예제 #1
0
void Terrain::setNormalsBezier()
{
    Vector3 v1, v2, v3, v4;
    int indexW, indexH;
    
    for(int h = 0; h < (height/PORTION) - 4; h += 3){

        for(int w = 0; w < (width/PORTION) - 4; w += 3){
            
            BezierPatch p = BezierPatch(coords[w][h], coords[w+1][h], coords[w+2][h], coords[w+3][h],
                                        coords[w][h+1], coords[w+1][h+1], coords[w+2][h+1], coords[w+3][h+1],
                                        coords[w][h+2], coords[w+1][h+2], coords[w+2][h+2], coords[w+3][h+2],
                                        coords[w][h+3], coords[w+1][h+3], coords[w+2][h+3], coords[w+3][h+3]);
            
            for(float u = 0.0; u <= 1.0 - BEZ_ACC; u += BEZ_ACC)
            {
                for(float v = 0.0; v <= 1.0 - BEZ_ACC; v += BEZ_ACC)
                {
                    v1 = p.getPoint(u, v);
                    v2 = p.getPoint(u, v+1);
                    v3 = p.getPoint(u+1, v);
                    v4 = p.getPoint(u+1, v+1);
                    indexW = w + (int)(BEZ_POINTS*u);
                    indexH = h + (int)(BEZ_POINTS*v);
                    normal_bezier[indexW][indexH] = (v2-v1).cross(v3-v1).normalize();
                    normal_bezier[indexW][indexH+1] = (v3-v4).cross(v2-v4).normalize();
                }
            }
        }
    }

}
예제 #2
0
void parsePatch(ifstream &is) {
  double x,y,z;
  Vector3d v;
  BezierPatch bp = BezierPatch();
  do {
    is >> z >> x >> y;
    v = Vector3d(x,y,z);
    for (int j = 0; j < 3; j++) { 
      min_v(j) = min(min_v(j), v(j));
      max_v(j) = max(max_v(j), v(j));
    }
  } while( bp.AddPoint(v) );
  patches.push_back(bp);
}
예제 #3
0
void Terrain::drawBezier(Matrix4 c)
{
    //glDisable(GL_LIGHTING);
    glMatrixMode(GL_MODELVIEW);
    glPushMatrix();
    glMultMatrixf(c.ptr());
    
    //    Globals::shader->bind();
    //    GLint loc = glGetUniformLocationARB(Globals::shader->getPid(), "water_level");
    //    glUniform1f(loc, Shader::water_level);
    // // GLint col = glGetAttribLocationARB(Globals::shader->getPid(), "gl_Color");
    //    GLint bandLoc = glGetUniformLocationARB(Globals::shader->getPid(), "band_width");
    //    glUniform1f(bandLoc, Shader::band_width);
    
    //    glDisable(GL_LIGHTING);
    
    int indexW, indexH;
    for(int h = 0; h < (height/PORTION) - 4; h += 3){
        for(int w = 0; w < (width/PORTION) - 4; w += 3){
            BezierPatch p = BezierPatch(coords[w][h], coords[w+1][h], coords[w+2][h], coords[w+3][h],
                                        coords[w][h+1], coords[w+1][h+1], coords[w+2][h+1], coords[w+3][h+1],
                                        coords[w][h+2], coords[w+1][h+2], coords[w+2][h+2], coords[w+3][h+2],
                                        coords[w][h+3], coords[w+1][h+3], coords[w+2][h+3], coords[w+3][h+3]);
            
            for(float u = 0.0; u <= 1.0 - BEZ_ACC; u += BEZ_ACC)
            {
                glBegin(GL_TRIANGLE_STRIP);
                for(float v = 0.0; v <= 1.0; v += BEZ_ACC)
                {
                    glColor3f(terrain_color[0], terrain_color[1], terrain_color[2]);
                    glVertex3fv(p.getPoint(u, v).ptr());
                    glVertex3fv(p.getPoint(u + BEZ_ACC, v).ptr());
                    indexW = w + (int)(BEZ_POINTS*u);
                    indexH = h + (int)(BEZ_POINTS*v);
                    glNormal3fv(normal_bezier[indexW][indexH+1].ptr());
                }
                glEnd();
            }
        }
    }
    
