double benchmark_computeDescriptor(int N, int num_feats) { CImage img; getTestImage(0, img); CFeatureExtraction fExt; fExt.profiler.enable(); fExt.options.featsType = featFASTER9; for (int i = 0; i < N; i++) { CFeatureList fs; fExt.detectFeatures(img, fs, 0 /*id*/, num_feats); fExt.computeDescriptors(img, fs, DESCRIPTOR_TYPE); } return fExt.profiler.getMeanTime("computeDescriptors"); }
// ------------------------------------------------------ // Benchmark: Spin descriptor // ------------------------------------------------------ double feature_extraction_test_Spin_desc( int N, int h ) { CTicTac tictac; // Generate a random image CImage img; getTestImage(0,img); CFeatureExtraction fExt; CFeatureList featsHarris; fExt.options.SpinImagesOptions.radius = 13; fExt.options.SpinImagesOptions.hist_size_distance = 10; fExt.options.SpinImagesOptions.hist_size_intensity = 10; fExt.detectFeatures( img, featsHarris ); tictac.Tic(); for (int i=0;i<N;i++) fExt.computeDescriptors( img, featsHarris, descSpinImages ); const double T = tictac.Tac()/N; return T; }
// ------------------------------------------------------ // Benchmark: SIFT descriptor only // ------------------------------------------------------ double feature_extraction_test_SIFT_desc( int N, int h ) { CTicTac tictac; // Generate a random image CImage img; getTestImage(0,img); CFeatureExtraction fExt; CFeatureList featsHarris; fExt.options.featsType = featHarris; fExt.detectFeatures( img, featsHarris ); tictac.Tic(); for (int i=0;i<N;i++) fExt.computeDescriptors( img, featsHarris, descSIFT ); const double T = tictac.Tac()/N; // cout << "SIFT desc: " << featsHarris.size(); return T; }
// ------------------------------------------------------ // TestMatchingComparative // ------------------------------------------------------ void TestMatchingComparative() { // Take two images string imgL = myDataDir + string("imL_p01.jpg"); // Left image string imgR = myDataDir + string("imR_p01.jpg"); // Right image CImage im1, im2; im1.loadFromFile( imgL ); im2.loadFromFile( imgR ); size_t imW = im1.getWidth(); size_t imH = im1.getHeight(); CFeatureExtraction fExt; fExt.options.featsType = featFAST; fExt.options.patchSize = 21; fExt.options.SIFTOptions.implementation = CFeatureExtraction::Hess; // Find FAST features CFeatureList list1, list2; fExt.detectFeatures( im1, list1, 150 ); // Compute SIFT & SURF descriptors fExt.computeDescriptors( im1, list1, descSIFT ); fExt.computeDescriptors( im1, list1, descSURF ); fExt.detectFeatures( im2, list2, 150 ); // Compute SIFT & SURF descriptors fExt.computeDescriptors( im2, list2, descSIFT ); fExt.computeDescriptors( im2, list2, descSURF ); CFeatureList::iterator it1, it2; for( it1 = list1.begin(); it1 != list1.end(); ++it1 ) im1.cross( (*it1)->x, (*it1)->y, TColor::red, '+'); for( it2 = list2.begin(); it2 != list2.end(); ++it2 ) im2.cross( (*it2)->x, (*it2)->y, TColor::red, '+'); CDisplayWindow win, win2; win.setPos(0,0); win2.setPos(0,imH*1.5); CImage joinimage, copyjoinimage, copyInfoImage; size_t imW2 = 1280; size_t imH2 = 150; CImage infoimage( imW2, imH2, CH_RGB ); joinimage.joinImagesHorz( im1, im2 ); infoimage.filledRectangle( 0, 0, imW2, imH2, TColor(150,150,150) ); infoimage.textOut( 20, imH2-53, "SAD", TColor::blue ); infoimage.textOut( 20, imH2-41, "NCC", TColor::blue ); infoimage.textOut( 20, imH2-29, "SIFT", TColor::blue ); infoimage.textOut( 