예제 #1
0
bool State::sync(BlockChain const& _bc, h256 _block)
{
	bool ret = false;
	// BLOCK
	BlockInfo bi;
	try
	{
		auto b = _bc.block(_block);
		bi.populate(b);
		bi.verifyInternals(_bc.block(_block));
	}
	catch (...)
	{
		// TODO: Slightly nicer handling? :-)
		cerr << "ERROR: Corrupt block-chain! Delete your block-chain DB and restart." << endl;
		exit(1);
	}

	if (bi == m_currentBlock)
	{
		// We mined the last block.
		// Our state is good - we just need to move on to next.
		m_previousBlock = m_currentBlock;
		resetCurrent();
		m_currentNumber++;
		ret = true;
	}
	else if (bi == m_previousBlock)
	{
		// No change since last sync.
		// Carry on as we were.
	}
	else
	{
		// New blocks available, or we've switched to a different branch. All change.
		// Find most recent state dump and replay what's left.
		// (Most recent state dump might end up being genesis.)

		std::vector<h256> chain;
		while (bi.stateRoot != BlockInfo::genesis().hash && m_db.lookup(bi.stateRoot).empty())	// while we don't have the state root of the latest block...
		{
			chain.push_back(bi.hash);				// push back for later replay.
			bi.populate(_bc.block(bi.parentHash));	// move to parent.
		}

		m_previousBlock = bi;
		resetCurrent();

		// Iterate through in reverse, playing back each of the blocks.
		for (auto it = chain.rbegin(); it != chain.rend(); ++it)
			playback(_bc.block(*it), true);

		m_currentNumber = _bc.details(_block).number + 1;
		resetCurrent();
		ret = true;
	}
	return ret;
}
예제 #2
0
u256 State::enactOn(bytesConstRef _block, BlockInfo const& _bi, BlockChain const& _bc)
{
	// Check family:
	BlockInfo biParent(_bc.block(_bi.parentHash));
	_bi.verifyParent(biParent);
	BlockInfo biGrandParent;
	if (biParent.number)
		biGrandParent.populate(_bc.block(biParent.parentHash));
	sync(_bc, _bi.parentHash);
	resetCurrent();
	m_previousBlock = biParent;
	return enact(_block, _bc);
}
예제 #3
0
// @returns the block that represents the difference between m_previousBlock and m_currentBlock.
// (i.e. all the transactions we executed).
void State::commitToMine(BlockChain const& _bc)
{
	if (m_currentBlock.sha3Transactions != h256() || m_currentBlock.sha3Uncles != h256())
	{
		Addresses uncleAddresses;
		for (auto i: RLP(m_currentUncles))
			uncleAddresses.push_back(i[2].toHash<Address>());
		unapplyRewards(uncleAddresses);
	}

	cnote << "Commiting to mine on" << m_previousBlock.hash;

	RLPStream uncles;
	Addresses uncleAddresses;

	if (m_previousBlock != BlockInfo::genesis())
	{
		// Find uncles if we're not a direct child of the genesis.
//		cout << "Checking " << m_previousBlock.hash << ", parent=" << m_previousBlock.parentHash << endl;
		auto us = _bc.details(m_previousBlock.parentHash).children;
		assert(us.size() >= 1);	// must be at least 1 child of our grandparent - it's our own parent!
		uncles.appendList(us.size() - 1);	// one fewer - uncles precludes our parent from the list of grandparent's children.
		for (auto const& u: us)
			if (u != m_previousBlock.hash)	// ignore our own parent - it's not an uncle.
			{
				BlockInfo ubi(_bc.block(u));
				ubi.fillStream(uncles, true);
				uncleAddresses.push_back(ubi.coinbaseAddress);
			}
	}
	else
		uncles.appendList(0);

	applyRewards(uncleAddresses);

	RLPStream txs(m_transactions.size());
	for (auto const& i: m_transactions)
		i.fillStream(txs);

	txs.swapOut(m_currentTxs);
	uncles.swapOut(m_currentUncles);

	m_currentBlock.sha3Transactions = sha3(m_currentTxs);
	m_currentBlock.sha3Uncles = sha3(m_currentUncles);