    //Globals::shader->unbind();
    glPopMatrix();
    //glEnable(GL_LIGHTING);
}
예제 #4
0
void BccWorld::createRandomCurveGeometry()
{
	const unsigned n = 15 * 15;
	m_allGeo = new GeometryArray;
	m_allGeo->create(n);
	
	BezierPatch bp;
	bp.resetCvs();
	
	int i=0;
	bp._contorlPoints[0].y += -.2f;
	bp._contorlPoints[1].y += -.4f;
	bp._contorlPoints[2].y += -.4f;
	bp._contorlPoints[3].y += -.5f;
	
	bp._contorlPoints[4].y += -.5f;
	bp._contorlPoints[5].y += .1f;
	bp._contorlPoints[6].y += .5f;
	bp._contorlPoints[7].y += .1f;
	
	bp._contorlPoints[9].y += .5f;
	bp._contorlPoints[10].y += .5f;
	
	bp._contorlPoints[13].y += -.4f;
	bp._contorlPoints[14].y += -.85f;
	bp._contorlPoints[15].y += -.21f;
	
	i=0;
	for(;i<16;i++) {
		bp._contorlPoints[i] *= 80.f;
		bp._contorlPoints[i].y += 10.f;
		bp._contorlPoints[i].z -= 10.f;
	}
	
	RandomCurve rc;
	rc.create(m_allGeo, 15, 15,
				&bp,
				Vector3F(-.15f, 1.f, 0.33f), 
				11, 21,
				.9f);
}
예제 #5
0
파일: FitTest.cpp 프로젝트: ahmidou/aphid
void FitTest::createRandomCurves()
{
    const unsigned n = 15 * 15;
	m_allGeo->create(n);
	
	BezierPatch bp;
	bp.resetCvs();
	
	int i=0;
	bp._contorlPoints[0].y += -.2f;
	bp._contorlPoints[1].y += -.4f;
	bp._contorlPoints[2].y += -.4f;
	bp._contorlPoints[3].y += -.5f;
	
	bp._contorlPoints[4].y += -.5f;
	bp._contorlPoints[5].y += .1f;
	bp._contorlPoints[6].y += .5f;
	bp._contorlPoints[7].y += .1f;
	
	bp._contorlPoints[9].y += .5f;
	bp._contorlPoints[10].y += .5f;
	
	bp._contorlPoints[13].y += -.4f;
	bp._contorlPoints[14].y += -.85f;
	bp._contorlPoints[15].y += -.21f;
	
	i=0;
	for(;i<16;i++) {
		bp._contorlPoints[i] *= 80.f;
		bp._contorlPoints[i].y += 10.f;
		bp._contorlPoints[i].z -= 10.f;
	}
	
	RandomCurve rc;
	rc.create(m_allGeo, 15, 15,
				&bp,
				Vector3F(.035f, 1.84f, 0.03f), 
				11, 17,
				.89f);
}
예제 #6
0
vector<Triangle*>* BezierPatchTesselator::tesselate(int mode, bool center_test, float threshold) {
	if (mode == UNIFORM_MODE) {
		cout << "uniform\n";
		vector<Triangle*>* triangles = new vector<Triangle*>();

		for (int patchNum = 0; patchNum < patches.size(); patchNum++) {
			BezierPatch p = *patches[patchNum];
			float u = 0;
			while (u < 1) {
				float v = 0;
				while (v < 1) {
					Vector2f a, b, c;
					a = (Vector2f() << u, v).finished();
					b = (Vector2f() << u + threshold, v).finished();
					c = (Vector2f() << u, v + threshold).finished();
					Vector3f norm = (p.evaluate(a) - p.evaluate(b)).cross(p.evaluate(a) - p.evaluate(c)).normalized();
					triangles->push_back(new Triangle(p.evaluate(a), p.evaluate(b), p.evaluate(c), norm, norm, norm));
					// triangles->push_back(new Triangle(p.evaluate(a), p.evaluate(b), p.evaluate(c), p.findNormal(a), p.findNormal(b), p.findNormal(c)));

