예제 #1
0
ExprFieldWrapper::ExprFieldWrapper(const Expr& expr)
  : expr_(expr),
    df_(),
    discreteSpace_(),
    //map_(),
    indices_(),
    Expr_size_(1),
    isPointData_(true)
{
	int index = 0;
	Expr_size_ = expr.size();
	// Now it is independent of the size of the size of the Expression
	for(index = 0 ; index < Expr_size_ ; index++)
	{
	  const DiscreteFunction* df
      = dynamic_cast<const DiscreteFunction*>(expr[index].ptr().get());
	  const DiscreteFuncElement* dfe
      = dynamic_cast<const DiscreteFuncElement*>(expr[index].ptr().get());
    if (df != 0)
    {
      discreteSpace_ = df->discreteSpace();
      //map_ = df->map();
      indices_.append(tuple(0));
      BasisFamily basis = discreteSpace_.basis()[0];
      const Lagrange* lagr = dynamic_cast<const Lagrange*>(basis.ptr().get());
      if (lagr != 0 && lagr->order()==0) isPointData_ = false;
      const EdgeLocalizedBasis* elb = dynamic_cast<const EdgeLocalizedBasis*>(basis.ptr().get());
      if (elb!=0) isPointData_ = false;
      df_ = df->data();
    }
    else if (dfe != 0)
    {
      const DiscreteFunctionData* f = DiscreteFunctionData::getData(dfe);

      TEST_FOR_EXCEPTION(f == 0, RuntimeError,
        "ExprFieldWrapper ctor argument "
        << expr << " is not a discrete function");
      discreteSpace_ = f->discreteSpace();
      //map_ = f->map();
      indices_.append(tuple(dfe->myIndex()));
      BasisFamily basis = discreteSpace_.basis()[indices_[index][0]];
      const Lagrange* lagr = dynamic_cast<const Lagrange*>(basis.ptr().get());
      if (lagr != 0 && lagr->order()==0) isPointData_ = false;      
      const EdgeLocalizedBasis* elb = dynamic_cast<const EdgeLocalizedBasis*>(basis.ptr().get());
      if (elb!=0) isPointData_ = false;

      df_ = f;
          
    }
    else
    {
      TEST_FOR_EXCEPTION(df == 0 && dfe == 0, RuntimeError,
        "ExprFieldWrapper ctor argument is not a discrete "
        "function");
    }
  }
}
예제 #2
0
int main(int argc, char** argv)
{
  
  try
  {
    GlobalMPISession session(&argc, &argv);

    TimeMonitor t(totalTimer());

    int pMax = 1;
    int dim=2;

    CellType cellType = TriangleCell;

    Point a = Point(0.0, 0.0);
    Point b = Point(1.0, 0.0);
    Point c = Point(0.0, 1.0);
    CellJacobianBatch JBatch;
    JBatch.resize(1, 2, 2);
    double* J = JBatch.jVals(0);
    J[0] = b[0] - a[0];
    J[1] = c[0] - a[0];
    J[2] = b[1] - a[1];
    J[3] = c[1] - a[1];


    bool isInternalBdry=false;

    /* ------ evaluate Lagrange and FIAT-Lagrange at the vertices */
    Array<Point> verts = tuple(a,b,c);
    BasisFamily lagrange = new Lagrange(1);
    BasisFamily fiatLagrange = new Lagrange(1);
      
    MultiIndex d0(0,0,0);
    MultiIndex dx(1,0,0);
    MultiIndex dy(0,1,0);

    Array<Array<Array<double> > > result;

    Array<int> dummy;

    std::cerr << "------ Evaluating bases at vertices ----------" << std::endl
         << std::endl;

    std::cerr << "Evaluating phi(vert) with FIAT-Lagrange" << std::endl;
    fiatLagrange.ptr()->refEval(cellType, verts, d0, result);
    std::cerr << "results = " << result << std::endl << std::endl;

    std::cerr << "Evaluating phi(vert) with Lagrange" << std::endl;
    lagrange.ptr()->refEval(cellType, verts, d0, result);
    std::cerr << "results = " << result << std::endl << std::endl;

    std::cerr << std::endl ;

    std::cerr << "Evaluating Dx*phi(vert) with FIAT-Lagrange" << std::endl;
    fiatLagrange.ptr()->refEval(cellType, verts, dx, result);
    std::cerr << "results = " << result << std::endl << std::endl;

    std::cerr << "Evaluating Dx*phi(vert) with Lagrange" << std::endl;
    lagrange.ptr()->refEval(cellType, verts, dx, result);
    std::cerr << "results = " << result << std::endl << std::endl;

    std::cerr << std::endl ;
      
    std::cerr << "Evaluating Dy*phi(vert) with FIAT-Lagrange" << std::endl;
    fiatLagrange.ptr()->refEval(cellType, verts, dy, result);
    std::cerr << "results = " << result << std::endl << std::endl;

    std::cerr << "Evaluating Dy*phi(vert) with Lagrange" << std::endl;
    lagrange.ptr()->refEval(cellType, verts, dy, result);
    std::cerr << "results = " << result << std::endl << std::endl;