	// Commit any and all changes to the trie that are in the cache, then update the state root accordingly.
	commit();

	cnote << "stateRoot:" << m_state.root();
//	cnote << m_state;
//	cnote << *this;

	m_currentBlock.stateRoot = m_state.root();
	m_currentBlock.parentHash = m_previousBlock.hash;
}
예제 #4
0
PopulationStatistics State::populateFromChain(BlockChain const& _bc, h256 const& _h, ImportRequirements::value _ir)
{
	PopulationStatistics ret { 0.0, 0.0 };

	if (!_bc.isKnown(_h))
	{
		// Might be worth throwing here.
		cwarn << "Invalid block given for state population: " << _h;
		return ret;
	}

	auto b = _bc.block(_h);
	BlockInfo bi(b);
	if (bi.number)
	{
		// Non-genesis:

		// 1. Start at parent's end state (state root).
		BlockInfo bip;
		bip.populate(_bc.block(bi.parentHash));
		sync(_bc, bi.parentHash, bip, _ir);

		// 2. Enact the block's transactions onto this state.
		m_ourAddress = bi.coinbaseAddress;
		Timer t;
		auto vb = BlockChain::verifyBlock(b);
		ret.verify = t.elapsed();
		t.restart();
		enact(vb, _bc, _ir);
		ret.enact = t.elapsed();
	}
	else
	{
		// Genesis required:
		// We know there are no transactions, so just populate directly.
		m_state.init();
		sync(_bc, _h, bi, _ir);
	}

	return ret;
}
예제 #5
0
PopulationStatistics Block::populateFromChain(BlockChain const& _bc, h256 const& _h, ImportRequirements::value _ir)
{
	PopulationStatistics ret { 0.0, 0.0 };

	if (!_bc.isKnown(_h))
	{
		// Might be worth throwing here.
		cwarn << "Invalid block given for state population: " << _h;
		BOOST_THROW_EXCEPTION(BlockNotFound() << errinfo_target(_h));
	}

	auto b = _bc.block(_h);
	BlockInfo bi(b);
	if (bi.number())
	{
		// Non-genesis:

		// 1. Start at parent's end state (state root).
		BlockInfo bip(_bc.block(bi.parentHash()));
		sync(_bc, bi.parentHash(), bip);

		// 2. Enact the block's transactions onto this state.
		m_beneficiary = bi.beneficiary();
		Timer t;
		auto vb = _bc.verifyBlock(&b, function<void(Exception&)>(), _ir | ImportRequirements::TransactionBasic);
		ret.verify = t.elapsed();
		t.restart();
		enact(vb, _bc);
		ret.enact = t.elapsed();
	}
	else
	{
		// Genesis required:
		// We know there are no transactions, so just populate directly.
		m_state = State(m_state.db(), BaseState::Empty);	// TODO: try with PreExisting.
		sync(_bc, _h, bi);
	}

	return ret;
}
예제 #6
0
State::State(OverlayDB const& _db, BlockChain const& _bc, h256 _h):
	m_db(_db),
	m_state(&m_db),
	m_blockReward(c_blockReward)
{
	// TODO THINK: is this necessary?
	m_state.init();

	auto b = _bc.block(_h);
	BlockInfo bi;
	BlockInfo bip;
	if (_h)
		bi.populate(b);
	if (bi && bi.number)
		bip.populate(_bc.block(bi.parentHash));
	if (!_h || !bip)
		return;
	m_ourAddress = bi.coinbaseAddress;

