예제 #1
0
// InterpolateLocalOrientation =============================================
CVector3 InterpolateLocalOrientation(CRotation globalRotA, CRotation globalRotB, CRotation globalRotParent, double localRotXA, double localRotXB, double blend)
{
   CRotation globalRotParentInv;
   globalRotParentInv.Invert(globalRotParent);

   CVector3 vxA, vxB;
	vxA.Set(1,0,0);
	vxB.Set(1,0,0);
	vxA.MulByMatrix3InPlace(globalRotA.GetMatrix());
	vxB.MulByMatrix3InPlace(globalRotB.GetMatrix());

   CVector3 vX, vY, vZ;
   vX = InterpolateVector(vxA, vxB, blend);
	vX.NormalizeInPlace();
	vX.MulByMatrix3InPlace(globalRotParentInv.GetMatrix());

	vZ.Set(0,0,1);
	vZ.MulByMatrix3InPlace(globalRotParentInv.GetMatrix());

	vY.Cross(vZ, vX);

	CRotation r;
	r.SetFromXYZAxes(vX, vY, vZ);

   CVector3 result = r.GetXYZAngles();
   result.PutX(localRotXB * blend + localRotXA * (1 - blend));
   result.PutY(RadiansToDegrees(result.GetY()));
   result.PutZ(RadiansToDegrees(result.GetZ()));

	return result;
}
예제 #2
0
// Update =====================================================
XSIPLUGINCALLBACK CStatus sn_squashstretch_op_Update( CRef& in_ctxt )
{
   OperatorContext ctxt( in_ctxt );
   KinematicState parentKine = (CRef)ctxt.GetInputValue(0);
   CTransformation parentXF = parentKine.GetTransform();
   CVector3 parentScl = parentXF.GetScaling();

   double blend = ctxt.GetParameterValue(L"blend");
   double driver = ctxt.GetParameterValue(L"driver");
   double sq_min = ctxt.GetParameterValue(L"sq_min");
   double sq_max = ctxt.GetParameterValue(L"sq_max");
   double st_min = ctxt.GetParameterValue(L"st_min");
   double st_max = ctxt.GetParameterValue(L"st_max");
   double sq_y = ctxt.GetParameterValue(L"sq_y");
   double sq_z = ctxt.GetParameterValue(L"sq_z");
   double st_y = ctxt.GetParameterValue(L"st_y");
   double st_z = ctxt.GetParameterValue(L"st_z");
   double sq_ratio = smoothstep(clamp(max(sq_max - driver,0) / max(sq_max - sq_min,0.0001),0,1));
   double st_ratio = smoothstep(1.0 - clamp(max(st_max - driver,0) / max(st_max - st_min,0.0001),0,1));
   sq_y *= sq_ratio;
   sq_z *= sq_ratio;
   st_y *= st_ratio;
   st_z *= st_ratio;

   parentScl.PutY(parentScl.GetY() * max( 0, 1.0 + sq_y + st_y ));
   parentScl.PutZ(parentScl.GetZ() * max( 0, 1.0 + sq_z + st_z ));

   parentScl.LinearlyInterpolate(parentXF.GetScaling(),parentScl,blend);

   parentXF.SetScaling(parentScl);

   KinematicState outKine(ctxt.GetOutputTarget());
   outKine.PutTransform(parentXF);
   return CStatus::OK;
}
예제 #3
0
// Update =====================================================
XSIPLUGINCALLBACK CStatus sn_squashstretch2_op_Update( CRef& in_ctxt )
{
   // Inputs -------------------------
   OperatorContext ctxt( in_ctxt );
   KinematicState k = (CRef)ctxt.GetInputValue(0);
   CTransformation t = k.GetTransform();

   KinematicState parent_kine = (CRef)ctxt.GetInputValue(1);
   CTransformation parent_trans = parent_kine.GetTransform();
   CVector3 parent_scl = parent_trans.GetScaling();

   double blend = ctxt.GetParameterValue(L"blend");
   double driver = ctxt.GetParameterValue(L"driver");

   double driver_min = ctxt.GetParameterValue(L"driver_min");
   double driver_ctr = ctxt.GetParameterValue(L"driver_ctr");
   double driver_max = ctxt.GetParameterValue(L"driver_max");

   double axis = ctxt.GetParameterValue(L"axis");

   double stretch = ctxt.GetParameterValue(L"stretch");
   double squash = ctxt.GetParameterValue(L"squash");