					a = (Vector2f() << u + threshold, v + threshold).finished();
					b = (Vector2f() << u + threshold, v).finished();
					c = (Vector2f() << u, v + threshold).finished();
					norm = (p.evaluate(a) - p.evaluate(b)).cross(p.evaluate(a) - p.evaluate(c)).normalized();
					triangles->push_back(new Triangle(p.evaluate(a), p.evaluate(b), p.evaluate(c), norm, norm, norm));
					// triangles->push_back(new Triangle(p.evaluate(c), p.evaluate(b), p.evaluate(a), p.findNormal(c), p.findNormal(b), p.findNormal(a)));
					v += threshold;
				}
				u += threshold;
			}
		}
		return triangles;
	}

	vector<Triangle*>* triangles = new vector<Triangle*>();
	for (int patchNum = 0; patchNum < patches.size(); patchNum++) {
		Vector2f vertices[3];
		vertices[0] = (Vector2f() << 0, 0).finished();
		vertices[1] = (Vector2f() << 0, 1).finished();
		vertices[2] = (Vector2f() << 1, 0).finished();
		vector<Triangle*>* temp = tesselateTriangle(mode, center_test, vertices, *(patches[patchNum]), threshold);
		append(triangles, temp);

		vertices[0] = (Vector2f() << 1, 1).finished();
		vertices[1] = (Vector2f() << 0, 1).finished();
		vertices[2] = (Vector2f() << 1, 0).finished();
		temp = tesselateTriangle(mode, center_test, vertices, *(patches[patchNum]), threshold);
		append(triangles, temp);
	}
	return triangles;
}
예제 #7
0
static void _BezierPatchHighQuality(u8 *&dest, u16 *&indices, int &count, int tess_u, int tess_v, const BezierPatch &patch, u32 origVertType, int maxVertices) {
	const float third = 1.0f / 3.0f;

	// Downsample until it fits, in case crazy tesselation factors are sent.
	while ((tess_u + 1) * (tess_v + 1) > maxVertices) {
		tess_u /= 2;
		tess_v /= 2;
	}

	// First compute all the vertices and put them in an array
	SimpleVertex *&vertices = (SimpleVertex*&)dest;

	Vec3Packedf *horiz = new Vec3Packedf[(tess_u + 1) * 4];
	Vec3Packedf *horiz2 = horiz + (tess_u + 1) * 1;
	Vec3Packedf *horiz3 = horiz + (tess_u + 1) * 2;
	Vec3Packedf *horiz4 = horiz + (tess_u + 1) * 3;

	Vec3Packedf *derivU1 = new Vec3Packedf[(tess_u + 1) * 4];
	Vec3Packedf *derivU2 = derivU1 + (tess_u + 1) * 1;
	Vec3Packedf *derivU3 = derivU1 + (tess_u + 1) * 2;
	Vec3Packedf *derivU4 = derivU1 + (tess_u + 1) * 3;

	bool computeNormals = patch.computeNormals;

	// Precompute the horizontal curves to we only have to evaluate the vertical ones.
	for (int i = 0; i < tess_u + 1; i++) {
		float u = ((float)i / (float)tess_u);
		horiz[i] = Bernstein3D(patch.points[0]->pos, patch.points[1]->pos, patch.points[2]->pos, patch.points[3]->pos, u);
		horiz2[i] = Bernstein3D(patch.points[4]->pos, patch.points[5]->pos, patch.points[6]->pos, patch.points[7]->pos, u);
		horiz3[i] = Bernstein3D(patch.points[8]->pos, patch.points[9]->pos, patch.points[10]->pos, patch.points[11]->pos, u);
		horiz4[i] = Bernstein3D(patch.points[12]->pos, patch.points[13]->pos, patch.points[14]->pos, patch.points[15]->pos, u);