	sync(_bc, bi.parentHash, bip);
	enact(&b, _bc);
}
예제 #7
0
bool Block::sync(BlockChain const& _bc, h256 const& _block, BlockInfo const& _bi)
{
	bool ret = false;
	// BLOCK
	BlockInfo bi = _bi ? _bi : _bc.info(_block);
#if ETH_PARANOIA
	if (!bi)
		while (1)
		{
			try
			{
				auto b = _bc.block(_block);
				bi.populate(b);
				break;
			}
			catch (Exception const& _e)
			{
				// TODO: Slightly nicer handling? :-)
				cerr << "ERROR: Corrupt block-chain! Delete your block-chain DB and restart." << endl;
				cerr << diagnostic_information(_e) << endl;
			}
			catch (std::exception const& _e)
			{
				// TODO: Slightly nicer handling? :-)
				cerr << "ERROR: Corrupt block-chain! Delete your block-chain DB and restart." << endl;
				cerr << _e.what() << endl;
			}
		}
#endif
	if (bi == m_currentBlock)
	{
		// We mined the last block.
		// Our state is good - we just need to move on to next.
		m_previousBlock = m_currentBlock;
		resetCurrent();
		ret = true;
	}
	else if (bi == m_previousBlock)
	{
		// No change since last sync.
		// Carry on as we were.
	}
	else
	{
		// New blocks available, or we've switched to a different branch. All change.
		// Find most recent state dump and replay what's left.
		// (Most recent state dump might end up being genesis.)

		if (m_state.db().lookup(bi.stateRoot()).empty())	// TODO: API in State for this?
		{
			cwarn << "Unable to sync to" << bi.hash() << "; state root" << bi.stateRoot() << "not found in database.";
			cwarn << "Database corrupt: contains block without stateRoot:" << bi;
			cwarn << "Try rescuing the database by running: eth --rescue";
			BOOST_THROW_EXCEPTION(InvalidStateRoot() << errinfo_target(bi.stateRoot()));
		}
		m_previousBlock = bi;
		resetCurrent();
		ret = true;
	}
#if ALLOW_REBUILD
	else
	{
예제 #8
0
void BasicGasPricer::update(BlockChain const &_bc)
{
    unsigned c = 0;
    h256 p = _bc.currentHash();
    m_gasPerBlock = _bc.info(p).gasLimit();

    map<u256, u256> dist;
    u256 total = 0;

    // make gasPrice versus gasUsed distribution for the last 1000 blocks
    while (c < 1000 && p)
    {
        BlockHeader bi = _bc.info(p);
        if (bi.transactionsRoot() != EmptyTrie)
        {
            auto bb = _bc.block(p);
            RLP r(bb);
            BlockReceipts brs(_bc.receipts(bi.hash()));
            size_t i = 0;
            for (auto const &tr: r[1])
            {
                Transaction tx(tr.data(), CheckTransaction::None);
                u256 gu = brs.receipts[i].gasUsed();
                dist[tx.gasPrice()] += gu;
                total += gu;
                i++;
            }
        }
        p = bi.parentHash();
        ++c;
    }

    // fill m_octiles with weighted gasPrices
    if (total > 0)
    {
        m_octiles[0] = dist.begin()->first;

        // calc mean
        u256 mean = 0;
        for (auto const &i: dist)
            mean += i.first * i.second;
        mean /= total;

        // calc standard deviation
        u256 sdSquared = 0;
        for (auto const &i: dist)
            sdSquared += i.second * (i.first - mean) * (i.first - mean);
        sdSquared /= total;

        if (sdSquared)
        {
            long double sd = sqrt(sdSquared.convert_to<long double>());
            long double normalizedSd = sd / mean.convert_to<long double>();

            // calc octiles normalized to gaussian distribution
            boost::math::normal gauss(1.0, (normalizedSd > 0.01) ? normalizedSd : 0.01);
            for (size_t i = 1; i < 8; i++)
                m_octiles[i] = u256(mean.convert_to<long double>() * boost::math::quantile(gauss, i / 8.0));
            m_octiles[8] = dist.rbegin()->first;
        } else
        {
            for (size_t i = 0; i < 9; i++)
                m_octiles[i] = (i + 1) * mean / 5;
        }
    }
}
예제 #9
0
bool PeerServer::sync(BlockChain& _bc, TransactionQueue& _tq, Overlay& _o)
{
	bool ret = ensureInitialised(_bc, _tq);

	if (sync())
		ret = true;

	if (m_mode == NodeMode::Full)
	{
		for (auto it = m_incomingTransactions.begin(); it != m_incomingTransactions.end(); ++it)
			if (_tq.import(*it))
			{}//ret = true;		// just putting a transaction in the queue isn't enough to change the state - it might have an invalid nonce...
			else
				m_transactionsSent.insert(sha3(*it));	// if we already had the transaction, then don't bother sending it on.
		m_incomingTransactions.clear();

		auto h = _bc.currentHash();
		bool resendAll = (h != m_latestBlockSent);