   // Ratio ---------------------------
   double st_ratio = clamp(max(driver - driver_ctr, 0) / max(driver_max - driver_ctr, 0.0001), 0,1);
   double sq_ratio = clamp(max(driver_ctr - driver, 0) / max(driver_ctr - driver_min, 0.0001), 0,1);

   squash *= sq_ratio;
   stretch *= st_ratio;

   CVector3 scl;
   scl.Set(parent_scl.GetX(), parent_scl.GetY(), parent_scl.GetZ());

   if (axis != 0)
      scl.PutX(parent_scl.GetX() * max( 0, 1.0 + squash + stretch ));

   if (axis != 1)
      scl.PutY(parent_scl.GetY() * max( 0, 1.0 + squash + stretch ));

   if (axis != 2)
      scl.PutZ(parent_scl.GetZ() * max( 0, 1.0 + squash + stretch ));

   scl.LinearlyInterpolate(parent_scl, scl, blend);

   t.SetScaling(scl);

   KinematicState outKine(ctxt.GetOutputTarget());
   outKine.PutTransform(t);

   return CStatus::OK;
}
예제 #4
0
XSI::CStatus AlembicSubD::Save(double time)
{
   // store the transform
   Primitive prim(GetRef(REF_PRIMITIVE));
   bool globalSpace = GetJob()->GetOption(L"globalSpace");

   // query the global space
   CTransformation globalXfo;
   if(globalSpace)
      globalXfo = KinematicState(GetRef(REF_GLOBAL_TRANS)).GetTransform(time);
   CTransformation globalRotation;
   globalRotation.SetRotation(globalXfo.GetRotation());

   // store the metadata
   SaveMetaData(GetRef(REF_NODE),this);

   // check if the mesh is animated
   if(mNumSamples > 0) {
      if(!isRefAnimated(GetRef(REF_PRIMITIVE), false, globalSpace))
         return CStatus::OK;
   }

   // determine if we are a pure point cache
   bool purePointCache = (bool)GetJob()->GetOption(L"exportPurePointCache");

   // access the mesh
   PolygonMesh mesh = prim.GetGeometry(time);
   CVector3Array pos = mesh.GetVertices().GetPositionArray();
   LONG vertCount = pos.GetCount();

   // prepare the bounding box
   Abc::Box3d bbox;

   // allocate the points and normals
   std::vector<Abc::V3f> posVec(vertCount);
   for(LONG i=0;i<vertCount;i++)
   {
      if(globalSpace)
         pos[i] = MapObjectPositionToWorldSpace(globalXfo,pos[i]);
      posVec[i].x = (float)pos[i].GetX();
      posVec[i].y = (float)pos[i].GetY();
      posVec[i].z = (float)pos[i].GetZ();
      bbox.extendBy(posVec[i]);
   }

   // allocate the sample for the points
   if(posVec.size() == 0)
   {
      bbox.extendBy(Abc::V3f(0,0,0));
      posVec.push_back(Abc::V3f(FLT_MAX,FLT_MAX,FLT_MAX));
   }
   Abc::P3fArraySample posSample(&posVec.front(),posVec.size());

   // store the positions && bbox
   mSubDSample.setPositions(posSample);
   mSubDSample.setSelfBounds(bbox);

   customAttributes.exportCustomAttributes(mesh);

   // abort here if we are just storing points
   if(purePointCache)
   {
      if(mNumSamples == 0)
      {
         // store a dummy empty topology
         mFaceCountVec.push_back(0);
         mFaceIndicesVec.push_back(0);
         Abc::Int32ArraySample faceCountSample(&mFaceCountVec.front(),mFaceCountVec.size());
         Abc::Int32ArraySample faceIndicesSample(&mFaceIndicesVec.front(),mFaceIndicesVec.size());
         mSubDSample.setFaceCounts(faceCountSample);
         mSubDSample.setFaceIndices(faceIndicesSample);
      }

      mSubDSchema.set(mSubDSample);
      mNumSamples++;
      return CStatus::OK;
   }

   // check if we support changing topology
   bool dynamicTopology = (bool)GetJob()->GetOption(L"exportDynamicTopology");

