void poly_eval_poly_polymod_coeffmod(const BigPoly &poly_to_evaluate, const BigPoly &poly_to_evaluate_at, const BigPoly &poly_modulus, const BigUInt &coeff_modulus, BigPoly &destination, const MemoryPoolHandle &pool) { if (!pool) { throw invalid_argument("pool is uninitialized"); } if (poly_to_evaluate.significant_coeff_count() > poly_modulus.coeff_count() || poly_to_evaluate.significant_coeff_bit_count() > coeff_modulus.significant_bit_count()) { throw invalid_argument("poly_to_evaluate is not reduced"); } if (poly_to_evaluate_at.significant_coeff_count() > poly_modulus.coeff_count() || poly_to_evaluate_at.significant_coeff_bit_count() > coeff_modulus.significant_bit_count()) { throw invalid_argument("poly_to_evaluate_at is not reduced"); } int poly_to_eval_coeff_uint64_count = poly_to_evaluate.coeff_uint64_count(); int coeff_modulus_bit_count = coeff_modulus.significant_bit_count(); if (poly_to_evaluate.is_zero()) { destination.set_zero(); } if (poly_to_evaluate_at.is_zero()) { destination.resize(1, coeff_modulus_bit_count); modulo_uint(poly_to_evaluate.data(), poly_to_eval_coeff_uint64_count, Modulus(coeff_modulus.data(), coeff_modulus.uint64_count(), pool), destination.data(), pool); return; } ConstPointer poly_to_eval_ptr = duplicate_poly_if_needed(poly_to_evaluate, poly_modulus.coeff_count(), coeff_modulus.uint64_count(), false, pool); ConstPointer poly_to_eval_at_ptr = duplicate_poly_if_needed(poly_to_evaluate_at, poly_modulus.coeff_count(), coeff_modulus.uint64_count(), false, pool); destination.resize(poly_modulus.coeff_count(), coeff_modulus_bit_count); util::poly_eval_poly_polymod_coeffmod(poly_to_eval_ptr.get(), poly_to_eval_at_ptr.get(), PolyModulus(poly_modulus.data(), poly_modulus.coeff_count(), poly_modulus.coeff_uint64_count()), Modulus(coeff_modulus.data(), coeff_modulus.uint64_count(), pool), destination.data(), pool); }
void poly_eval_uint_mod(const BigPoly &poly_to_evaluate, const BigUInt &value, const BigUInt &modulus, BigUInt &destination, const MemoryPoolHandle &pool) { if (poly_to_evaluate.significant_coeff_bit_count() > modulus.significant_bit_count()) { throw invalid_argument("poly_to_evaluate is not reduced"); } if (value.significant_bit_count() > modulus.significant_bit_count()) { throw invalid_argument("value is not reduced"); } if (!pool) { throw invalid_argument("pool is uninitialized"); } int poly_to_eval_coeff_uint64_count = poly_to_evaluate.coeff_uint64_count(); int modulus_bit_count = modulus.significant_bit_count(); if (poly_to_evaluate.is_zero()) { destination.set_zero(); } if (value.is_zero()) { destination.resize(modulus_bit_count); modulo_uint(poly_to_evaluate.data(), poly_to_eval_coeff_uint64_count, Modulus(modulus.data(), modulus.uint64_count(), pool), destination.data(), pool); return; } ConstPointer value_ptr = duplicate_uint_if_needed(value, modulus.uint64_count(), false, pool); destination.resize(modulus_bit_count); util::poly_eval_uint_mod(poly_to_evaluate.data(), poly_to_evaluate.coeff_count(), value_ptr.get(), Modulus(modulus.data(), modulus.uint64_count(), pool), destination.data(), pool); }