		// Send any new transactions.
		for (auto j: m_peers)
			if (auto p = j.second.lock())
			{
				bytes b;
				uint n = 0;
				for (auto const& i: _tq.transactions())
					if ((!m_transactionsSent.count(i.first) && !p->m_knownTransactions.count(i.first)) || p->m_requireTransactions || resendAll)
					{
						b += i.second;
						++n;
						m_transactionsSent.insert(i.first);
					}
				if (n)
				{
					RLPStream ts;
					PeerSession::prep(ts);
					ts.appendList(n + 1) << TransactionsPacket;
					ts.appendRaw(b, n).swapOut(b);
					seal(b);
					p->send(&b);
				}
				p->m_knownTransactions.clear();
				p->m_requireTransactions = false;
			}

		// Send any new blocks.
		if (h != m_latestBlockSent)
		{
			// TODO: find where they diverge and send complete new branch.
			RLPStream ts;
			PeerSession::prep(ts);
			ts.appendList(2) << BlocksPacket;
			bytes b;
			ts.appendRaw(_bc.block(_bc.currentHash())).swapOut(b);
			seal(b);
			for (auto j: m_peers)
				if (auto p = j.second.lock())
				{
					if (!p->m_knownBlocks.count(_bc.currentHash()))
						p->send(&b);
					p->m_knownBlocks.clear();
				}
		}
		m_latestBlockSent = h;

		for (int accepted = 1, n = 0; accepted; ++n)
		{
			accepted = 0;

			if (m_incomingBlocks.size())
				for (auto it = prev(m_incomingBlocks.end());; --it)
				{
					try
					{
						_bc.import(*it, _o);
						it = m_incomingBlocks.erase(it);
						++accepted;
						ret = true;
					}
					catch (UnknownParent)
					{
						// Don't (yet) know its parent. Leave it for later.
						m_unknownParentBlocks.push_back(*it);
						it = m_incomingBlocks.erase(it);
					}
					catch (...)
					{
						// Some other error - erase it.
						it = m_incomingBlocks.erase(it);
					}

					if (it == m_incomingBlocks.begin())
						break;
				}
			if (!n && accepted)
			{
				for (auto i: m_unknownParentBlocks)
					m_incomingBlocks.push_back(i);
				m_unknownParentBlocks.clear();
			}
		}

		// Connect to additional peers
		while (m_peers.size() < m_idealPeerCount)
		{
			if (m_freePeers.empty())
			{
				if (chrono::steady_clock::now() > m_lastPeersRequest + chrono::seconds(10))
				{
					RLPStream s;
					bytes b;
					(PeerSession::prep(s).appendList(1) << GetPeersPacket).swapOut(b);
					seal(b);
					for (auto const& i: m_peers)
						if (auto p = i.second.lock())
							if (p->isOpen())
								p->send(&b);
					m_lastPeersRequest = chrono::steady_clock::now();
				}


				if (!m_accepting)
					ensureAccepting();

				break;
			}

			auto x = time(0) % m_freePeers.size();
			m_incomingPeers[m_freePeers[x]].second++;
			connect(m_incomingPeers[m_freePeers[x]].first);
			m_freePeers.erase(m_freePeers.begin() + x);
		}
	}

	// platform for consensus of social contract.
	// restricts your freedom but does so fairly. and that's the value proposition.
	// guarantees that everyone else respect the rules of the system. (i.e. obeys laws).