   CPolygonFaceRefArray faces = mesh.GetPolygons();
   LONG faceCount = faces.GetCount();
   LONG sampleCount = mesh.GetSamples().GetCount();

   // create a sample look table
   LONG offset = 0;
   CLongArray sampleLookup(sampleCount);
   for(LONG i=0;i<faces.GetCount();i++)
   {
      PolygonFace face(faces[i]);
      CLongArray samples = face.GetSamples().GetIndexArray();
      for(LONG j=samples.GetCount()-1;j>=0;j--)
         sampleLookup[offset++] = samples[j];
   }

   // check if we should export the velocities
   if(dynamicTopology)
   {
      ICEAttribute velocitiesAttr = mesh.GetICEAttributeFromName(L"PointVelocity");
      if(velocitiesAttr.IsDefined() && velocitiesAttr.IsValid())
      {
         CICEAttributeDataArrayVector3f velocitiesData;
         velocitiesAttr.GetDataArray(velocitiesData);

         mVelocitiesVec.resize(vertCount);
         for(LONG i=0;i<vertCount;i++)
         {
            CVector3 vel;
            vel.PutX(velocitiesData[i].GetX());
            vel.PutY(velocitiesData[i].GetY());
            vel.PutZ(velocitiesData[i].GetZ());
            if(globalSpace)
               vel = MapObjectPositionToWorldSpace(globalRotation,vel);
            mVelocitiesVec[i].x = (float)vel.GetX();
            mVelocitiesVec[i].y = (float)vel.GetY();
            mVelocitiesVec[i].z = (float)vel.GetZ();
         }

         if(mVelocitiesVec.size() == 0)
            mVelocitiesVec.push_back(Abc::V3f(0,0,0));
         Abc::V3fArraySample sample = Abc::V3fArraySample(&mVelocitiesVec.front(),mVelocitiesVec.size());
         mSubDSample.setVelocities(sample);
      }
   }

   // if we are the first frame!
   if(mNumSamples == 0 || dynamicTopology)
   {
      // we also need to store the face counts as well as face indices
      if(mFaceIndicesVec.size() != sampleCount || sampleCount == 0)
      {
         mFaceCountVec.resize(faceCount);
         mFaceIndicesVec.resize(sampleCount);

         offset = 0;
         for(LONG i=0;i<faceCount;i++)
         {
            PolygonFace face(faces[i]);
            CLongArray indices = face.GetVertices().GetIndexArray();
            mFaceCountVec[i] = indices.GetCount();
            for(LONG j=indices.GetCount()-1;j>=0;j--)
               mFaceIndicesVec[offset++] = indices[j];
         }

         if(mFaceIndicesVec.size() == 0)
         {
            mFaceCountVec.push_back(0);
            mFaceIndicesVec.push_back(0);
         }
         Abc::Int32ArraySample faceCountSample(&mFaceCountVec.front(),mFaceCountVec.size());
         Abc::Int32ArraySample faceIndicesSample(&mFaceIndicesVec.front(),mFaceIndicesVec.size());

         mSubDSample.setFaceCounts(faceCountSample);
         mSubDSample.setFaceIndices(faceIndicesSample);
      }

      // set the subd level
      Property geomApproxProp;
      prim.GetParent3DObject().GetPropertyFromName(L"geomapprox",geomApproxProp);
      mSubDSample.setFaceVaryingInterpolateBoundary(geomApproxProp.GetParameterValue(L"gapproxmordrsl"));

      // also check if we need to store UV
      CRefArray clusters = mesh.GetClusters();
      if((bool)GetJob()->GetOption(L"exportUVs"))
      {
         CGeometryAccessor accessor = mesh.GetGeometryAccessor(siConstructionModeSecondaryShape);
         CRefArray uvPropRefs = accessor.GetUVs();

         // if we now finally found a valid uvprop
         if(uvPropRefs.GetCount() > 0)
         {
            // ok, great, we found UVs, let's set them up
            if(mNumSamples == 0)
            {
               mUvVec.resize(uvPropRefs.GetCount());
               if((bool)GetJob()->GetOption(L"indexedUVs"))
                  mUvIndexVec.resize(uvPropRefs.GetCount());

