static void gradCov(omxFitFunction *oo, FitContext *fc) { const double Scale = Global->llScale; omxExpectation *expectation = oo->expectation; BA81FitState *state = (BA81FitState*) oo->argStruct; BA81Expect *estate = (BA81Expect*) expectation->argStruct; if (estate->verbose >= 1) mxLog("%s: cross product approximation", oo->name()); estate->grp.ba81OutcomeProb(estate->itemParam->data, FALSE); const int numThreads = Global->numThreads; const int numUnique = estate->getNumUnique(); ba81NormalQuad &quad = estate->getQuad(); const int numSpecific = quad.numSpecific; const int maxDims = quad.maxDims; const int pDims = numSpecific? maxDims-1 : maxDims; const int maxAbilities = quad.maxAbilities; Eigen::MatrixXd icovMat(pDims, pDims); if (maxAbilities) { Eigen::VectorXd mean; Eigen::MatrixXd srcMat; estate->getLatentDistribution(fc, mean, srcMat); icovMat = srcMat.topLeftCorner(pDims, pDims); Matrix tmp(icovMat.data(), pDims, pDims); int info = InvertSymmetricPosDef(tmp, 'U'); if (info) { omxRaiseErrorf("%s: latent covariance matrix is not positive definite", oo->name()); return; } icovMat.triangularView<Eigen::Lower>() = icovMat.transpose().triangularView<Eigen::Lower>(); } std::vector<int> &rowMap = estate->grp.rowMap; double *rowWeight = estate->grp.rowWeight; std::vector<bool> &rowSkip = estate->grp.rowSkip; const int totalQuadPoints = quad.totalQuadPoints; omxMatrix *itemParam = estate->itemParam; omxBuffer<double> patternLik(numUnique); const int priDerivCoef = pDims + triangleLoc1(pDims); const int numLatents = maxAbilities + triangleLoc1(maxAbilities); const int thrDerivSize = itemParam->cols * state->itemDerivPadSize; const int totalOutcomes = estate->totalOutcomes(); const int numItems = state->freeItemParams? estate->numItems() : 0; const size_t numParam = fc->varGroup->vars.size(); std::vector<double> thrGrad(numThreads * numParam); std::vector<double> thrMeat(numThreads * numParam * numParam); const double *wherePrep = quad.wherePrep.data(); if (numSpecific == 0) { omxBuffer<double> thrLxk(totalQuadPoints * numThreads); omxBuffer<double> derivCoef(totalQuadPoints * priDerivCoef); if (state->freeLatents) { #pragma omp parallel for num_threads(numThreads) for (int qx=0; qx < totalQuadPoints; qx++) { const double *where = wherePrep + qx * maxDims; calcDerivCoef(fc, state, estate, icovMat.data(), where, derivCoef.data() + qx * priDerivCoef); } } #pragma omp parallel for num_threads(numThreads) for (int px=0; px < numUnique; px++) { if (rowSkip[px]) continue; int thrId = omx_absolute_thread_num(); double *lxk = thrLxk.data() + thrId * totalQuadPoints; omxBuffer<double> expected(totalOutcomes); // can use maxOutcomes instead TODO std::vector<double> deriv0(thrDerivSize); std::vector<double> latentGrad(numLatents); std::vector<double> patGrad(numParam); double *grad = thrGrad.data() + thrId * numParam; double *meat = thrMeat.data() + thrId * numParam * numParam; estate->grp.ba81LikelihoodSlow2(px, lxk); // If patternLik is already valid, maybe could avoid this loop TODO double patternLik1 = 0; for (int qx=0; qx < totalQuadPoints; qx++) { patternLik1 += lxk[qx]; } patternLik[px] = patternLik1; // if (!validPatternLik(state, patternLik1)) complain, TODO for (int qx=0; qx < totalQuadPoints; qx++) { double tmp = lxk[qx]; mapLatentDeriv(state, estate, tmp, derivCoef.data() + qx * priDerivCoef, latentGrad.data()); for (int ix=0; ix < numItems; ++ix) { int pick = estate->grp.dataColumns[ix][rowMap[px]]; if (pick == NA_INTEGER) continue; OMXZERO(expected.data(), estate->itemOutcomes(ix)); expected[pick-1] = tmp; const double *spec = estate->itemSpec(ix); double *iparam = omxMatrixColumn(itemParam, ix); const int id = spec[RPF_ISpecID]; double *myDeriv = deriv0.data() + ix * state->itemDerivPadSize; (*Glibrpf_model[id].dLL1)(spec, iparam, wherePrep + qx * maxDims, expected.data(), myDeriv); } } gradCov_finish_1pat(1 / patternLik1, rowWeight[px], numItems, numLatents, numParam, state, estate, itemParam, deriv0, latentGrad, Scale, patGrad, grad, meat); } } else { const int totalPrimaryPoints = quad.totalPrimaryPoints; const int specificPoints = quad.quadGridSize; omxBuffer<double> thrLxk(totalQuadPoints * numSpecific * numThreads); omxBuffer<double> thrEi(totalPrimaryPoints * numThreads); omxBuffer<double> thrEis(totalPrimaryPoints * numSpecific * numThreads); const int derivPerPoint = priDerivCoef + 2 * numSpecific; omxBuffer<double> derivCoef(totalQuadPoints * derivPerPoint); if (state->freeLatents) { #pragma omp parallel for num_threads(numThreads) for (int qx=0; qx < totalQuadPoints; qx++) { const double *where = wherePrep + qx * maxDims; calcDerivCoef(fc, state, estate, icovMat.data(), where, derivCoef.data() + qx * derivPerPoint); for (int Sgroup=0; Sgroup < numSpecific; ++Sgroup) { calcDerivCoef1(fc, state, estate, where, Sgroup, derivCoef.data() + qx * derivPerPoint + priDerivCoef + 2 * Sgroup); } } } #pragma omp parallel for num_threads(numThreads) for (int px=0; px < numUnique; px++) { if (rowSkip[px]) continue; int thrId = omx_absolute_thread_num(); double *lxk = thrLxk.data() + totalQuadPoints * numSpecific * thrId; double *Ei = thrEi.data() + totalPrimaryPoints * thrId; double *Eis = thrEis.data() + totalPrimaryPoints * numSpecific * thrId; omxBuffer<double> expected(totalOutcomes); // can use maxOutcomes instead TODO std::vector<double> deriv0(thrDerivSize); std::vector<double> latentGrad(numLatents); std::vector<double> patGrad(numParam); double *grad = thrGrad.data() + thrId * numParam; double *meat = thrMeat.data() + thrId * numParam * numParam; estate->grp.cai2010EiEis(px, lxk, Eis, Ei); for (int qx=0, qloc = 0; qx < totalPrimaryPoints; qx++) { for (int sgroup=0; sgroup < numSpecific; ++sgroup) { Eis[qloc] = Ei[qx] / Eis[qloc]; ++qloc; } } for (int qloc=0, eisloc=0, qx=0; eisloc < totalPrimaryPoints * numSpecific; eisloc += numSpecific) { for (int sx=0; sx < specificPoints; sx++) { mapLatentDeriv(state, estate, Eis[eisloc] * lxk[qloc], derivCoef.data() + qx * derivPerPoint, latentGrad.data()); for (int Sgroup=0; Sgroup < numSpecific; Sgroup++) { double lxk1 = lxk[qloc]; double Eis1 = Eis[eisloc + Sgroup]; double tmp = Eis1 * lxk1; mapLatentDerivS(state, estate, Sgroup, tmp, derivCoef.data() + qx * derivPerPoint + priDerivCoef + 2 * Sgroup, latentGrad.data()); for (int ix=0; ix < numItems; ++ix) { if (estate->grp.Sgroup[ix] != Sgroup) continue; int pick = estate->grp.dataColumns[ix][rowMap[px]]; if (pick == NA_INTEGER) continue; OMXZERO(expected.data(), estate->itemOutcomes(ix)); expected[pick-1] = tmp; const double *spec = estate->itemSpec(ix); double *iparam = omxMatrixColumn(itemParam, ix); const int id = spec[RPF_ISpecID]; const int dims = spec[RPF_ISpecDims]; double *myDeriv = deriv0.data() + ix * state->itemDerivPadSize; const double *where = wherePrep + qx * maxDims; Eigen::VectorXd ptheta(dims); for (int dx=0; dx < dims; dx++) { ptheta[dx] = where[std::min(dx, maxDims-1)]; } (*Glibrpf_model[id].dLL1)(spec, iparam, ptheta.data(), expected.data(), myDeriv); } ++qloc; } ++qx; } } // If patternLik is already valid, maybe could avoid this loop TODO double patternLik1 = 0; for (int qx=0; qx < totalPrimaryPoints; ++qx) { patternLik1 += Ei[qx]; } patternLik[px] = patternLik1; gradCov_finish_1pat(1 / patternLik1, rowWeight[px], numItems, numLatents, numParam, state, estate, itemParam, deriv0, latentGrad, Scale, patGrad, grad, meat); } } for (int tx=1; tx < numThreads; ++tx) { double *th = thrGrad.data() + tx * numParam; for (size_t en=0; en < numParam; ++en) { thrGrad[en] += th[en]; } } for (int tx=1; tx < numThreads; ++tx) { double *th = thrMeat.data() + tx * numParam * numParam; for (size_t en=0; en < numParam * numParam; ++en) { thrMeat[en] += th[en]; } } for (size_t d1=0; d1 < numParam; ++d1) { fc->grad(d1) += thrGrad[d1]; } if (fc->infoB) { for (size_t d1=0; d1 < numParam; ++d1) { for (size_t d2=0; d2 < numParam; ++d2) { int cell = d1 * numParam + d2; fc->infoB[cell] += thrMeat[cell]; } } } }