20, imH2-17, "SURF", TColor::blue ); for( it1 = list1.begin(); it1 != list1.end(); ++it1 ) { copyInfoImage = infoimage; copyjoinimage = joinimage; copyjoinimage.line( (*it1)->x, 0, (*it1)->x, imH, TColor::green ); // Horiz copyjoinimage.line( (*it1)->x+imW, 0, (*it1)->x+imW, imH, TColor::green ); // Horiz copyjoinimage.line( 0, (*it1)->y, imW+imW, (*it1)->y, TColor::green ); // Epipolar copyjoinimage.drawCircle( (*it1)->x, (*it1)->y, 4, TColor::green, 2 ); // Keypoint copyInfoImage.update_patch( (*it1)->patch, 0, 0 ); bool firstMatch = true; int cnt = 0; int px = 80; double minsad = 1.0, maxncc = 0.0; float minsiftd = 1.0f, minsurfd = 1.0f; int idxsad = 0, idxncc = 0, idxsiftd = 0, idxsurfd = 0; for( it2 = list2.begin(); it2 != list2.end(); ++it2 ) { if( fabs((*it1)->y-(*it2)->y) <= 1.0 && (*it1)->x > (*it2)->x ) { // Compute matching with SAD and Correlation and SIFT/SURF? // Use epipolar constraints // Compute SAD double sad = mrpt::vision::computeSAD( (*it1)->patch, (*it2)->patch ); if( sad < minsad ) { minsad = sad; idxsad = cnt; } // Compute Correlation double ncc; size_t u, v; mrpt::vision::openCV_cross_correlation( (*it1)->patch, (*it2)->patch, u, v, ncc ); if( ncc > maxncc ) { maxncc = ncc; idxncc = cnt; } // Compute distance between descriptors SIFT float siftd = (*it1)->descriptorSIFTDistanceTo( *(*it2) ); if( siftd < minsiftd ) { minsiftd = siftd; idxsiftd = cnt; } // Compute distance between descriptors SIFT float surfd = (*it1)->descriptorSURFDistanceTo( *(*it2) ); if( surfd < minsurfd ) { minsurfd = surfd; idxsurfd = cnt; } // Plot images + features + each candidate + difference score if( firstMatch ) { copyjoinimage.line( (*it1)->x+imW, 0, (*it1)->x+imW, imH, TColor::green ); // Limit line (only the first time) firstMatch = false; } // end-if copyjoinimage.drawCircle( (*it2)->x+imW, (*it2)->y, 4, TColor::blue, 2 ); // Keypoint double rx0, rx1, ry0, ry1, tx, ty; rx0 = (*it2)->x+imW-15; rx1 = (*it2)->x+imW; tx = (*it2)->x+imW-13; if( cnt % 2 ) { ry0 = (*it2)->y-20; ry1 = (*it2)->y-10; ty = (*it2)->y-22; } else { ry0 = (*it2)->y+10; ry1 = (*it2)->y+20; ty = (*it2)->y+8; } copyjoinimage.filledRectangle( rx0, ry0, rx1, ry1, TColor(150,150,150) ); copyjoinimage.textOut( tx, ty, format("%d", cnt), TColor::blue ); px = 80+cnt*50; if( px + fExt.options.patchSize > imW2 ) continue; copyInfoImage.update_patch( (*it2)->patch, px, 30 ); copyInfoImage.textOut( px, imH2-70, format("%d", cnt), TColor::blue ); copyInfoImage.textOut( px, imH2-53, format("%.2f", sad), TColor::blue ); copyInfoImage.textOut( px, imH2-41, format("%.2f", ncc), TColor::blue ); copyInfoImage.textOut( px, imH2-29, format("%.2f", siftd), TColor::blue ); copyInfoImage.textOut( px, imH2-17, format("%.2f", surfd), TColor::blue ); cnt++; } // end if } // end for it2 copyInfoImage.textOut( 80+idxsad*50, imH2-53, format("%.2f", minsad), TColor::green ); copyInfoImage.textOut( 80+idxncc*50, imH2-41, format("%.2f", maxncc), TColor::green ); copyInfoImage.textOut( 80+idxsiftd*50, imH2-29, format("%.2f", minsiftd), TColor::green ); copyInfoImage.textOut( 80+idxsurfd*50, imH2-17, format("%.2f", minsurfd), TColor::green ); win.showImage( copyjoinimage ); win2.showImage( copyInfoImage ); mrpt::system::pause(); } // end for it1 // Save to file // Check number of good features } // end TestMatchingComparative
