/// Rebuild a new instruction just like 'I' but with the new operands given. /// In the event of type mismatch, the type of the operands is correct. static Value *BuildNew(Instruction *I, ArrayRef<Value*> NewOps) { // We don't want to use the IRBuilder here because we want the replacement // instructions to appear next to 'I', not the builder's insertion point. switch (I->getOpcode()) { case Instruction::Add: case Instruction::FAdd: case Instruction::Sub: case Instruction::FSub: case Instruction::Mul: case Instruction::FMul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::FDiv: case Instruction::URem: case Instruction::SRem: case Instruction::FRem: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: case Instruction::And: case Instruction::Or: case Instruction::Xor: { BinaryOperator *BO = cast<BinaryOperator>(I); assert(NewOps.size() == 2 && "binary operator with #ops != 2"); BinaryOperator *New = BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(), NewOps[0], NewOps[1], "", BO); if (isa<OverflowingBinaryOperator>(BO)) { New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap()); New->setHasNoSignedWrap(BO->hasNoSignedWrap()); } if (isa<PossiblyExactOperator>(BO)) { New->setIsExact(BO->isExact()); } return New; } case Instruction::ICmp: assert(NewOps.size() == 2 && "icmp with #ops != 2"); return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(), NewOps[0], NewOps[1]); case Instruction::FCmp: assert(NewOps.size() == 2 && "fcmp with #ops != 2"); return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(), NewOps[0], NewOps[1]); case Instruction::Trunc: case Instruction::ZExt: case Instruction::SExt: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::UIToFP: case Instruction::SIToFP: case Instruction::FPTrunc: case Instruction::FPExt: { // It's possible that the mask has a different number of elements from // the original cast. We recompute the destination type to match the mask. Type *DestTy = VectorType::get(I->getType()->getScalarType(), NewOps[0]->getType()->getVectorNumElements()); assert(NewOps.size() == 1 && "cast with #ops != 1"); return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy, "", I); } case Instruction::GetElementPtr: { Value *Ptr = NewOps[0]; ArrayRef<Value*> Idx = NewOps.slice(1); GetElementPtrInst *GEP = GetElementPtrInst::Create(Ptr, Idx, "", I); GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds()); return GEP; } } llvm_unreachable("failed to rebuild vector instructions"); }
Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, Constant *Op1, BinaryOperator &I) { bool isLeftShift = I.getOpcode() == Instruction::Shl; ConstantInt *COp1 = nullptr; if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(Op1)) COp1 = dyn_cast_or_null<ConstantInt>(CV->getSplatValue()); else if (ConstantVector *CV = dyn_cast<ConstantVector>(Op1)) COp1 = dyn_cast_or_null<ConstantInt>(CV->getSplatValue()); else COp1 = dyn_cast<ConstantInt>(Op1); if (!COp1) return nullptr; // See if we can propagate this shift into the input, this covers the trivial // cast of lshr(shl(x,c1),c2) as well as other more complex cases. if (I.getOpcode() != Instruction::AShr && CanEvaluateShifted(Op0, COp1->getZExtValue(), isLeftShift, *this)) { DEBUG(dbgs() << "ICE: GetShiftedValue propagating shift through expression" " to eliminate shift:\n IN: " << *Op0 << "\n SH: " << I <<"\n"); return ReplaceInstUsesWith(I, GetShiftedValue(Op0, COp1->getZExtValue(), isLeftShift, *this)); } // See if we can simplify any instructions used by the instruction whose sole // purpose is to compute bits we don't care about. uint32_t TypeBits = Op0->getType()->getScalarSizeInBits(); assert(!COp1->uge(TypeBits) && "Shift over the type width should have been removed already"); // ((X*C1) << C2) == (X * (C1 << C2)) if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0)) if (BO->getOpcode() == Instruction::Mul && isLeftShift) if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1))) return BinaryOperator::CreateMul(BO->getOperand(0), ConstantExpr::getShl(BOOp, Op1)); // Try to fold constant and into select arguments. if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) if (Instruction *R = FoldOpIntoSelect(I, SI)) return R; if (isa<PHINode>(Op0)) if (Instruction *NV = FoldOpIntoPhi(I)) return NV; // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2)) if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) { Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0)); // If 'shift2' is an ashr, we would have to get the sign bit into a funny // place. Don't try to do this transformation in this case. Also, we // require that the input operand is a shift-by-constant so that we have // confidence that the shifts will get folded together. We could do this // xform in more cases, but it is unlikely to be profitable. if (TrOp && I.isLogicalShift() && TrOp->isShift() && isa<ConstantInt>(TrOp->getOperand(1))) { // Okay, we'll do this xform. Make the shift of shift. Constant *ShAmt = ConstantExpr::getZExt(COp1, TrOp->getType()); // (shift2 (shift1 & 0x00FF), c2) Value *NSh = Builder->CreateBinOp(I.getOpcode(), TrOp, ShAmt,I.getName()); // For logical shifts, the truncation has the effect of making the high // part of the register be