		if (computeNormals) {
			derivU1[i] = Bernstein3DDerivative(patch.points[0]->pos, patch.points[1]->pos, patch.points[2]->pos, patch.points[3]->pos, u);
			derivU2[i] = Bernstein3DDerivative(patch.points[4]->pos, patch.points[5]->pos, patch.points[6]->pos, patch.points[7]->pos, u);
			derivU3[i] = Bernstein3DDerivative(patch.points[8]->pos, patch.points[9]->pos, patch.points[10]->pos, patch.points[11]->pos, u);
			derivU4[i] = Bernstein3DDerivative(patch.points[12]->pos, patch.points[13]->pos, patch.points[14]->pos, patch.points[15]->pos, u);
		}
	}


	for (int tile_v = 0; tile_v < tess_v + 1; ++tile_v) {
		for (int tile_u = 0; tile_u < tess_u + 1; ++tile_u) {
			float u = ((float)tile_u / (float)tess_u);
			float v = ((float)tile_v / (float)tess_v);
			float bu = u;
			float bv = v;

			// TODO: Should be able to precompute the four curves per U, then just Bernstein per V. Will benefit large tesselation factors.
			const Vec3Packedf &pos1 = horiz[tile_u];
			const Vec3Packedf &pos2 = horiz2[tile_u];
			const Vec3Packedf &pos3 = horiz3[tile_u];
			const Vec3Packedf &pos4 = horiz4[tile_u];

			SimpleVertex &vert = vertices[tile_v * (tess_u + 1) + tile_u];

			if (computeNormals) {
				const Vec3Packedf &derivU1_ = derivU1[tile_u];
				const Vec3Packedf &derivU2_ = derivU2[tile_u];
				const Vec3Packedf &derivU3_ = derivU3[tile_u];
				const Vec3Packedf &derivU4_ = derivU4[tile_u];

				Vec3Packedf derivU = Bernstein3D(derivU1_, derivU2_, derivU3_, derivU4_, bv);
				Vec3Packedf derivV = Bernstein3DDerivative(pos1, pos2, pos3, pos4, bv);

				vert.nrm = Cross(derivU, derivV).Normalized();
				if (patch.patchFacing)
					vert.nrm *= -1.0f;
			}
			else {
				vert.nrm.SetZero();
			}

			vert.pos = Bernstein3D(pos1, pos2, pos3, pos4, bv);

			if ((origVertType & GE_VTYPE_TC_MASK) == 0) {
				// Generate texcoord
				vert.uv[0] = u + patch.u_index * third;
				vert.uv[1] = v + patch.v_index * third;
			} else {
				// Sample UV from control points
				patch.sampleTexUV(u, v, vert.uv[0], vert.uv[1]);
			} 

			if (origVertType & GE_VTYPE_COL_MASK) {
				patch.sampleColor(u, v, vert.color);
			} else {
				memcpy(vert.color, patch.points[0]->color, 4);
			}
		}
	}
	delete[] derivU1;
	delete[] horiz;

	GEPatchPrimType prim_type = patch.primType;
	// Combine the vertices into triangles.
	for (int tile_v = 0; tile_v < tess_v; ++tile_v) {
		for (int tile_u = 0; tile_u < tess_u; ++tile_u) {
			int total = patch.index * (tess_u + 1) * (tess_v + 1);
			int idx0 = total + tile_v * (tess_u + 1) + tile_u;
			int idx1 = total + tile_v * (tess_u + 1) + tile_u + 1;
			int idx2 = total + (tile_v + 1) * (tess_u + 1) + tile_u;
			int idx3 = total + (tile_v + 1) * (tess_u + 1) + tile_u + 1;

			CopyQuadIndex(indices, prim_type, idx0, idx1, idx2, idx3);
			count += 6;
		}
	}
	dest += (tess_u + 1) * (tess_v + 1) * sizeof(SimpleVertex);
}
예제 #8
0
파일: Spline.cpp 프로젝트: ANR2ME/ppsspp
void _BezierPatchHighQuality(u8 *&dest, int &count, int tess_u, int tess_v, const BezierPatch &patch, u32 origVertType) {
	const float third = 1.0f / 3.0f;
	// Full correct tesselation of bezier patches.
	// Note: Does not handle splines correctly.

