예제 #1
0
        bool equals(const BlackoilState& other, double epsilon = 1e-8) const {
            bool equal = (numPhases() == other.numPhases());

            for (int phaseIdx = 0; phaseIdx < BlackoilPhases::MaxNumPhases; ++ phaseIdx) {
                equal = equal && (usedPhases_.phase_used[phaseIdx] == other.usedPhases_.phase_used[phaseIdx]);
                if (usedPhases_.phase_used[phaseIdx])
                    equal = equal && (usedPhases_.phase_pos[phaseIdx] == other.usedPhases_.phase_pos[phaseIdx]);
            }

            equal = equal && (vectorApproxEqual( pressure() , other.pressure() , epsilon));
            equal = equal && (vectorApproxEqual( facepressure() , other.facepressure() , epsilon));
            equal = equal && (vectorApproxEqual( faceflux() , other.faceflux() , epsilon));
            equal = equal && (vectorApproxEqual( surfacevol() , other.surfacevol() , epsilon));
            equal = equal && (vectorApproxEqual( saturation() , other.saturation() , epsilon));
            equal = equal && (vectorApproxEqual( gasoilratio() , other.gasoilratio() , epsilon));

            return equal;
        }
예제 #2
0
void computeMaxDp(std::map<std::pair<int, int>, double>& maxDp,
                  const DeckConstPtr& deck,
                  EclipseStateConstPtr eclipseState,
                  const Grid& grid,
                  const BlackoilState& initialState,
                  const BlackoilPropertiesFromDeck& props,
                  const double gravity)
{

    const PhaseUsage& pu = props.phaseUsage();

    const auto& eqlnum = eclipseState->get3DProperties().getIntGridProperty("EQLNUM");
    const auto& eqlnumData = eqlnum.getData();

    const int numPhases = initialState.numPhases();
    const int numCells = UgGridHelpers::numCells(grid);
    const int numPvtRegions = deck->getKeyword("TABDIMS").getRecord(0).getItem("NTPVT").get< int >(0);

    // retrieve the minimum (residual!?) and the maximum saturations for all cells
    std::vector<double> minSat(numPhases*numCells);
    std::vector<double> maxSat(numPhases*numCells);
    std::vector<int> allCells(numCells);
    for (int cellIdx = 0; cellIdx < numCells; ++cellIdx) {
        allCells[cellIdx] = cellIdx;
    }
    props.satRange(numCells, allCells.data(), minSat.data(), maxSat.data());

    // retrieve the surface densities
    std::vector<std::vector<double> > surfaceDensity(numPvtRegions);
    const auto& densityKw = deck->getKeyword("DENSITY");
    for (int regionIdx = 0; regionIdx < numPvtRegions; ++regionIdx) {
        surfaceDensity[regionIdx].resize(numPhases);

        if (pu.phase_used[BlackoilPhases::Aqua]) {
            const int wpos = pu.phase_pos[BlackoilPhases::Aqua];
            surfaceDensity[regionIdx][wpos] =
                densityKw.getRecord(regionIdx).getItem("WATER").getSIDouble(0);
        }

        if (pu.phase_used[BlackoilPhases::Liquid]) {
            const int opos = pu.phase_pos[BlackoilPhases::Liquid];
            surfaceDensity[regionIdx][opos] =
                densityKw.getRecord(regionIdx).getItem("OIL").getSIDouble(0);
        }

        if (pu.phase_used[BlackoilPhases::Vapour]) {
            const int gpos = pu.phase_pos[BlackoilPhases::Vapour];
            surfaceDensity[regionIdx][gpos] =
                densityKw.getRecord(regionIdx).getItem("GAS").getSIDouble(0);
        }
    }

    // retrieve the PVT region of each cell. note that we need c++ instead of
    // Fortran indices.
    const int* gc = UgGridHelpers::globalCell(grid);
    std::vector<int> pvtRegion(numCells);
    const auto& cartPvtRegion = eclipseState->get3DProperties().getIntGridProperty("PVTNUM").getData();
    for (int cellIdx = 0; cellIdx < numCells; ++cellIdx) {
        const int cartCellIdx = gc ? gc[cellIdx] : cellIdx;
        pvtRegion[cellIdx] = std::max(0, cartPvtRegion[cartCellIdx] - 1);
    }