// ------------------------------------------------------ // TestExtractFeatures // ------------------------------------------------------ void TestExtractFeatures() { CDisplayWindow wind1,wind2,wind3,wind4,wind5; CFeatureExtraction fExt; CFeatureList featsHarris, featsKLT, featsSIFT_Hess, featsSIFT_Lowe, featsSIFT_Vedaldi, featsSURF, featsFAST; CImage img; if (!img.loadFromFile(the_img_for_extract_feats )) { cerr << "Cannot load " << the_img_for_extract_feats << endl; return; } cout << "Loaded test image: " << endl << the_img_for_extract_feats << endl; cout << "--------------------------------------------------------------------------" << endl << endl; CTicTac tictac; fExt.options.patchSize = 0; cout << "Detect Harris features... [f_harris.txt]" << endl; tictac.Tic(); fExt.options.featsType = featHarris; fExt.detectFeatures( img, featsHarris ); cout << "Detected " << featsHarris.size() << " features in "; cout << format(" %.03fms",tictac.Tac()*1000) << endl << endl; featsHarris.saveToTextFile("f_harris.txt"); wind1.setWindowTitle("Harris detected features"); wind1.showImageAndPoints(img, featsHarris); cout << "Detect FAST features... [f_fast.txt]" << endl; tictac.Tic(); fExt.options.featsType = featFAST; fExt.options.FASTOptions.threshold = 15; //150; fExt.options.FASTOptions.min_distance = 4; fExt.options.FASTOptions.use_KLT_response = true; fExt.detectFeatures( img, featsFAST, 0, 500 /* max num feats */ ); cout << "Detected " << featsFAST.size() << " features in "; cout << format(" %.03fms",tictac.Tac()*1000) << endl << endl; featsFAST.saveToTextFile("f_fast.txt"); wind5.setWindowTitle("FAST detected features"); wind5.showImageAndPoints( img, featsFAST ); cout << "Computing SIFT descriptors only ... [f_harris+sift.txt]" << endl; tictac.Tic(); fExt.options.SIFTOptions.implementation = CFeatureExtraction::Hess; fExt.computeDescriptors( img, featsHarris, descSIFT ); cout << format(" %.03fms",tictac.Tac()*1000) << endl << endl; featsHarris.saveToTextFile("f_harris+sift.txt"); cout << "Extracting KLT features... [f_klt.txt]" << endl; tictac.Tic(); fExt.options.featsType = featKLT; fExt.options.KLTOptions.threshold = 0.05f; fExt.options.KLTOptions.radius = 5; fExt.detectFeatures( img, featsKLT, 0, 10 ); cout << "Detected " << featsKLT.size() << " features in "; cout << format(" %.03fms",tictac.Tac()*1000) << endl << endl; featsKLT.saveToTextFile("f_klt.txt"); wind2.setWindowTitle("KLT detected features"); wind2.showImageAndPoints( img, featsKLT ); cout << "Extracting SIFT features... [f_sift_hess.txt]" << endl; tictac.Tic(); fExt.options.featsType = featSIFT; fExt.options.SIFTOptions.implementation = CFeatureExtraction::Hess; fExt.detectFeatures( img, featsSIFT_Hess ); cout << "Detected " << featsSIFT_Hess.size() << " features in "; cout << format(" %.03fms",tictac.Tac()*1000) << endl << endl; featsSIFT_Hess.saveToTextFile("f_sift_hess.txt"); wind3.setWindowTitle("SIFT Hess detected features"); wind3.showImageAndPoints( img, featsSIFT_Hess ); cout << "Extracting SURF features... [f_surf.txt]" << endl; tictac.Tic(); fExt.options.featsType = featSURF; fExt.detectFeatures( img, featsSURF ); cout << "Detected " << featsSURF.size() << " features in "; cout << format(" %.03fms",tictac.Tac()*1000) << endl << endl; featsSURF.saveToTextFile("f_surf.txt"); wind4.setWindowTitle("SURF detected features"); wind4.showImageAndPoints( img, featsSURF ); cout << "Computing spin images descriptors only ... [f_harris+spinimgs.txt]" << endl; tictac.Tic(); fExt.options.SpinImagesOptions.radius = 13; fExt.options.SpinImagesOptions.hist_size_distance = 10; fExt.options.SpinImagesOptions.hist_size_intensity = 10; fExt.computeDescriptors( img, featsHarris, descSpinImages ); cout << format(" %.03fms",tictac.Tac()*1000) << endl << endl; featsHarris.saveToTextFile("f_harris+spinimgs.txt"); mrpt::system::pause(); return; }