	// First compute all the vertices and put them in an array
	SimpleVertex *vertices = new SimpleVertex[(tess_u + 1) * (tess_v + 1)];

	Vec3Packedf *horiz = new Vec3Packedf[(tess_u + 1) * 4];
	Vec3Packedf *horiz2 = horiz + (tess_u + 1) * 1;
	Vec3Packedf *horiz3 = horiz + (tess_u + 1) * 2;
	Vec3Packedf *horiz4 = horiz + (tess_u + 1) * 3;

	// Precompute the horizontal curves to we only have to evaluate the vertical ones.
	for (int i = 0; i < tess_u + 1; i++) {
		float u = ((float)i / (float)tess_u);
		horiz[i] = Bernstein3D(patch.points[0]->pos, patch.points[1]->pos, patch.points[2]->pos, patch.points[3]->pos, u);
		horiz2[i] = Bernstein3D(patch.points[4]->pos, patch.points[5]->pos, patch.points[6]->pos, patch.points[7]->pos, u);
		horiz3[i] = Bernstein3D(patch.points[8]->pos, patch.points[9]->pos, patch.points[10]->pos, patch.points[11]->pos, u);
		horiz4[i] = Bernstein3D(patch.points[12]->pos, patch.points[13]->pos, patch.points[14]->pos, patch.points[15]->pos, u);
	}

	bool computeNormals = gstate.isLightingEnabled();

	for (int tile_v = 0; tile_v < tess_v + 1; ++tile_v) {
		for (int tile_u = 0; tile_u < tess_u + 1; ++tile_u) {
			float u = ((float)tile_u / (float)tess_u);
			float v = ((float)tile_v / (float)tess_v);
			float bu = u;
			float bv = v;

			// TODO: Should be able to precompute the four curves per U, then just Bernstein per V. Will benefit large tesselation factors.
			const Vec3Packedf &pos1 = horiz[tile_u];
			const Vec3Packedf &pos2 = horiz2[tile_u];
			const Vec3Packedf &pos3 = horiz3[tile_u];
			const Vec3Packedf &pos4 = horiz4[tile_u];

			SimpleVertex &vert = vertices[tile_v * (tess_u + 1) + tile_u];

			if (computeNormals) {
				Vec3Packedf derivU1 = Bernstein3DDerivative(patch.points[0]->pos, patch.points[1]->pos, patch.points[2]->pos, patch.points[3]->pos, bu);
				Vec3Packedf derivU2 = Bernstein3DDerivative(patch.points[4]->pos, patch.points[5]->pos, patch.points[6]->pos, patch.points[7]->pos, bu);
				Vec3Packedf derivU3 = Bernstein3DDerivative(patch.points[8]->pos, patch.points[9]->pos, patch.points[10]->pos, patch.points[11]->pos, bu);
				Vec3Packedf derivU4 = Bernstein3DDerivative(patch.points[12]->pos, patch.points[13]->pos, patch.points[14]->pos, patch.points[15]->pos, bu);
				Vec3Packedf derivU = Bernstein3D(derivU1, derivU2, derivU3, derivU4, bv);
				Vec3Packedf derivV = Bernstein3DDerivative(pos1, pos2, pos3, pos4, bv);

				// TODO: Interpolate normals instead of generating them, if available?
				vert.nrm = Cross(derivU, derivV).Normalized();
				if (gstate.patchfacing & 1)
					vert.nrm *= -1.0f;
			}
			else {
				vert.nrm.SetZero();
			}

			vert.pos = Bernstein3D(pos1, pos2, pos3, pos4, bv);

			if ((origVertType & GE_VTYPE_TC_MASK) == 0) {
				// Generate texcoord
				vert.uv[0] = u + patch.u_index * third;
				vert.uv[1] = v + patch.v_index * third;
			} else {
				// Sample UV from control points
				patch.sampleTexUV(u, v, vert.uv[0], vert.uv[1]);
			} 

			if (origVertType & GE_VTYPE_COL_MASK) {
				patch.sampleColor(u, v, vert.color);
			} else {
				memcpy(vert.color, patch.points[0]->color, 4);
			}
		}
	}
	delete[] horiz;

