor &ins, const Compass &compass)
{
    const Vector3f &accel = ins.get_accel(0);
    const Vector3f &gyro = ins.get_gyro(0);
    const Vector3f &mag = compass.get_field(0);

    mavlink_msg_raw_imu_send(
        chan,
        hal.scheduler->micros(),
        accel.x * 1000.0f / GRAVITY_MSS,
        accel.y * 1000.0f / GRAVITY_MSS,
        accel.z * 1000.0f / GRAVITY_MSS,
        gyro.x * 1000.0f,
        gyro.y * 1000.0f,
        gyro.z * 1000.0f,
        mag.x,
        mag.y,
        mag.z);
#if INS_MAX_INSTANCES > 1
    if (ins.get_gyro_count() <= 1 &&
        ins.get_accel_count() <= 1 &&
        compass.get_count() <= 1) {
        return;
    }
    const Vector3f &accel2 = ins.get_accel(1);
    const Vector3f &gyro2 = ins.get_gyro(1);
    const Vector3f &mag2 = compass.get_field(1);
    mavlink_msg_scaled_imu2_send(
        chan,
        hal.scheduler->millis(),
        accel2.x * 1000.0f / GRAVITY_MSS,
        accel2.y * 1000.0f / GRAVITY_MSS,
        accel2.z * 1000.0f / GRAVITY_MSS,
        gyro2.x * 1000.0f,
        gyro2.y * 1000.0f,
        gyro2.z * 1000.0f,
        mag2.x,
        mag2.y,
        mag2.z);        
#endif
}
예제 #2
0
bool AP_Arming::ins_accels_consistent(const AP_InertialSensor &ins)
{
    const uint8_t accel_count = ins.get_accel_count();
    if (accel_count <= 1) {
        return true;
    }

    const Vector3f &prime_accel_vec = ins.get_accel();
    const uint32_t now = AP_HAL::millis();
    for(uint8_t i=0; i<accel_count; i++) {
        if (!ins.use_accel(i)) {
            continue;
        }
        // get next accel vector
        const Vector3f &accel_vec = ins.get_accel(i);
        Vector3f vec_diff = accel_vec - prime_accel_vec;
        // allow for user-defined difference, typically 0.75 m/s/s. Has to pass in last 10 seconds
        float threshold = accel_error_threshold;
        if (i >= 2) {
            /*
              we allow for a higher threshold for IMU3 as it
              runs at a different temperature to IMU1/IMU2,
              and is not used for accel data in the EKF
            */
            threshold *= 3;
        }

        // EKF is less sensitive to Z-axis error
        vec_diff.z *= 0.5f;

        if (vec_diff.length() <= threshold) {
            last_accel_pass_ms[i] = now;
        }
        if (now - last_accel_pass_ms[i] > 10000) {
            return false;
        }
    }

    return true;
}
예제 #3
0
static void run_test()
{
    Vector3f accel;
    Vector3f gyro;
    float length;
	uint8_t counter = 0;

    // flush any user input
    while( hal.console->available() ) {
        hal.console->read();
    }

    // clear out any existing samples from ins
    ins.update();

    // loop as long as user does not press a key
    while( !hal.console->available() ) {

        // wait until we have a sample
        ins.wait_for_sample();

        // read samples from ins
        ins.update();
        accel = ins.get_accel();
        gyro = ins.get_gyro();

        length = accel.length();

		if (counter++ % 50 == 0) {
			// display results
			hal.console->printf_P(PSTR("Accel X:%4.2f \t Y:%4.2f \t Z:%4.2f \t len:%4.2f \t Gyro X:%4.2f \t Y:%4.2f \t Z:%4.2f\n"), 
								  accel.x, accel.y, accel.z, length, gyro.x, gyro.y, gyro.z);
		}
    }