    // compute the initial "phase presence" of each cell (required to calculate
    // the inverse formation volume factors
    std::vector<PhasePresence> cond(numCells);
    for (int cellIdx = 0; cellIdx < numCells; ++cellIdx) {
        if (pu.phase_used[BlackoilPhases::Aqua]) {
            const double sw = initialState.saturation()[numPhases*cellIdx + pu.phase_pos[BlackoilPhases::Aqua]];
            if (sw > 0.0) {
                cond[cellIdx].setFreeWater();
            }
        }

        if (pu.phase_used[BlackoilPhases::Liquid]) {
            const double so = initialState.saturation()[numPhases*cellIdx + pu.phase_pos[BlackoilPhases::Liquid]];
            if (so > 0.0) {
                cond[cellIdx].setFreeOil();
            }
        }

        if (pu.phase_used[BlackoilPhases::Vapour]) {
            const double sg = initialState.saturation()[numPhases*cellIdx + pu.phase_pos[BlackoilPhases::Vapour]];
            if (sg > 0.0) {
                cond[cellIdx].setFreeGas();
            }
        }
    }

    // calculate the initial fluid densities for the gravity correction.
    std::vector<std::vector<double>> rho(numPhases);
    for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
        rho[phaseIdx].resize(numCells);
    }

    // compute the capillary pressures of the active phases
    std::vector<double> capPress(numCells*numPhases);
    std::vector<int> cellIdxArray(numCells);
    for (int cellIdx = 0; cellIdx < numCells; ++ cellIdx) {
        cellIdxArray[cellIdx] = cellIdx;
    }
    props.capPress(numCells, initialState.saturation().data(), cellIdxArray.data(), capPress.data(), NULL);

    // compute the absolute pressure of each active phase: for some reason, E100
    // defines the capillary pressure for the water phase as p_o - p_w while it
    // uses p_g - p_o for the gas phase. (it would be more consistent to use the
    // oil pressure as reference for both the other phases.) probably this is
    // done to always have a positive number for the capillary pressure (as long
    // as the medium is hydrophilic)
    std::vector<std::vector<double> > phasePressure(numPhases);
    for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
        phasePressure[phaseIdx].resize(numCells);
    }

    for (int cellIdx = 0; cellIdx < numCells; ++ cellIdx) {
        // we currently hard-code the oil phase as the reference phase!
        assert(pu.phase_used[BlackoilPhases::Liquid]);

        const int opos = pu.phase_pos[BlackoilPhases::Liquid];
        phasePressure[opos][cellIdx] = initialState.pressure()[cellIdx];

        if (pu.phase_used[BlackoilPhases::Aqua]) {
            const int wpos = pu.phase_pos[BlackoilPhases::Aqua];
            phasePressure[wpos][cellIdx] =
                initialState.pressure()[cellIdx]
                + (capPress[cellIdx*numPhases + opos] - capPress[cellIdx*numPhases + wpos]);
        }

        if (pu.phase_used[BlackoilPhases::Vapour]) {
            const int gpos = pu.phase_pos[BlackoilPhases::Vapour];
            phasePressure[gpos][cellIdx] =
                initialState.pressure()[cellIdx]
                + (capPress[cellIdx*numPhases + gpos] - capPress[cellIdx*numPhases + opos]);
        }
    }