               // query the names of all uv properties
               std::vector<std::string> uvSetNames;
               for(LONG i=0;i< uvPropRefs.GetCount();i++)
                  uvSetNames.push_back(ClusterProperty(uvPropRefs[i]).GetName().GetAsciiString());

               Abc::OStringArrayProperty uvSetNamesProperty = Abc::OStringArrayProperty(
                  mSubDSchema, ".uvSetNames", mSubDSchema.getMetaData(), GetJob()->GetAnimatedTs() );
               Abc::StringArraySample uvSetNamesSample(&uvSetNames.front(),uvSetNames.size());
               uvSetNamesProperty.set(uvSetNamesSample);
            }

            // loop over all uvsets
            for(LONG uvI=0;uvI<uvPropRefs.GetCount();uvI++)
            {
               mUvVec[uvI].resize(sampleCount);
               CDoubleArray uvValues = ClusterProperty(uvPropRefs[uvI]).GetElements().GetArray();

               for(LONG i=0;i<sampleCount;i++)
               {
                  mUvVec[uvI][i].x = (float)uvValues[sampleLookup[i] * 3 + 0];
                  mUvVec[uvI][i].y = (float)uvValues[sampleLookup[i] * 3 + 1];
               }

               // now let's sort the normals 
               size_t uvCount = mUvVec[uvI].size();
               size_t uvIndexCount = 0;
               if((bool)GetJob()->GetOption(L"indexedUVs")) {
                  std::map<SortableV2f,size_t> uvMap;
                  std::map<SortableV2f,size_t>::const_iterator it;
                  size_t sortedUVCount = 0;
                  std::vector<Abc::V2f> sortedUVVec;
                  mUvIndexVec[uvI].resize(mUvVec[uvI].size());
                  sortedUVVec.resize(mUvVec[uvI].size());

                  // loop over all uvs
                  for(size_t i=0;i<mUvVec[uvI].size();i++)
                  {
                     it = uvMap.find(mUvVec[uvI][i]);
                     if(it != uvMap.end())
                        mUvIndexVec[uvI][uvIndexCount++] = (Abc::uint32_t)it->second;
                     else
                     {
                        mUvIndexVec[uvI][uvIndexCount++] = (Abc::uint32_t)sortedUVCount;
                        uvMap.insert(std::pair<Abc::V2f,size_t>(mUvVec[uvI][i],(Abc::uint32_t)sortedUVCount));
                        sortedUVVec[sortedUVCount++] = mUvVec[uvI][i];
                     }
                  }

                  // use indexed uvs if they use less space
                  mUvVec[uvI] = sortedUVVec;
                  uvCount = sortedUVCount;

                  sortedUVCount = 0;
                  sortedUVVec.clear();
               }

              AbcG::OV2fGeomParam::Sample uvSample(Abc::V2fArraySample(&mUvVec[uvI].front(),uvCount),AbcG::kFacevaryingScope);
               if(mUvIndexVec.size() > 0 && uvIndexCount > 0)
                  uvSample.setIndices(Abc::UInt32ArraySample(&mUvIndexVec[uvI].front(),uvIndexCount));

               if(uvI == 0)
               {
                  mSubDSample.setUVs(uvSample);
               }
               else
               {
                  // create the uv param if required
                  if(mNumSamples == 0)
                  {
                     CString storedUvSetName = CString(L"uv") + CString(uvI);
                     mUvParams.push_back(AbcG::OV2fGeomParam( mSubDSchema, storedUvSetName.GetAsciiString(), uvIndexCount > 0,
                                        AbcG::kFacevaryingScope, 1, GetJob()->GetAnimatedTs()));
                  }
                  mUvParams[uvI-1].set(uvSample);
               }
            }

            // create the uv options
            if(mUvOptionsVec.size() == 0)
            {
				mUvOptionsProperty = Abc::OFloatArrayProperty(mSubDSchema, ".uvOptions", mSubDSchema.getMetaData(), GetJob()->GetAnimatedTs() );

               for(LONG uvI=0;uvI<uvPropRefs.GetCount();uvI++)
               {
				  //ESS_LOG_ERROR( "Cluster Property child name: " << ClusterProperty(uvPropRefs[uvI]).GetFullName().GetAsciiString() );
				  //ESS_LOG_ERROR( "Cluster Property child type: " << ClusterProperty(uvPropRefs[uvI]).GetType().GetAsciiString() );
				  