      

    /* --------- evaluate integrals over elements ----------- */
      
    RCP<Array<double> > A = rcp(new Array<double>());
          
    QuadratureFamily quad = new GaussianQuadrature(4);
    Array<double> quadWeights;
    Array<Point> quadPts;
    quad.getPoints(cellType, quadPts, quadWeights);
    int nQuad = quadPts.size();

    Array<double> coeff(nQuad);
    for (int i=0; i<nQuad; i++) 
    {
      double s = quadPts[i][0];
      double t = quadPts[i][1];
      double x = a[0] + J[0]*s + J[1]*t;
      double y = a[1] + J[2]*s + J[3]*t;
      coeff[i] = x*y;
    }
    const double* const f = &(coeff[0]);

    std::cerr << std::endl << std::endl 
         << "---------------- One-forms --------------------" 
         << std::endl << std::endl;
    for (int p=1; p<=pMax; p++)
    {
      BasisFamily P = new Lagrange(p);
      for (int dp=0; dp<=1; dp++)
      {
        if (dp > p) continue;
        Tabs tab0;
        std::cerr << tab0 << "test function deriv order = " << dp << std::endl;
        int numTestDir = 1;
        if (dp==1) numTestDir = dim;
        for (int t=0; t<numTestDir; t++)
        {
          int alpha = t;
          Tabs tab;
          QuadratureIntegral ref(dim, cellType, dim, cellType, P, alpha, dp, quad, isInternalBdry);
          A->resize(ref.nNodesTest());
          ref.transformOneForm(JBatch, JBatch, dummy, f, A);
          std::cerr << tab << "test deriv direction =" << t << std::endl;
          std::cerr << tab << "transformed local vector: " << std::endl;
          std::cerr << tab << "{";
          for (int r=0; r<ref.nNodesTest(); r++)
          {
            if (r!=0) std::cerr << ", ";
            std::cerr << (*A)[r];
          }
          std::cerr << "}" << std::endl << std::endl;
        }
      }
    }

    std::cerr << std::endl << std::endl 
         << "---------------- Two-forms --------------------" 
         << std::endl << std::endl;
    for (int p=1; p<=pMax; p++)
    {
      BasisFamily P = new Lagrange(p);
      for (int q=1; q<=pMax; q++)
      {
        BasisFamily Q = new Lagrange(q);
        for (int dp=0; dp<=1; dp++)
        {
          if (dp > p) continue;
          Tabs tab0;
          std::cerr << tab0 << "test function deriv order = " << dp << std::endl;
          for (int dq=0; dq<=1; dq++)
          {
            if (dq > q) continue;
            Tabs tab1;
            std::cerr << tab1 
                 << "unk function deriv order = " << dq << std::endl;
            int numTestDir = 1;
            if (dp==1) numTestDir = dim;
            for (int t=0; t<numTestDir; t++)
            {
              int alpha = t;
              int numUnkDir = 1;
              if (dq==1) numUnkDir = dim;
              for (int u=0; u<numUnkDir; u++)
              {
                Tabs tab;
                int beta = u;
                QuadratureIntegral ref(dim, cellType, dim, cellType, P, alpha, 
                  dp, Q, beta, dq, quadd, isInternalBdry);
                A->resize(ref.nNodesTest()*ref.nNodesUnk());
                ref.transformTwoForm(JBatch, JBatch, dummy, f, A);

                std::cerr << tab << "test deriv direction =" << 
                  t << ", unk deriv direction =" << u << std::endl;
                std::cerr << tab << "transformed local stiffness matrix" << std::endl;
                std::cerr << tab << "{";

                for (int r=0; r<ref.nNodesTest(); r++)
                {
                  if (r!=0) std::cerr << ", ";
                  std::cerr << "{";
                  for (int c=0; c<ref.nNodesUnk(); c++)
                  {
                    if (c!=0) std::cerr << ", ";
                    std::cerr << chop((*A)[r + ref.nNodesTest()*c]);
                  }
                  std::cerr << "}";
                }
                std::cerr << "}" << std::endl << std::endl;
              }
            }
          }
        }
      }
    }
    TimeMonitor::summarize();