void omxInitExpectationBA81(omxExpectation* oo) { omxState* currentState = oo->currentState; SEXP rObj = oo->rObj; SEXP tmp; if(OMX_DEBUG) { mxLog("Initializing %s.", oo->name); } if (!Glibrpf_model) { #if USE_EXTERNAL_LIBRPF get_librpf_t get_librpf = (get_librpf_t) R_GetCCallable("rpf", "get_librpf_model_GPL"); (*get_librpf)(LIBIFA_RPF_API_VERSION, &Glibrpf_numModels, &Glibrpf_model); #else // if linking against included source code Glibrpf_numModels = librpf_numModels; Glibrpf_model = librpf_model; #endif } BA81Expect *state = new BA81Expect; // These two constants should be as identical as possible state->name = oo->name; if (0) { state->LogLargestDouble = 0.0; state->LargestDouble = 1.0; } else { state->LogLargestDouble = log(std::numeric_limits<double>::max()) - 1; state->LargestDouble = exp(state->LogLargestDouble); ba81NormalQuad &quad = state->getQuad(); quad.setOne(state->LargestDouble); } state->expectedUsed = false; state->estLatentMean = NULL; state->estLatentCov = NULL; state->type = EXPECTATION_OBSERVED; state->itemParam = NULL; state->EitemParam = NULL; state->itemParamVersion = 0; state->latentParamVersion = 0; oo->argStruct = (void*) state; {ScopedProtect p1(tmp, R_do_slot(rObj, Rf_install("data"))); state->data = omxDataLookupFromState(tmp, currentState); } if (strcmp(omxDataType(state->data), "raw") != 0) { omxRaiseErrorf("%s unable to handle data type %s", oo->name, omxDataType(state->data)); return; } {ScopedProtect p1(tmp, R_do_slot(rObj, Rf_install("verbose"))); state->verbose = Rf_asInteger(tmp); } int targetQpoints; {ScopedProtect p1(tmp, R_do_slot(rObj, Rf_install("qpoints"))); targetQpoints = Rf_asInteger(tmp); } {ScopedProtect p1(tmp, R_do_slot(rObj, Rf_install("qwidth"))); state->grp.setGridFineness(Rf_asReal(tmp), targetQpoints); } {ScopedProtect p1(tmp, R_do_slot(rObj, Rf_install("ItemSpec"))); state->grp.importSpec(tmp); if (state->verbose >= 2) mxLog("%s: found %d item specs", oo->name, state->numItems()); } state->_latentMeanOut = omxNewMatrixFromSlot(rObj, currentState, "mean"); state->_latentCovOut = omxNewMatrixFromSlot(rObj, currentState, "cov"); state->itemParam = omxNewMatrixFromSlot(rObj, currentState, "item"); state->grp.param = state->itemParam->data; // algebra not allowed yet TODO const int numItems = state->itemParam->cols; if (state->numItems() != numItems) { omxRaiseErrorf("ItemSpec length %d must match the number of item columns (%d)", state->numItems(), numItems); return; } if (state->itemParam->rows != state->grp.impliedParamRows) { omxRaiseErrorf("item matrix must have %d rows", state->grp.impliedParamRows); return; } state->grp.paramRows = state->itemParam->rows; // for algebra item param, will need to defer until later? state->grp.learnMaxAbilities(); int maxAbilities = state->grp.itemDims; state->grp.setFactorNames(state->itemParam->rownames); { ProtectedSEXP tmp2(R_do_slot(rObj, Rf_install(".detectIndependence"))); state->grp.detectIndependence = Rf_asLogical(tmp2); } {ScopedProtect p1(tmp, R_do_slot(rObj, Rf_install("EstepItem"))); if (!Rf_isNull(tmp)) { int rows, cols; getMatrixDims(tmp, &rows, &cols); if (rows != state->itemParam->rows || cols != state->itemParam->cols) { Rf_error("EstepItem must have the same dimensions as the item MxMatrix"); } state->EitemParam = REAL(tmp); } } oo->computeFun = ba81compute; oo->setVarGroup = ignoreSetVarGroup; oo->destructFun = ba81Destroy; oo->populateAttrFun = ba81PopulateAttributes; oo->componentFun = getComponent; oo->canDuplicate = false; // TODO: Exactly identical rows do not contribute any information. // The