    // calculate the densities of the active phases for each cell
    if (pu.phase_used[BlackoilPhases::Aqua]) {
        const int wpos = pu.phase_pos[BlackoilPhases::Aqua];
        const auto& pvtw = props.waterPvt();
        for (int cellIdx = 0; cellIdx < numCells; ++ cellIdx) {
            int pvtRegionIdx = pvtRegion[cellIdx];

            double T = initialState.temperature()[cellIdx];
            double p = phasePressure[wpos][cellIdx];
            double b = pvtw.inverseFormationVolumeFactor(pvtRegionIdx, T, p);

            rho[wpos][cellIdx] = surfaceDensity[pvtRegionIdx][wpos]*b;
        }
    }

    if (pu.phase_used[BlackoilPhases::Liquid]) {
        const int opos = pu.phase_pos[BlackoilPhases::Liquid];
        const auto& pvto = props.oilPvt();
        for (int cellIdx = 0; cellIdx < numCells; ++ cellIdx) {
            int pvtRegionIdx = pvtRegion[cellIdx];

            double T = initialState.temperature()[cellIdx];
            double p = phasePressure[opos][cellIdx];
            double Rs = initialState.gasoilratio()[cellIdx];
            double RsSat = pvto.saturatedGasDissolutionFactor(pvtRegionIdx, T, p);

            double b;
            if (Rs >= RsSat) {
                b = pvto.saturatedInverseFormationVolumeFactor(pvtRegionIdx, T, p);
            }
            else {
                b = pvto.inverseFormationVolumeFactor(pvtRegionIdx, T, p, Rs);
            }

            rho[opos][cellIdx] = surfaceDensity[pvtRegionIdx][opos]*b;
            if (pu.phase_used[BlackoilPhases::Vapour]) {
                int gpos = pu.phase_pos[BlackoilPhases::Vapour];
                rho[opos][cellIdx] += surfaceDensity[pvtRegionIdx][gpos]*Rs*b;
            }
        }
    }

    if (pu.phase_used[BlackoilPhases::Vapour]) {
        const int gpos = pu.phase_pos[BlackoilPhases::Vapour];
        const auto& pvtg = props.gasPvt();
        for (int cellIdx = 0; cellIdx < numCells; ++ cellIdx) {
            int pvtRegionIdx = pvtRegion[cellIdx];

            double T = initialState.temperature()[cellIdx];
            double p = phasePressure[gpos][cellIdx];
            double Rv = initialState.rv()[cellIdx];
            double RvSat = pvtg.saturatedOilVaporizationFactor(pvtRegionIdx, T, p);

            double b;
            if (Rv >= RvSat) {
                b = pvtg.saturatedInverseFormationVolumeFactor(pvtRegionIdx, T, p);
            }
            else {
                b = pvtg.inverseFormationVolumeFactor(pvtRegionIdx, T, p, Rv);
            }
            rho[gpos][cellIdx] = surfaceDensity[pvtRegionIdx][gpos]*b;
            if (pu.phase_used[BlackoilPhases::Liquid]) {
                int opos = pu.phase_pos[BlackoilPhases::Liquid];
                rho[gpos][cellIdx] += surfaceDensity[pvtRegionIdx][opos]*Rv*b;
            }
        }
    }

    // Calculate the maximum pressure potential difference between all PVT region
    // transitions of the initial solution.
    const int num_faces = UgGridHelpers::numFaces(grid);
    const auto& fc = UgGridHelpers::faceCells(grid);
    for (int face = 0; face < num_faces; ++face) {
        const int c1 = fc(face, 0);
        const int c2 = fc(face, 1);
        if (c1 < 0 || c2 < 0) {
            // Boundary face, skip this.
            continue;
        }
        const int gc1 = (gc == 0) ? c1 : gc[c1];
        const int gc2 = (gc == 0) ? c2 : gc[c2];
        const int eq1 = eqlnumData[gc1];
        const int eq2 = eqlnumData[gc2];

        if (eq1 == eq2) {
            // not an equilibration region boundary. skip this.
            continue;
        }

        // update the maximum pressure potential difference between the two
        // regions
        const auto barrierId = std::make_pair(std::min(eq1, eq2), std::max(eq1, eq2));
        if (maxDp.count(barrierId) == 0) {
            maxDp[barrierId] = 0.0;
        }

        for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
            const double z1 = UgGridHelpers::cellCenterDepth(grid, c1);
            const double z2 = UgGridHelpers::cellCenterDepth(grid, c2);

            const double rhoAvg = (rho[phaseIdx][c1] + rho[phaseIdx][c2])/2;

            const double s1 = initialState.saturation()[numPhases*c1 + phaseIdx];
            const double s2 = initialState.saturation()[numPhases*c2 + phaseIdx];

            const double sResid1 = minSat[numPhases*c1 + phaseIdx];
            const double sResid2 = minSat[numPhases*c2 + phaseIdx];