/************************************************************************************************ * Start Function function * ************************************************************************************************/ string PlaceRecognition::startPlaceRecognition(CFeatureExtraction fext) { ofstream training_file; CTicTac feature_time; feature_time.Tic(); /// stores the labels for the i'th image instance for training and testing /// images int training_labels[len_training]; int testing_labels[len_testing]; /// The training model is built here all features are extracted in this /// part, takes 30 seconds for 900+900 images if (!trained_flag) { for (int i = 0; i < len_training; i++) { training[i].loadFromFile(training_paths.at(i)); fext.detectFeatures(training[i], feats_training[i], 0, numFeats); fext.computeDescriptors( training[i], feats_training[i], desc_to_compute); } for (int i = 0; i < len_testing; i++) { testing[i].loadFromFile(testing_paths.at(i)); fext.detectFeatures(testing[i], feats_testing[i], 0, numFeats); fext.computeDescriptors( testing[i], feats_testing[i], desc_to_compute); } trained_flag = true; feats_testing_org = feats_testing; } /// end of if feature extraction flag (trained flag) CTicTac label_time; label_time.Tic(); computeLabels(training_paths, training_count, training_labels); computeLabels(testing_paths, testing_count, testing_labels); int len_train_words; len_train_words = 0; // int len_test_words = 0; for (int i = 0; i < len_training; i++) len_train_words += feats_training[i].size(); if (!training_file_written_flag) { training_words2 = new vector<float>[len_train_words]; training_words1 = new vector<uint8_t>[len_train_words]; } int training_word_labels[len_train_words]; CTicTac training_time; training_time.Tic(); training_file.open("training_images_features.txt"); if (!training_file_written_flag) { training_file.clear(); int kount = 0; for (int i = 0; i < len_training; i++) { training_file << feats_training[i].size(); for (unsigned int j = 0; j < feats_training[i].size(); j++, kount++) { if (descriptor_selected == 0) { vector<uint8_t> temp_feat; temp_feat = feats_training[i].getByID(j).get()->descriptors.SIFT; training_words1[kount] = feats_training[i].getByID(j).get()->descriptors.SIFT; training_word_labels[kount] = training_labels[i]; for (unsigned int k = 0; k < temp_feat.size(); k++) training_file << (int)temp_feat.at(k) << " "; } else if (descriptor_selected == 1) { vector<float> temp_feat; temp_feat = feats_training[i].getByID(j).get()->descriptors.SURF; training_words2[kount] = feats_training[i].getByID(j).get()->descriptors.SURF; training_word_labels[kount] = training_labels[i]; for (unsigned int k = 0; k < temp_feat.size(); k++) { training_file << temp_feat.at(k) << " "; } } else if (descriptor_selected == 2) { vector<float> temp_feat; temp_feat = feats_training[i].getByID(j).get()->descriptors.SpinImg; training_words2[kount] = feats_training[i].getByID(j).get()->descriptors.SpinImg; training_word_labels[kount] = training_labels[i]; for (unsigned int k = 0; k < temp_feat.size(); k++) { training_file << temp_feat.at(k) << " "; } } else if (descriptor_selected == 3) ; // //!