	// Tesselate. TODO: Use indices so we only need to emit 4 vertices per pair of triangles instead of six.
	for (int tile_v = 0; tile_v < tess_v; ++tile_v) {
		for (int tile_u = 0; tile_u < tess_u; ++tile_u) {
			float u = ((float)tile_u / (float)tess_u);
			float v = ((float)tile_v / (float)tess_v);

			const SimpleVertex *v0 = &vertices[tile_v * (tess_u + 1) + tile_u];
			const SimpleVertex *v1 = &vertices[tile_v * (tess_u + 1) + tile_u + 1];
			const SimpleVertex *v2 = &vertices[(tile_v + 1) * (tess_u + 1) + tile_u];
			const SimpleVertex *v3 = &vertices[(tile_v + 1) * (tess_u + 1) + tile_u + 1];

			CopyQuad(dest, v0, v1, v2, v3);
			count += 6;
		}
	}

	delete[] vertices;
}
예제 #9
0
void TesselateBezierPatch(u8 *&dest, int &count, const BezierPatch &patch, u32 origVertType) {
	const float third = 1.0f / 3.0f;

	if (g_Config.bLowQualitySplineBezier) {
		// Fast and easy way - just draw the control points, generate some very basic normal vector subsitutes.
		// Very inaccurate though but okay for Loco Roco. Maybe should keep it as an option.

		float u_base = patch.u_index / 3.0f;
		float v_base = patch.v_index / 3.0f;

		for (int tile_v = 0; tile_v < 3; tile_v++) {
			for (int tile_u = 0; tile_u < 3; tile_u++) {
				int point_index = tile_u + tile_v * 4;

				SimpleVertex v0 = *patch.points[point_index];
				SimpleVertex v1 = *patch.points[point_index+1];
				SimpleVertex v2 = *patch.points[point_index+4];
				SimpleVertex v3 = *patch.points[point_index+5];

				// Generate UV. TODO: Do this even if UV specified in control points?
				if ((origVertType & GE_VTYPE_TC_MASK) == 0) {
					float u = u_base + tile_u * third;
					float v = v_base + tile_v * third;
					v0.uv[0] = u;
					v0.uv[1] = v;
					v1.uv[0] = u + third;
					v1.uv[1] = v;
					v2.uv[0] = u;
					v2.uv[1] = v + third;
					v3.uv[0] = u + third;
					v3.uv[1] = v + third;
				}

				// Generate normal if lighting is enabled (otherwise there's no point).
				// This is a really poor quality algorithm, we get facet normals.
				if (gstate.isLightingEnabled()) {
					Vec3f norm = Cross(v1.pos - v0.pos, v2.pos - v0.pos);
					norm.Normalize();
					if (gstate.patchfacing & 1)
						norm *= -1.0f;
					v0.nrm = norm;
					v1.nrm = norm;
					v2.nrm = norm;
					v3.nrm = norm;
				}

				CopyQuad(dest, &v0, &v1, &v2, &v3);
				count += 6;
			}
		}
	} else {
		// Full correct tesselation of bezier patches.
		// Note: Does not handle splines correctly.

		int tess_u = gstate.getPatchDivisionU();
		int tess_v = gstate.getPatchDivisionV();

		// First compute all the vertices and put them in an array
		SimpleVertex *vertices = new SimpleVertex[(tess_u + 1) * (tess_v + 1)];

		Vec3f *horiz = new Vec3f[(tess_u + 1) * 4];
		Vec3f *horiz2 = horiz + (tess_u + 1) * 1;
		Vec3f *horiz3 = horiz + (tess_u + 1) * 2;
		Vec3f *horiz4 = horiz + (tess_u + 1) * 3;