void exponentiate_poly_polymod_coeffmod(const BigPoly &operand, const BigUInt &exponent, const BigPoly &poly_modulus, const BigUInt &coeff_modulus, BigPoly &destination, const MemoryPoolHandle &pool) { if (operand.significant_coeff_count() > poly_modulus.coeff_count() || operand.significant_coeff_bit_count() > coeff_modulus.significant_bit_count()) { throw invalid_argument("operand is not reduced"); } if (exponent < 0) { throw invalid_argument("exponent must be a non-negative integer"); } if (operand.is_zero() && exponent == 0) { throw invalid_argument("undefined operation"); } if (!pool) { throw invalid_argument("pool is uninitialized"); } if (operand.is_zero()) { destination.set_zero(); return; } if (destination.coeff_bit_count() != coeff_modulus.significant_bit_count() || destination.coeff_count() != poly_modulus.coeff_count()) { destination.resize(poly_modulus.coeff_count(), coeff_modulus.significant_bit_count()); } ConstPointer operand_ptr = duplicate_poly_if_needed(operand, poly_modulus.coeff_count(), coeff_modulus.uint64_count(), false, pool); util::exponentiate_poly_polymod_coeffmod(operand_ptr.get(), exponent.data(), exponent.uint64_count(), PolyModulus(poly_modulus.data(), poly_modulus.coeff_count(), poly_modulus.coeff_uint64_count()), Modulus(coeff_modulus.data(), coeff_modulus.uint64_count(), pool), destination.data(), pool); }
void Evaluator::multiply_plain(const BigPoly &encrypted1, const BigPoly &plain2, BigPoly &destination) { // Extract encryption parameters. int coeff_count = poly_modulus_.coeff_count(); int coeff_bit_count = poly_modulus_.coeff_bit_count(); int coeff_uint64_count = divide_round_up(coeff_bit_count, bits_per_uint64); // Verify parameters. if (encrypted1.coeff_count() != coeff_count || encrypted1.coeff_bit_count() != coeff_bit_count) { throw invalid_argument("encrypted1 is not valid for encryption parameters"); } #ifdef _DEBUG if (encrypted1.significant_coeff_count() == coeff_count || !are_poly_coefficients_less_than(encrypted1, coeff_modulus_)) { throw invalid_argument("encrypted1 is not valid for encryption parameters"); } if (plain2.significant_coeff_count() >= coeff_count || !are_poly_coefficients_less_than(plain2, plain_modulus_)) { throw invalid_argument("plain2 is too large to be represented by encryption parameters"); } #endif if (destination.coeff_count() != coeff_count || destination.coeff_bit_count() != coeff_bit_count) { destination.resize(coeff_count, coeff_bit_count); } // Get pointer to inputs (duplicated if needed). ConstPointer encrypted1ptr = duplicate_poly_if_needed(encrypted1, encrypted1.pointer() == destination.pointer(), pool_); // Handle test-mode case. if (mode_ == TEST_MODE) { // Get pointer to inputs (duplicated and resized if needed). ConstPointer plain2ptr = duplicate_poly_if_needed(plain2, coeff_count, coeff_uint64_count, plain2.pointer() == destination.pointer(), pool_); // Resize second operand if needed. multiply_poly_poly_polymod_coeffmod(encrypted1ptr.get(), plain2ptr.get(), polymod_, mod_, destination.pointer(), pool_); return; } // Reposition coefficients. Pointer moved2ptr(allocate_poly(coeff_count, coeff_uint64_count, pool_)); int plain_coeff_count = min(plain2.significant_coeff_count(), coeff_count); int plain2_coeff_uint64_count = plain2.coeff_uint64_count(); const uint64_t *plain2_coeff = plain2.pointer(); uint64_t *moved2_coeff = moved2ptr.get(); for (int i = 0; i < plain_coeff_count; ++i) { set_uint_uint(plain2_coeff, plain2_coeff_uint64_count, coeff_uint64_count, moved2_coeff); bool is_upper_half = is_greater_than_or_equal_uint_uint(moved2_coeff, plain_upper_half_threshold_.pointer(), coeff_uint64_count); if (is_upper_half) { add_uint_uint(moved2_coeff, plain_upper_half_increment_.pointer(), coeff_uint64_count, moved2_coeff); } moved2_coeff += coeff_uint64_count; plain2_coeff += plain2_coeff_uint64_count; } for (int i = plain_coeff_count; i < coeff_count; ++i) { set_zero_uint(coeff_uint64_count, moved2_coeff); moved2_coeff += coeff_uint64_count; } // Use normal polynomial multiplication. multiply_poly_poly_polymod_coeffmod(encrypted1ptr.get(), moved2ptr.get(), polymod_, mod_, destination.pointer(), pool_); }