	// We'll keep at most twice as many as is ideal, halfing what counts as "too young to kill" until we get there.
	for (uint old = 15000; m_peers.size() > m_idealPeerCount * 2 && old > 100; old /= 2)
		while (m_peers.size() > m_idealPeerCount)
		{
			// look for worst peer to kick off
			// first work out how many are old enough to kick off.
			shared_ptr<PeerSession> worst;
			unsigned agedPeers = 0;
			for (auto i: m_peers)
				if (auto p = i.second.lock())
					if ((m_mode != NodeMode::PeerServer || p->m_caps != 0x01) && chrono::steady_clock::now() > p->m_connect + chrono::milliseconds(old))	// don't throw off new peers; peer-servers should never kick off other peer-servers.
					{
						++agedPeers;
						if ((!worst || p->m_rating < worst->m_rating || (p->m_rating == worst->m_rating && p->m_connect > worst->m_connect)))	// kill older ones
							worst = p;
					}
			if (!worst || agedPeers <= m_idealPeerCount)
				break;
			worst->disconnect(TooManyPeers);
		}

	return ret;
}
예제 #10
0
void State::commitToMine(BlockChain const& _bc)
{
	uncommitToMine();

//	cnote << "Committing to mine on block" << m_previousBlock.hash.abridged();
#ifdef ETH_PARANOIA
	commit();
	cnote << "Pre-reward stateRoot:" << m_state.root();
#endif

	m_lastTx = m_db;

	Addresses uncleAddresses;

	RLPStream unclesData;
	unsigned unclesCount = 0;
	if (m_previousBlock.number != 0)
	{
		// Find great-uncles (or second-cousins or whatever they are) - children of great-grandparents, great-great-grandparents... that were not already uncles in previous generations.
//		cout << "Checking " << m_previousBlock.hash << ", parent=" << m_previousBlock.parentHash << endl;
		set<h256> knownUncles = _bc.allUnclesFrom(m_currentBlock.parentHash);
		auto p = m_previousBlock.parentHash;
		for (unsigned gen = 0; gen < 6 && p != _bc.genesisHash(); ++gen, p = _bc.details(p).parent)
		{
			auto us = _bc.details(p).children;
			assert(us.size() >= 1);	// must be at least 1 child of our grandparent - it's our own parent!
			for (auto const& u: us)
				if (!knownUncles.count(u))	// ignore any uncles/mainline blocks that we know about.
				{
					BlockInfo ubi(_bc.block(u));
					ubi.streamRLP(unclesData, WithNonce);
					++unclesCount;
					uncleAddresses.push_back(ubi.coinbaseAddress);
				}
		}
	}

	MemoryDB tm;
	GenericTrieDB<MemoryDB> transactionsTrie(&tm);
	transactionsTrie.init();

	MemoryDB rm;
	GenericTrieDB<MemoryDB> receiptsTrie(&rm);
	receiptsTrie.init();

	RLPStream txs;
	txs.appendList(m_transactions.size());

	for (unsigned i = 0; i < m_transactions.size(); ++i)
	{
		RLPStream k;
		k << i;

		RLPStream receiptrlp;
		m_receipts[i].streamRLP(receiptrlp);
		receiptsTrie.insert(&k.out(), &receiptrlp.out());

		RLPStream txrlp;
		m_transactions[i].streamRLP(txrlp);
		transactionsTrie.insert(&k.out(), &txrlp.out());

		txs.appendRaw(txrlp.out());
	}

	txs.swapOut(m_currentTxs);

	RLPStream(unclesCount).appendRaw(unclesData.out(), unclesCount).swapOut(m_currentUncles);

	m_currentBlock.transactionsRoot = transactionsTrie.root();
	m_currentBlock.receiptsRoot = receiptsTrie.root();
	m_currentBlock.logBloom = logBloom();
	m_currentBlock.sha3Uncles = sha3(m_currentUncles);

	// Apply rewards last of all.
	applyRewards(uncleAddresses);

	// Commit any and all changes to the trie that are in the cache, then update the state root accordingly.
	commit();

//	cnote << "Post-reward stateRoot:" << m_state.root().abridged();
//	cnote << m_state;
//	cnote << *this;

	m_currentBlock.gasUsed = gasUsed();
	m_currentBlock.stateRoot = m_state.root();
	m_currentBlock.parentHash = m_previousBlock.hash;
}
예제 #11
0
u256 State::enact(bytesConstRef _block, BlockChain const& _bc, bool _checkNonce)
{
	// m_currentBlock is assumed to be prepopulated and reset.