  }
	catch(std::exception& e)
  {
    std::cerr << e.what() << std::endl;
  }
}
void HomogeneousDOFMap::allocate(const Mesh& mesh, 
                                 const BasisFamily& basis,
                                 int numFuncs)
{
  Tabs tab;
  SUNDANCE_MSG1(setupVerb(), tab << "allocating DOF map for nFuncs=" << numFuncs);
  Array<int> fid(numFuncs);
  for (int f=0; f<numFuncs; f++) fid[f] = f;
  funcIDOnCellSets().append(fid);


  
  for (int d=0; d<=dim_; d++)
    {
      Tabs tab1;
      SUNDANCE_MSG2(setupVerb(), tab1 << "allocating d=" << d);
      /* record the number of facets for each cell type so we're
       * not making a bunch of mesh calls */
      numFacets_[d].resize(d);
      for (int fd=0; fd<d; fd++) numFacets_[d][fd]=mesh.numFacets(d, 0, fd);
      SUNDANCE_MSG3(setupVerb(), tab1 << "num facets for dimension " << d << " is " 
                         << numFacets_[d]);
          
      /* look up the node pointer for this cell and for all of its
       * facets */
      basis.ptr()->getLocalDOFs(mesh.cellType(d), localNodePtrs_[d]);


      SUNDANCE_MSG3(setupVerb(), tab1 << "node ptrs for dimension " << d << " are " 
                         << localNodePtrs_[d]);

      /* with the node pointers in hand, we can work out the number
       * of nodes per cell in this dimension */
      if (localNodePtrs_[d][d].size() > 0) 
        {
          nNodesPerCell_[d] = localNodePtrs_[d][d][0].size();
        }
      else
        {
          nNodesPerCell_[d] = 0;
        }
      SUNDANCE_MSG3(setupVerb(), tab1 << 
                         "num nodes for dimension " << d << " is " 
                         << nNodesPerCell_[d]);

      totalNNodesPerCell_[d] = nNodesPerCell_[d];
      for (int dd=0; dd<d; dd++) 
        {
          totalNNodesPerCell_[d] += numFacets_[d][dd]*nNodesPerCell_[dd];
        }

      /* we know from the mesh the number of cells in this dimension */
      if (nNodesPerCell_[d] > 0)
        {
          dofs_[d].resize(mesh.numCells(d));
        }
      else
        {
          dofs_[d].resize(0);
        }

      if (d > 0 && d < dim_) originalFacetOrientation_[d-1].resize(mesh.numCells(d));

      /* If any nodes are associated with the facets, then we know we have
       * a continuous basis function */
      if (d < dim_ && nNodesPerCell_[d] > 0) basisIsContinuous_ = true;


      /* now that we know the number of nodes per cell for this dimension,
       * we can allocate space for the DOFs in this dimension */
      int numCells = dofs_[d].size();
      for (int c=0; c<numCells; c++)
        {
          dofs_[d][c].resize(funcIDList().size() * nNodesPerCell_[d]);
          /* set everything to uninitializedVal() */
          for (int i=0; i<dofs_[d][c].size(); i++) 
            {
              dofs_[d][c][i] = uninitializedVal();
            }
        }
    }
  SUNDANCE_MSG1(setupVerb(), tab << "done allocating DOF map");
}
void checkbasis( BasisFamily &b1 , BasisFamily &b2 )
{
  int maxDim=3;
  double tol = 1.0e-13;
  int maxDiffOrder = 0;
  int numErrors = 0;
  QuadratureFamily quad = new GaussianQuadrature(4);
  
  for (int spatialDim=1; spatialDim<=maxDim; spatialDim++) {
    std::cerr << "\t" << "spatial dimension =" << spatialDim << std::endl;
    for (int cellDim=0; cellDim<=spatialDim; cellDim++) { 
      std::cerr << "\t\t" << "cell dimension =" << cellDim << std::endl;
      CellType cellType;
      if (cellDim==0) cellType=PointCell;
      if (cellDim==1) cellType=LineCell;
      if (cellDim==2) cellType=TriangleCell;
      if (cellDim==3) cellType=TetCell;
      