				  ClusterProperty clusterProperty = (ClusterProperty) uvPropRefs[uvI];
				  bool subdsmooth = false;
				  if( clusterProperty.GetType() == L"uvspace") {
				      subdsmooth = (bool)clusterProperty.GetParameter(L"subdsmooth").GetValue();      
					 // ESS_LOG_ERROR( "subdsmooth: " << subdsmooth );
				  }

                  CRefArray children = clusterProperty.GetNestedObjects();
                  bool uWrap = false;
                  bool vWrap = false;
                  for(LONG i=0; i<children.GetCount(); i++)
                  {
                     ProjectItem child(children.GetItem(i));
                     CString type = child.GetType();
					// ESS_LOG_ERROR( "  Cluster Property child type: " << type.GetAsciiString() );
                     if(type == L"uvprojdef")
                     {
                        uWrap = (bool)child.GetParameter(L"wrap_u").GetValue();
                        vWrap = (bool)child.GetParameter(L"wrap_v").GetValue();
                        break;
                     }
                  }

                  // uv wrapping
                  mUvOptionsVec.push_back(uWrap ? 1.0f : 0.0f);
                  mUvOptionsVec.push_back(vWrap ? 1.0f : 0.0f);
				  mUvOptionsVec.push_back(subdsmooth ? 1.0f : 0.0f);
               }
               mUvOptionsProperty.set(Abc::FloatArraySample(&mUvOptionsVec.front(),mUvOptionsVec.size()));
            }
         }
      }

      // sweet, now let's have a look at face sets
      if(GetJob()->GetOption(L"exportFaceSets") && mNumSamples == 0)
      {
         for(LONG i=0;i<clusters.GetCount();i++)
         {
            Cluster cluster(clusters[i]);
            if(!cluster.GetType().IsEqualNoCase(L"poly"))
               continue;

            CLongArray elements = cluster.GetElements().GetArray();
            if(elements.GetCount() == 0)
               continue;

            std::string name(cluster.GetName().GetAsciiString());

            mFaceSetsVec.push_back(std::vector<Abc::int32_t>());
            std::vector<Abc::int32_t> & faceSetVec = mFaceSetsVec.back();
            for(LONG j=0;j<elements.GetCount();j++)
               faceSetVec.push_back(elements[j]);

            if(faceSetVec.size() > 0)
            {
              AbcG::OFaceSet faceSet = mSubDSchema.createFaceSet(name);
              AbcG::OFaceSetSchema::Sample faceSetSample(Abc::Int32ArraySample(&faceSetVec.front(),faceSetVec.size()));
               faceSet.getSchema().set(faceSetSample);
            }
         }
      }

      // save the sample
      mSubDSchema.set(mSubDSample);

      // check if we need to export the bindpose
      if(GetJob()->GetOption(L"exportBindPose") && prim.GetParent3DObject().GetEnvelopes().GetCount() > 0 && mNumSamples == 0)
      {
         mBindPoseProperty = Abc::OV3fArrayProperty(mSubDSchema, ".bindpose", mSubDSchema.getMetaData(), GetJob()->GetAnimatedTs());

         // store the positions of the modeling stack into here
         PolygonMesh bindPoseGeo = prim.GetGeometry(time, siConstructionModeModeling);
         CVector3Array bindPosePos = bindPoseGeo.GetPoints().GetPositionArray();
         mBindPoseVec.resize((size_t)bindPosePos.GetCount());
         for(LONG i=0;i<bindPosePos.GetCount();i++)
         {
            mBindPoseVec[i].x = (float)bindPosePos[i].GetX();
            mBindPoseVec[i].y = (float)bindPosePos[i].GetY();
            mBindPoseVec[i].z = (float)bindPosePos[i].GetZ();
         }

         Abc::V3fArraySample sample;
         if(mBindPoseVec.size() > 0)
            sample = Abc::V3fArraySample(&mBindPoseVec.front(),mBindPoseVec.size());
         mBindPoseProperty.set(sample);
      }   
   }
   else
   {
      mSubDSchema.set(mSubDSample);
   }

   mNumSamples++;

   return CStatus::OK;
}