#if !ETH_RELEASE
	BlockInfo bi(_block, _checkNonce);
	assert(m_previousBlock.hash == bi.parentHash);
	assert(m_currentBlock.parentHash == bi.parentHash);
	assert(rootHash() == m_previousBlock.stateRoot);
#endif

	if (m_currentBlock.parentHash != m_previousBlock.hash)
		BOOST_THROW_EXCEPTION(InvalidParentHash());

	// Populate m_currentBlock with the correct values.
	m_currentBlock.populate(_block, _checkNonce);
	m_currentBlock.verifyInternals(_block);

//	cnote << "playback begins:" << m_state.root();
//	cnote << m_state;

	MemoryDB tm;
	GenericTrieDB<MemoryDB> transactionsTrie(&tm);
	transactionsTrie.init();

	MemoryDB rm;
	GenericTrieDB<MemoryDB> receiptsTrie(&rm);
	receiptsTrie.init();

	LastHashes lh = getLastHashes(_bc, (unsigned)m_previousBlock.number);

	// All ok with the block generally. Play back the transactions now...
	unsigned i = 0;
	for (auto const& tr: RLP(_block)[1])
	{
		RLPStream k;
		k << i;

		transactionsTrie.insert(&k.out(), tr.data());
		execute(lh, tr.data());

		RLPStream receiptrlp;
		m_receipts.back().streamRLP(receiptrlp);
		receiptsTrie.insert(&k.out(), &receiptrlp.out());
		++i;
	}

	if (transactionsTrie.root() != m_currentBlock.transactionsRoot)
	{
		cwarn << "Bad transactions state root!";
		BOOST_THROW_EXCEPTION(InvalidTransactionsStateRoot());
	}

	if (receiptsTrie.root() != m_currentBlock.receiptsRoot)
	{
		cwarn << "Bad receipts state root.";
		cwarn << "Block:" << toHex(_block);
		cwarn << "Block RLP:" << RLP(_block);
		cwarn << "Calculated: " << receiptsTrie.root();
		for (unsigned j = 0; j < i; ++j)
		{
			RLPStream k;
			k << j;
			auto b = asBytes(receiptsTrie.at(&k.out()));
			cwarn << j << ": ";
			cwarn << "RLP: " << RLP(b);
			cwarn << "Hex: " << toHex(b);
			cwarn << TransactionReceipt(&b);
		}
		cwarn << "Recorded: " << m_currentBlock.receiptsRoot;
		auto rs = _bc.receipts(m_currentBlock.hash);
		for (unsigned j = 0; j < rs.receipts.size(); ++j)
		{
			auto b = rs.receipts[j].rlp();
			cwarn << j << ": ";
			cwarn << "RLP: " << RLP(b);
			cwarn << "Hex: " << toHex(b);
			cwarn << rs.receipts[j];
		}
		BOOST_THROW_EXCEPTION(InvalidReceiptsStateRoot());
	}

	if (m_currentBlock.logBloom != logBloom())
	{
		cwarn << "Bad log bloom!";
		BOOST_THROW_EXCEPTION(InvalidLogBloom());
	}

	// Initialise total difficulty calculation.
	u256 tdIncrease = m_currentBlock.difficulty;

	// Check uncles & apply their rewards to state.
	set<h256> nonces = { m_currentBlock.nonce };
	Addresses rewarded;
	set<h256> knownUncles = _bc.allUnclesFrom(m_currentBlock.parentHash);
	for (auto const& i: RLP(_block)[2])
	{
		if (knownUncles.count(sha3(i.data())))
			BOOST_THROW_EXCEPTION(UncleInChain(knownUncles, sha3(i.data()) ));