< Polar image descriptor else if (descriptor_selected == 4) ; // //!< Log-Polar image descriptor else if (descriptor_selected == 5) { vector<uint8_t> temp_feat; temp_feat = feats_training[i].getByID(j).get()->descriptors.ORB; training_words1[kount] = feats_training[i].getByID(j).get()->descriptors.ORB; training_word_labels[kount] = training_labels[i]; for (unsigned int k = 0; k < temp_feat.size(); k++) { int temp_var; //= (int) temp_feat.at(k); temp_var = (int)training_words1[kount].at(k); training_file << temp_var << " "; } } else if (descriptor_selected == 6) { vector<uint8_t> temp_feat; temp_feat = feats_training[i].getByID(j).get()->descriptors.BLD; training_words1[kount] = feats_training[i].getByID(j).get()->descriptors.BLD; training_word_labels[kount] = training_labels[i]; for (unsigned int k = 0; k < temp_feat.size(); k++) training_file << (int)temp_feat.at(k) << " "; } else if (descriptor_selected == 7) { vector<uint8_t> temp_feat; temp_feat = feats_training[i].getByID(j).get()->descriptors.LATCH; training_words1[kount] = feats_training[i].getByID(j).get()->descriptors.LATCH; training_word_labels[kount] = training_labels[i]; for (unsigned int k = 0; k < temp_feat.size(); k++) training_file << (int)temp_feat.at(k) << " "; } training_file << " #" << training_labels[i] << " $" << training_word_labels[kount] << endl; } // end of inner for loop for number of key-points } // end of outer for loop for number of images training_file.close(); // testing_file.close(); this->training_words_org = training_words2; this->training_words_org2 = training_words1; this->training_word_labels_org = training_word_labels; training_word_labels_org = new int[kount]; for (int i = 0; i < kount; i++) { training_word_labels_org[i] = training_word_labels[i]; } this->total_vocab_size_org = len_train_words; this->training_file_written_flag = true; } // end of writting training features to a file CTicTac testing_time; testing_time.Tic(); /// now extracting features for Place Recognition for testing dataset int predicted_classes[len_testing]; CTicTac time_prediction; time_prediction.Tic(); int predicted_Label = 1; if (descriptor_selected == 1) predicted_Label = predictLabel( feats_testing_org, training_words_org, training_word_labels_org, total_vocab_size_org, current_index_test_image); else predicted_Label = predictLabel2( feats_testing_org, training_words_org2, training_word_labels_org, total_vocab_size_org, current_index_test_image); current_index_test_image++; /// use a bag of words kind of framework here predicted_classes[current_index_test_image] = predicted_Label; if (predicted_classes[current_index_test_image] == testing_labels[current_index_test_image]) correct++; else incorrect++; stringstream output; output << endl << endl << "PLACE RECOGNITION RESULTS " << endl << endl << "actual label : " << findPlaceName( testing_labels[current_index_test_image % len_testing]) << ".\n" << endl << " predicted label : " << findPlaceName(predicted_Label) << ".\n" << endl << " correct = " << correct << " incorrect = " << incorrect << ".\n" << " Current Accuracy: " << 100.00 * (double)correct / (double)(incorrect + correct) << " % " << endl << " image " << current_index_test_image << " of " << len_testing << endl; return output.str(); }