            // compute gravity corrected pressure potentials at the average depth
            const double p1 = phasePressure[phaseIdx][c1];
            const double p2 = phasePressure[phaseIdx][c2] + rhoAvg*gravity*(z1 - z2);

            if ((p1 > p2 && s1 > sResid1) || (p2 > p1 && s2 > sResid2))
                maxDp[barrierId] = std::max(maxDp[barrierId], std::abs(p1 - p2));
        }
    }
}
예제 #3
0
// ----------------- Main program -----------------
int
main(int argc, char** argv)
try
{
    using namespace Opm;

    std::cout << "\n================    Test program for fully implicit three-phase black-oil flow     ===============\n\n";
    parameter::ParameterGroup param(argc, argv, false);
    std::cout << "---------------    Reading parameters     ---------------" << std::endl;

    // If we have a "deck_filename", grid and props will be read from that.
    bool use_deck = param.has("deck_filename");
    if (!use_deck) {
        OPM_THROW(std::runtime_error, "This program must be run with an input deck. "
                  "Specify the deck with deck_filename=deckname.data (for example).");
    }
    boost::scoped_ptr<EclipseGridParser> deck;
    boost::scoped_ptr<GridManager> grid;
    boost::scoped_ptr<BlackoilPropertiesInterface> props;
    boost::scoped_ptr<BlackoilPropsAdInterface> new_props;
    boost::scoped_ptr<RockCompressibility> rock_comp;
    BlackoilState state;
    // bool check_well_controls = false;
    // int max_well_control_iterations = 0;
    double gravity[3] = { 0.0 };
    std::string deck_filename = param.get<std::string>("deck_filename");
    deck.reset(new EclipseGridParser(deck_filename));
    // Grid init
    grid.reset(new GridManager(*deck));

    // use the capitalized part of the deck's filename between the
    // last '/' and the last '.' character as base name.
    std::string baseName = deck_filename;
    auto charPos = baseName.rfind('/');
    if (charPos != std::string::npos)
        baseName = baseName.substr(charPos + 1);
    charPos = baseName.rfind('.');
    if (charPos != std::string::npos)
        baseName = baseName.substr(0, charPos);
    baseName = boost::to_upper_copy(baseName);

    Opm::EclipseWriter outputWriter(param, share_obj(*deck), share_obj(*grid->c_grid()));
    // Rock and fluid init
    props.reset(new BlackoilPropertiesFromDeck(*deck, *grid->c_grid(), param));
    new_props.reset(new BlackoilPropsAdFromDeck(*deck, *grid->c_grid()));
    // check_well_controls = param.getDefault("check_well_controls", false);
    // max_well_control_iterations = param.getDefault("max_well_control_iterations", 10);
    // Rock compressibility.
    rock_comp.reset(new RockCompressibility(*deck));
    // Gravity.
    gravity[2] = deck->hasField("NOGRAV") ? 0.0 : unit::gravity;
    // Init state variables (saturation and pressure).
    if (param.has("init_saturation")) {
        initStateBasic(*grid->c_grid(), *props, param, gravity[2], state);
        initBlackoilSurfvol(*grid->c_grid(), *props, state);
        enum { Oil = BlackoilPhases::Liquid, Gas = BlackoilPhases::Vapour };
        const PhaseUsage pu = props->phaseUsage();
        if (pu.phase_used[Oil] && pu.phase_used[Gas]) {
            const int np = props->numPhases();
            const int nc = grid->c_grid()->number_of_cells;
            for (int c = 0; c < nc; ++c) {
                state.gasoilratio()[c] = state.surfacevol()[c*np + pu.phase_pos[Gas]]
                    / state.surfacevol()[c*np + pu.phase_pos[Oil]];
            }
        }
    } else {
        initBlackoilStateFromDeck(*grid->c_grid(), *props, *deck, gravity[2], state);
    }

    bool use_gravity = (gravity[0] != 0.0 || gravity[1] != 0.0 || gravity[2] != 0.0);
    const double *grav = use_gravity ? &gravity[0] : 0;