sorting algorithm ought to remove them so we get better cache behavior. // The following summary stats would be cheaper to calculate too. omxData *data = state->data; if (data->hasDefinitionVariables()) Rf_error("%s: not implemented yet", oo->name); std::vector<int> &rowMap = state->grp.rowMap; int weightCol; {ScopedProtect p1(tmp, R_do_slot(rObj, Rf_install("weightColumn"))); weightCol = INTEGER(tmp)[0]; } if (weightCol == NA_INTEGER) { // Should rowMap be part of omxData? This is essentially a // generic compression step that shouldn't be specific to IFA models. state->grp.rowWeight = (double*) R_alloc(data->rows, sizeof(double)); rowMap.resize(data->rows); int numUnique = 0; for (int rx=0; rx < data->rows; ) { int rw = 1; state->grp.rowWeight[numUnique] = rw; rowMap[numUnique] = rx; rx += rw; ++numUnique; } rowMap.resize(numUnique); state->weightSum = state->data->rows; } else { if (omxDataColumnIsFactor(data, weightCol)) { omxRaiseErrorf("%s: weightColumn %d is a factor", oo->name, 1 + weightCol); return; } state->grp.rowWeight = omxDoubleDataColumn(data, weightCol); state->weightSum = 0; for (int rx=0; rx < data->rows; ++rx) { state->weightSum += state->grp.rowWeight[rx]; } rowMap.resize(data->rows); for (size_t rx=0; rx < rowMap.size(); ++rx) { rowMap[rx] = rx; } } // complain about non-integral rowWeights (EAP can't work) TODO auto colMap = oo->getDataColumns(); for (int cx = 0; cx < numItems; cx++) { int *col = omxIntDataColumnUnsafe(data, colMap[cx]); state->grp.dataColumns.push_back(col); } // sanity check data for (int cx = 0; cx < numItems; cx++) { if (!omxDataColumnIsFactor(data, colMap[cx])) { data->omxPrintData("diagnostic", 3); omxRaiseErrorf("%s: column %d is not a factor", oo->name, int(1 + colMap[cx])); return; } } // TODO the max outcome should be available from omxData for (int rx=0; rx < data->rows; rx++) { int cols = 0; for (int cx = 0; cx < numItems; cx++) { const int *col = state->grp.dataColumns[cx]; int pick = col[rx]; if (pick == NA_INTEGER) continue; ++cols; const int no = state->grp.itemOutcomes[cx]; if (pick > no) { Rf_error("Data for item '%s' has at least %d outcomes, not %d", state->itemParam->colnames[cx], pick, no); } } if (cols == 0) { Rf_error("Row %d has all NAs", 1+rx); } } if (state->_latentMeanOut && state->_latentMeanOut->rows * state->_latentMeanOut->cols != maxAbilities) { Rf_error("The mean matrix '%s' must be a row or column vector of size %d", state->_latentMeanOut->name(), maxAbilities); } if (state->_latentCovOut && (state->_latentCovOut->rows != maxAbilities || state->_latentCovOut->cols != maxAbilities)) { Rf_error("The cov matrix '%s' must be %dx%d", state->_latentCovOut->name(), maxAbilities, maxAbilities); } state->grp.setLatentDistribution(state->_latentMeanOut? state->_latentMeanOut->data : NULL, state->_latentCovOut? state->_latentCovOut->data : NULL); { EigenArrayAdaptor Eparam(state->itemParam); Eigen::Map< Eigen::VectorXd > meanVec(state->grp.mean, maxAbilities); Eigen::Map< Eigen::MatrixXd > covMat(state->grp.cov, maxAbilities, maxAbilities); state->grp.quad.setStructure(state->grp.qwidth, state->grp.qpoints, Eparam, meanVec, covMat); } {ScopedProtect p1(tmp, R_do_slot(rObj, Rf_install("minItemsPerScore"))); state->grp.setMinItemsPerScore(Rf_asInteger(tmp)); } state->grp.buildRowSkip(); if (isErrorRaised()) return; {ScopedProtect p1(tmp, R_do_slot(rObj, Rf_install("debugInternal"))); state->debugInternal = Rf_asLogical(tmp); } state->ElatentVersion = 0; if (state->_latentMeanOut) { state->estLatentMean = omxInitMatrix(maxAbilities, 1, TRUE, currentState); omxCopyMatrix(state->estLatentMean, state->_latentMeanOut); // rename matrices TODO } if (state->_latentCovOut) { state->estLatentCov = omxInitMatrix(maxAbilities, maxAbilities, TRUE, currentState); omxCopyMatrix(state->estLatentCov, state->_latentCovOut); } }