    // clear user input
    while( hal.console->available() ) {
        hal.console->read();
    }
}
예제 #4
0
void GCS_MAVLINK::send_raw_imu(const AP_InertialSensor &ins, const Compass &compass)
{
    const Vector3f &accel = ins.get_accel(0);
    const Vector3f &gyro = ins.get_gyro(0);
    Vector3f mag;
    if (compass.get_count() >= 1) {
        mag = compass.get_field(0);
    } else {
        mag.zero();
    }

    mavlink_msg_raw_imu_send(
        chan,
        AP_HAL::micros(),
        accel.x * 1000.0f / GRAVITY_MSS,
        accel.y * 1000.0f / GRAVITY_MSS,
        accel.z * 1000.0f / GRAVITY_MSS,
        gyro.x * 1000.0f,
        gyro.y * 1000.0f,
        gyro.z * 1000.0f,
        mag.x,
        mag.y,
        mag.z);

    if (ins.get_gyro_count() <= 1 &&
            ins.get_accel_count() <= 1 &&
            compass.get_count() <= 1) {
        return;
    }
    const Vector3f &accel2 = ins.get_accel(1);
    const Vector3f &gyro2 = ins.get_gyro(1);
    if (compass.get_count() >= 2) {
        mag = compass.get_field(1);
    } else {
        mag.zero();
    }
    mavlink_msg_scaled_imu2_send(
        chan,
        AP_HAL::millis(),
        accel2.x * 1000.0f / GRAVITY_MSS,
        accel2.y * 1000.0f / GRAVITY_MSS,
        accel2.z * 1000.0f / GRAVITY_MSS,
        gyro2.x * 1000.0f,
        gyro2.y * 1000.0f,
        gyro2.z * 1000.0f,
        mag.x,
        mag.y,
        mag.z);

    if (ins.get_gyro_count() <= 2 &&
            ins.get_accel_count() <= 2 &&
            compass.get_count() <= 2) {
        return;
    }
    const Vector3f &accel3 = ins.get_accel(2);
    const Vector3f &gyro3 = ins.get_gyro(2);
    if (compass.get_count() >= 3) {
        mag = compass.get_field(2);
    } else {
        mag.zero();
    }
    mavlink_msg_scaled_imu3_send(
        chan,
        AP_HAL::millis(),
        accel3.x * 1000.0f / GRAVITY_MSS,
        accel3.y * 1000.0f / GRAVITY_MSS,
        accel3.z * 1000.0f / GRAVITY_MSS,
        gyro3.x * 1000.0f,
        gyro3.y * 1000.0f,
        gyro3.z * 1000.0f,
        mag.x,
        mag.y,
        mag.z);
}
예제 #5
0
static void run_test()
{
    Vector3f accel;
    Vector3f gyro;
    uint8_t counter = 0;
    static uint8_t accel_count = ins.get_accel_count();
    static uint8_t gyro_count = ins.get_gyro_count();
    static uint8_t ins_count = MAX(accel_count, gyro_count);

    // flush any user input
    while (hal.console->available()) {
        hal.console->read();
    }

    // clear out any existing samples from ins
    ins.update();

    // loop as long as user does not press a key
    while (!hal.console->available()) {
        // wait until we have a sample
        ins.wait_for_sample();

        // read samples from ins
        ins.update();

        // print each accel/gyro result every 50 cycles
        if (counter++ % 50 != 0) {
            continue;
        }

        // loop and print each sensor
        for (uint8_t ii = 0; ii < ins_count; ii++) {
            char state;

            if (ii > accel_count - 1) {
                // No accel present
                state = '-';
            } else if (ins.get_accel_health(ii)) {
                // Healthy accel
                state = 'h';
            } else {
                // Accel present but not healthy
                state = 'u';
            }

            accel = ins.get_accel(ii);

            hal.console->printf("%u - Accel (%c) : X:%6.2f Y:%6.2f Z:%6.2f norm:%5.2f",
                                ii, state, (double)accel.x, (double)accel.y, (double)accel.z,
                                (double)accel.length());

            gyro = ins.get_gyro(ii);

            if (ii > gyro_count - 1) {
                // No gyro present
                state = '-';
            } else if (ins.get_gyro_health(ii)) {
                // Healthy gyro
                state = 'h';
            } else {
                // Gyro present but not healthy
                state = 'u';
            }

            hal.console->printf("   Gyro (%c) : X:%6.2f Y:%6.2f Z:%6.2f\n",
                                state, (double)gyro.x, (double)gyro.y, (double)gyro.z);
            auto temp = ins.get_temperature(ii);
            hal.console->printf("   t:%6.2f\n", (double)temp);
        }
    }

    // clear user input
    while (hal.console->available()) {
        hal.console->read();
    }
}