zeros. Emulate this by inserting an AND to // clear the top bits as needed. This 'and' will usually be zapped by // other xforms later if dead. unsigned SrcSize = TrOp->getType()->getScalarSizeInBits(); unsigned DstSize = TI->getType()->getScalarSizeInBits(); APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize)); // The mask we constructed says what the trunc would do if occurring // between the shifts. We want to know the effect *after* the second // shift. We know that it is a logical shift by a constant, so adjust the // mask as appropriate. if (I.getOpcode() == Instruction::Shl) MaskV <<= COp1->getZExtValue(); else { assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift"); MaskV = MaskV.lshr(COp1->getZExtValue()); } // shift1 & 0x00FF Value *And = Builder->CreateAnd(NSh, ConstantInt::get(I.getContext(), MaskV), TI->getName()); // Return the value truncated to the interesting size. return new TruncInst(And, I.getType()); } } if (Op0->hasOneUse()) { if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) { // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C) Value *V1, *V2; ConstantInt *CC; switch (Op0BO->getOpcode()) { default: break; case Instruction::Add: case Instruction::And: case Instruction::Or: case Instruction::Xor: { // These operators commute. // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C) if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() && match(Op0BO->getOperand(1), m_Shr(m_Value(V1), m_Specific(Op1)))) { Value *YS = // (Y << C) Builder->CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName()); // (X + (Y << C)) Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), YS, V1, Op0BO->getOperand(1)->getName()); uint32_t Op1Val = COp1->getLimitedValue(TypeBits); APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val); Constant *Mask = ConstantInt::get(I.getContext(), Bits); if (VectorType *VT = dyn_cast<VectorType>(X->getType())) Mask = ConstantVector::getSplat(VT->getNumElements(), Mask); return BinaryOperator::CreateAnd(X, Mask); } // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C)) Value *Op0BOOp1 = Op0BO->getOperand(1); if (isLeftShift && Op0BOOp1->hasOneUse() && match(Op0BOOp1, m_And(m_OneUse(m_Shr(m_Value(V1), m_Specific(Op1))), m_ConstantInt(CC)))) { Value *YS = // (Y << C) Builder->CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName()); // X & (CC << C) Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1), V1->getName()+".mask"); return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM); } } // FALL THROUGH. case Instruction::Sub: { // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C) if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() && match(Op0BO->getOperand(0), m_Shr(m_Value(V1), m_Specific(Op1)))) { Value *YS = // (Y << C) Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName()); // (X + (Y << C)) Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), V1, YS, Op0BO->getOperand(0)->getName()); uint32_t Op1Val = COp1->getLimitedValue(TypeBits); APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val); Constant *Mask = ConstantInt::get(I.getContext(), Bits); if (VectorType *VT = dyn_cast<VectorType>(X->getType())) Mask = ConstantVector::getSplat(VT->getNumElements(), Mask); return BinaryOperator::CreateAnd(X, Mask); } // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C) if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() && match(Op0BO->getOperand(0), m_And(m_OneUse(m_Shr(m_Value(V1), m_Value(V2))), m_ConstantInt(CC))) && V2 == Op1) { Value *YS = // (Y << C) Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName()); // X & (CC << C) Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1), V1->getName()+".mask"); return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS); } break; } } // If the operand is an bitwise operator with a constant RHS, and the // shift is the only use, we can pull it out of the shift. if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) { bool isValid = true; // Valid only for And, Or, Xor bool highBitSet = false; // Transform if high bit of constant set? switch (Op0BO->getOpcode()) { default: isValid = false; break; // Do not perform transform! case Instruction::Add: isValid = isLeftShift; break; case Instruction::Or: case Instruction::Xor: highBitSet = false; break; case Instruction::And: highBitSet = true; break; } // If this is a signed shift right, and the high bit is modified // by the logical operation, do not perform the transformation. // The highBitSet boolean indicates the value of the high bit of // the constant which would cause it to be modified for this // operation. // if (isValid && I.getOpcode() == Instruction::AShr) isValid = Op0C->getValue()[TypeBits-1] == highBitSet; if (isValid) { Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1); Value *NewShift = Builder->CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1); NewShift->takeName(Op0BO); return BinaryOperator::Create(Op0BO->getOpcode(), NewShift, NewRHS); } } } } // Find out if this is a shift of a shift by a constant. BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0); if (ShiftOp && !ShiftOp->isShift()) ShiftOp = nullptr; if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) { // This is a constant shift of a constant shift. Be careful about hiding // shl instructions behind bit masks. They are used to represent multiplies // by a constant, and it is important that simple arithmetic expressions // are still recognizable by scalar evolution. // // The transforms applied to shl are very similar to the transforms applied // to mul by constant. We can be more aggressive about optimizing right // shifts. // // Combinations of right and left shifts will still be optimized in // DAGCombine where scalar evolution no longer applies. ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1)); uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits); uint32_t ShiftAmt2 = COp1->getLimitedValue(TypeBits); assert(ShiftAmt2 != 0 && "Should have been simplified earlier"); if (ShiftAmt1 == 0) return nullptr; // Will be simplified in the future. Value *X = ShiftOp->getOperand(0); IntegerType *Ty = cast<IntegerType>(I.getType()); // Check for (X << c1) << c2 and (X >> c1) >> c2 if (I.getOpcode() == ShiftOp->getOpcode()) { uint32_t AmtSum = ShiftAmt1+ShiftAmt2; // Fold into one big shift. // If this is oversized composite shift, then unsigned shifts get 0, ashr // saturates. if (AmtSum >= TypeBits) { if (I.getOpcode() != Instruction::AShr) return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); AmtSum = TypeBits-1; // Saturate to 31 for i32 ashr. } return BinaryOperator::Create(I.getOpcode(), X, ConstantInt::get(Ty, AmtSum)); } if (ShiftAmt1 == ShiftAmt2) { // If we have ((X << C) >>u C), turn this into X & (-1 >>u C). if (I.getOpcode() == Instruction::LShr && ShiftOp->getOpcode() == Instruction::Shl) { APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1)); return BinaryOperator::CreateAnd(X, ConstantInt::get(I.getContext(), Mask)); } } else if (ShiftAmt1 < ShiftAmt2) { uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1; // (X >>?,exact C1) << C2 --> X << (C2-C1) // The inexact version is deferred to DAGCombine so we don't hide shl // behind a bit mask. if (I.getOpcode() == Instruction::Shl && ShiftOp->getOpcode() != Instruction::Shl && ShiftOp->isExact()) { assert(ShiftOp->getOpcode() == Instruction::LShr || ShiftOp->getOpcode() == Instruction::AShr); ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff); BinaryOperator *NewShl = BinaryOperator::Create(Instruction::Shl, X, ShiftDiffCst); NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); NewShl->setHasNoSignedWrap(I.hasNoSignedWrap()); return NewShl; } // (X << C1) >>u C2 --> X >>u (C2-C1) & (-1 >> C2) if (I.getOpcode() == Instruction::LShr && ShiftOp->getOpcode() == Instruction::Shl) { ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff); // (X <<nuw C1) >>u C2 --> X >>u (C2-C1) if (ShiftOp->hasNoUnsignedWrap()) { BinaryOperator *NewLShr = BinaryOperator::Create(Instruction::LShr, X, ShiftDiffCst); NewLShr->setIsExact(I.isExact()); return NewLShr; } Value *Shift = Builder->CreateLShr(X, ShiftDiffCst); APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2)); return BinaryOperator::CreateAnd(Shift, ConstantInt::get(I.getContext(),Mask)); } // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in. However, // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits. if (I.getOpcode() == Instruction::AShr && ShiftOp->getOpcode() == Instruction::Shl) { if (ShiftOp->hasNoSignedWrap()) { // (X <<nsw C1) >>s C2 --> X >>s (C2-C1) ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff); BinaryOperator *NewAShr = BinaryOperator::Create(Instruction::AShr, X, ShiftDiffCst); NewAShr->setIsExact(I.isExact()); return NewAShr; } } } else { assert(ShiftAmt2 < ShiftAmt1); uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2; // (X >>?exact C1) << C2 --> X >>?exact (C1-C2) // The inexact version is deferred to DAGCombine so we don't hide shl // behind a bit mask. if (I.getOpcode() == Instruction::Shl && ShiftOp->getOpcode() != Instruction::Shl && ShiftOp->isExact()) { ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff); BinaryOperator *NewShr = BinaryOperator::Create(ShiftOp->getOpcode(), X, ShiftDiffCst); NewShr->setIsExact(true); return NewShr; } // (X << C1) >>u C2 --> X << (C1-C2) & (-1 >> C2) if (I.getOpcode() == Instruction::LShr && ShiftOp->getOpcode() == Instruction::Shl) { ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff); if (ShiftOp->hasNoUnsignedWrap()) { // (X <<nuw C1) >>u C2 --> X <<nuw (C1-C2) BinaryOperator *NewShl = BinaryOperator::Create(Instruction::Shl, X, ShiftDiffCst); NewShl->setHasNoUnsignedWrap(true); return NewShl; } Value *Shift = Builder->CreateShl(X, ShiftDiffCst); APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2)); return BinaryOperator::CreateAnd(Shift, ConstantInt::get(I.getContext(),Mask)); } // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in. However, // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits. if (I.getOpcode() == Instruction::AShr && ShiftOp->getOpcode() == Instruction::Shl) { if (ShiftOp->hasNoSignedWrap()) { // (X <<nsw C1) >>s C2 --> X <<nsw (C1-C2) ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff); BinaryOperator *NewShl = BinaryOperator::Create(Instruction::Shl, X, ShiftDiffCst); NewShl->setHasNoSignedWrap(true); return NewShl; } } } } return nullptr; }