		// Precompute the horizontal curves to we only have to evaluate the vertical ones.
		for (int i = 0; i < tess_u + 1; i++) {
			float u = ((float)i / (float)tess_u);
			horiz[i] = Bernstein3D(patch.points[0]->pos, patch.points[1]->pos, patch.points[2]->pos, patch.points[3]->pos, u);
			horiz2[i] = Bernstein3D(patch.points[4]->pos, patch.points[5]->pos, patch.points[6]->pos, patch.points[7]->pos, u);
			horiz3[i] = Bernstein3D(patch.points[8]->pos, patch.points[9]->pos, patch.points[10]->pos, patch.points[11]->pos, u);
			horiz4[i] = Bernstein3D(patch.points[12]->pos, patch.points[13]->pos, patch.points[14]->pos, patch.points[15]->pos, u);
		}

		bool computeNormals = gstate.isLightingEnabled();

		for (int tile_v = 0; tile_v < tess_v + 1; ++tile_v) {
			for (int tile_u = 0; tile_u < tess_u + 1; ++tile_u) {
				float u = ((float)tile_u / (float)tess_u);
				float v = ((float)tile_v / (float)tess_v);
				float bu = u;
				float bv = v;

				// TODO: Should be able to precompute the four curves per U, then just Bernstein per V. Will benefit large tesselation factors.
				const Vec3f &pos1 = horiz[tile_u];
				const Vec3f &pos2 = horiz2[tile_u];
				const Vec3f &pos3 = horiz3[tile_u];
				const Vec3f &pos4 = horiz4[tile_u];

				SimpleVertex &vert = vertices[tile_v * (tess_u + 1) + tile_u];

				if (computeNormals) {
					Vec3f derivU1 = Bernstein3DDerivative(patch.points[0]->pos, patch.points[1]->pos, patch.points[2]->pos, patch.points[3]->pos, bu);
					Vec3f derivU2 = Bernstein3DDerivative(patch.points[4]->pos, patch.points[5]->pos, patch.points[6]->pos, patch.points[7]->pos, bu);
					Vec3f derivU3 = Bernstein3DDerivative(patch.points[8]->pos, patch.points[9]->pos, patch.points[10]->pos, patch.points[11]->pos, bu);
					Vec3f derivU4 = Bernstein3DDerivative(patch.points[12]->pos, patch.points[13]->pos, patch.points[14]->pos, patch.points[15]->pos, bu);
					Vec3f derivU = Bernstein3D(derivU1, derivU2, derivU3, derivU4, bv);
					Vec3f derivV = Bernstein3DDerivative(pos1, pos2, pos3, pos4, bv);

					// TODO: Interpolate normals instead of generating them, if available?
					vert.nrm = Cross(derivU, derivV).Normalized();
					if (gstate.patchfacing & 1)
						vert.nrm *= -1.0f;
				} else {
					vert.nrm.SetZero();
				}

				vert.pos = Bernstein3D(pos1, pos2, pos3, pos4, bv);

				if ((origVertType & GE_VTYPE_TC_MASK) == 0) {
					// Generate texcoord
					vert.uv[0] = u + patch.u_index * third;
					vert.uv[1] = v + patch.v_index * third;
				} else {
					// Sample UV from control points
					patch.sampleTexUV(u, v, vert.uv[0], vert.uv[1]);
				}

				if (origVertType & GE_VTYPE_COL_MASK) {
					patch.sampleColor(u, v, vert.color);
				} else {
					memcpy(vert.color, patch.points[0]->color, 4);
				}
			}
		}
		delete [] horiz;

		// Tesselate. TODO: Use indices so we only need to emit 4 vertices per pair of triangles instead of six.
		for (int tile_v = 0; tile_v < tess_v; ++tile_v) {
			for (int tile_u = 0; tile_u < tess_u; ++tile_u) {
				float u = ((float)tile_u / (float)tess_u);
				float v = ((float)tile_v / (float)tess_v);

				const SimpleVertex *v0 = &vertices[tile_v * (tess_u + 1) + tile_u];
				const SimpleVertex *v1 = &vertices[tile_v * (tess_u + 1) + tile_u + 1];
				const SimpleVertex *v2 = &vertices[(tile_v + 1) * (tess_u + 1) + tile_u];
				const SimpleVertex *v3 = &vertices[(tile_v + 1) * (tess_u + 1) + tile_u + 1];

				CopyQuad(dest, v0, v1, v2, v3);
				count += 6;
			}
		}

		delete [] vertices;
	}
}