    // Linear solver.
    LinearSolverFactory linsolver(param);

    // Write parameters used for later reference.
    bool output = param.getDefault("output", true);
    std::ofstream epoch_os;
    std::string output_dir;
    if (output) {
        output_dir =
            param.getDefault("output_dir", std::string("output"));
        boost::filesystem::path fpath(output_dir);
        try {
            create_directories(fpath);
        }
        catch (...) {
            OPM_THROW(std::runtime_error, "Creating directories failed: " << fpath);
        }
        std::string filename = output_dir + "/epoch_timing.param";
        epoch_os.open(filename.c_str(), std::fstream::trunc | std::fstream::out);
        // open file to clean it. The file is appended to in SimulatorTwophase
        filename = output_dir + "/step_timing.param";
        std::fstream step_os(filename.c_str(), std::fstream::trunc | std::fstream::out);
        step_os.close();
        param.writeParam(output_dir + "/simulation.param");
    }


    std::cout << "\n\n================    Starting main simulation loop     ===============\n"
              << "                        (number of epochs: "
              << (deck->numberOfEpochs()) << ")\n\n" << std::flush;

    SimulatorReport rep;
    // With a deck, we may have more epochs etc.
    WellState well_state;
    int step = 0;
    SimulatorTimer simtimer;
    // Use timer for last epoch to obtain total time.
    deck->setCurrentEpoch(deck->numberOfEpochs() - 1);
    simtimer.init(*deck);
    const double total_time = simtimer.totalTime();
    for (int epoch = 0; epoch < deck->numberOfEpochs(); ++epoch) {
        // Set epoch index.
        deck->setCurrentEpoch(epoch);

        // Update the timer.
        if (deck->hasField("TSTEP")) {
            simtimer.init(*deck);
        } else {
            if (epoch != 0) {
                OPM_THROW(std::runtime_error, "No TSTEP in deck for epoch " << epoch);
            }
            simtimer.init(param);
        }
        simtimer.setCurrentStepNum(step);
        simtimer.setTotalTime(total_time);

        // Report on start of epoch.
        std::cout << "\n\n--------------    Starting epoch " << epoch << "    --------------"
                  << "\n                  (number of steps: "
                  << simtimer.numSteps() - step << ")\n\n" << std::flush;

        // Create new wells, well_state
        WellsManager wells(*deck, *grid->c_grid(), props->permeability());
        // @@@ HACK: we should really make a new well state and
        // properly transfer old well state to it every epoch,
        // since number of wells may change etc.
        if (epoch == 0) {
            well_state.init(wells.c_wells(), state);
        }

        // Create and run simulator.
        SimulatorFullyImplicitBlackoil simulator(param,
                                                 *grid->c_grid(),
                                                 *new_props,
                                                 rock_comp->isActive() ? rock_comp.get() : 0,
                                                 wells,
                                                 linsolver,
                                                 grav,
                                                 outputWriter);
        if (epoch == 0) {
            warnIfUnusedParams(param);
        }
        SimulatorReport epoch_rep = simulator.run(simtimer, state, well_state);
        if (output) {
            epoch_rep.reportParam(epoch_os);
        }
        // Update total timing report and remember step number.
        rep += epoch_rep;
        step = simtimer.currentStepNum();
    }

    std::cout << "\n\n================    End of simulation     ===============\n\n";
    rep.report(std::cout);

    if (output) {
        std::string filename = output_dir + "/walltime.param";
        std::fstream tot_os(filename.c_str(),std::fstream::trunc | std::fstream::out);
        rep.reportParam(tot_os);
    }

}
catch (const std::exception &e) {
    std::cerr << "Program threw an exception: " << e.what() << "\n";
    throw;
}