      Array<Point> qPts;
      Array<double> qWts;
      quad.getPoints(cellType, qPts, qWts);
      
      for (int d=0; d<=maxDiffOrder; d++) {
	if (cellDim==0 && d>0) continue;
	cerr << "\t\t\t" << "differentiation order = " << d << std::endl;
	for (int dir=0; dir<iPow(cellDim, d); dir++) {
	  std::cerr << "\t\t\t\t" << "direction = " << dir << std::endl;
	  MultiIndex mi;
	  mi[dir]=d;
	  Array<Array<double> > values1;
	  Array<Array<double> > values2;
	  std::cerr << "\t\t\t\t" << "computing basis1...";
	  b1.ptr()->refEval(spatialDim, cellType, qPts, mi, values1);
	  std::cerr << "done" << std::endl << "\t\t\t\t" << "computing basis2...";
	  b2.ptr()->refEval(spatialDim, cellType, qPts, mi, values2);
	  std::cerr << "done" << std::endl;
	  int nNodes1 = b1.ptr()->nNodes(spatialDim, cellType);
	  int nNodes2 = b2.ptr()->nNodes(spatialDim, cellType);
	  std::cerr << "\t\t\t\t" << "num nodes: basis1=" << nNodes1
	       << " basis2=" << nNodes2 << std::endl;
	  if (nNodes1 != nNodes2) {	
	    std::cerr << "******** ERROR: node counts should be equal" << std::endl;
	    numErrors++;
	    continue;
	  }
	  if (values1.size() != values2.size()) {
	    std::cerr << "******** ERROR: value array outer sizes should be equal" << std::endl;
	    numErrors++;
	    continue;
	  }
	  if (values1.size() != qPts.size()) {
	    std::cerr << "******** ERROR: value array outer size should be equal to number of quad points" << std::endl;
	    numErrors++;
	    continue;
	  }
	  for (int q=0; q<qPts.length(); q++) {
	    if (values1[q].length() != nNodes1) {
	      std::cerr << "******** ERROR: value array inner size should be equal to number of nodes" << std::endl;
	      numErrors++;
	      continue;
	    }
	    std::cerr << "\t\t\t\t\t" << "quad point q=" << q << " pt=" << qPts[q]
		 << std::endl;
	    for (int n=0; n<nNodes1; n++) {
	      std::cerr << "\t\t\t\t\t\t" << "node n=" << n << " phi1="
		   << values1[q][n]
		   << " phi2=" << values2[q][n]
		   << " |phi1-phi2|=" << fabs(values1[q][n]-values2[q][n])
		   << std::endl;
	      if (fabs(values1[q][n]-values2[q][n]) > tol) {
		cout << "ERROR" << std::endl; numErrors++;
	      }
	    }
	  }
	}
      }
    }
  }    
  std::cerr << std::endl << std::endl << "Summary: detected " << numErrors << " errors " << std::endl;
}
SubmaximalNodalDOFMap
::SubmaximalNodalDOFMap(const Mesh& mesh, 
  const CellFilter& cf,
  int nFuncs,
  int setupVerb)
  : DOFMapBase(mesh, setupVerb),
    dim_(0),
    nTotalFuncs_(nFuncs),
    domain_(cf),
    domains_(tuple(cf)),
    nodeLIDs_(),
    nodeDOFs_(),
    lidToPtrMap_(),
    mapStructure_()
{
  Tabs tab0(0);
  SUNDANCE_MSG1(setupVerb, tab0 << "in SubmaximalNodalDOFMap ctor");
  Tabs tab1;
  SUNDANCE_MSG2(setupVerb, tab1 << "domain " << domain_);
  SUNDANCE_MSG2(setupVerb, tab1 << "N funcs " << nFuncs);

  const MPIComm& comm = mesh.comm();
  int rank = comm.getRank();
  int nProc = comm.getNProc();
  
  dim_ = cf.dimension(mesh);  
  TEUCHOS_TEST_FOR_EXCEPT(dim_ != 0);

  CellSet nodes = cf.getCells(mesh);
  int nc = nodes.numCells();
  nodeLIDs_.reserve(nc);
  nodeDOFs_.reserve(nc);

  Array<Array<int> > remoteNodes(nProc);
  
  int nextDOF = 0;
  int k=0; 
  for (CellIterator c=nodes.begin(); c!=nodes.end(); c++, k++)
  {
    int nodeLID = *c;
    lidToPtrMap_.put(nodeLID, k);
    nodeLIDs_.append(nodeLID);
    int remoteOwner = rank;
    if (isRemote(0, nodeLID, remoteOwner))
    {
      int GID = mesh.mapLIDToGID(0, nodeLID);
      remoteNodes[remoteOwner].append(GID);
      for (int f=0; f<nFuncs; f++) nodeDOFs_.append(-1);
    }
    else
    {
      for (int f=0; f<nFuncs; f++) nodeDOFs_.append(nextDOF++);
    }
  }

  /* Compute offsets for each processor */
  int localCount = nextDOF;
  computeOffsets(localCount);
  
  /* Resolve remote DOF numbers */
  shareRemoteDOFs(remoteNodes);

  BasisFamily basis = new Lagrange(1);
  mapStructure_ = rcp(new MapStructure(nTotalFuncs_, basis.ptr()));
}