		BlockInfo uncle = BlockInfo::fromHeader(i.data());
		if (nonces.count(uncle.nonce))
			BOOST_THROW_EXCEPTION(DuplicateUncleNonce());

		BlockInfo uncleParent(_bc.block(uncle.parentHash));
		if ((bigint)uncleParent.number < (bigint)m_currentBlock.number - 7)
			BOOST_THROW_EXCEPTION(UncleTooOld());
		uncle.verifyParent(uncleParent);

		nonces.insert(uncle.nonce);
		tdIncrease += uncle.difficulty;
		rewarded.push_back(uncle.coinbaseAddress);
	}
	applyRewards(rewarded);

	// Commit all cached state changes to the state trie.
	commit();

	// Hash the state trie and check against the state_root hash in m_currentBlock.
	if (m_currentBlock.stateRoot != m_previousBlock.stateRoot && m_currentBlock.stateRoot != rootHash())
	{
		cwarn << "Bad state root!";
		cnote << "Given to be:" << m_currentBlock.stateRoot;
		cnote << TrieDB<Address, OverlayDB>(&m_db, m_currentBlock.stateRoot);
		cnote << "Calculated to be:" << rootHash();
		cnote << m_state;
		cnote << *this;
		// Rollback the trie.
		m_db.rollback();
		BOOST_THROW_EXCEPTION(InvalidStateRoot());
	}

	if (m_currentBlock.gasUsed != gasUsed())
	{
		// Rollback the trie.
		m_db.rollback();
		BOOST_THROW_EXCEPTION(InvalidGasUsed() << RequirementError(bigint(gasUsed()), bigint(m_currentBlock.gasUsed)));
	}

	return tdIncrease;
}
예제 #12
0
bool State::sync(BlockChain const& _bc, h256 _block, BlockInfo const& _bi)
{
	bool ret = false;
	// BLOCK
	BlockInfo bi = _bi;
	if (!bi)
		while (1)
		{
			try
			{
				auto b = _bc.block(_block);
				bi.populate(b);
	//			bi.verifyInternals(_bc.block(_block));	// Unneeded - we already verify on import into the blockchain.
				break;
			}
			catch (Exception const& _e)
			{
				// TODO: Slightly nicer handling? :-)
				cerr << "ERROR: Corrupt block-chain! Delete your block-chain DB and restart." << endl;
				cerr << diagnostic_information(_e) << endl;
			}
			catch (std::exception const& _e)
			{
				// TODO: Slightly nicer handling? :-)
				cerr << "ERROR: Corrupt block-chain! Delete your block-chain DB and restart." << endl;
				cerr << _e.what() << endl;
			}
		}
	if (bi == m_currentBlock)
	{
		// We mined the last block.
		// Our state is good - we just need to move on to next.
		m_previousBlock = m_currentBlock;
		resetCurrent();
		ret = true;
	}
	else if (bi == m_previousBlock)
	{
		// No change since last sync.
		// Carry on as we were.
	}
	else
	{
		// New blocks available, or we've switched to a different branch. All change.
		// Find most recent state dump and replay what's left.
		// (Most recent state dump might end up being genesis.)

		std::vector<h256> chain;
		while (bi.number != 0 && m_db.lookup(bi.stateRoot).empty())	// while we don't have the state root of the latest block...
		{
			chain.push_back(bi.hash);				// push back for later replay.
			bi.populate(_bc.block(bi.parentHash));	// move to parent.
		}

		m_previousBlock = bi;
		resetCurrent();

		// Iterate through in reverse, playing back each of the blocks.
		try
		{
			for (auto it = chain.rbegin(); it != chain.rend(); ++it)
			{
				auto b = _bc.block(*it);
				enact(&b, _bc);
				cleanup(true);
			}
		}
		catch (...)
		{
			// TODO: Slightly nicer handling? :-)
			cerr << "ERROR: Corrupt block-chain! Delete your block-chain DB and restart." << endl;
			cerr << boost::current_exception_diagnostic_information() << endl;
			exit(1);
		}

		resetCurrent();
		ret = true;
	}
	return ret;
}