void testIsotropicTransition() { for (int count = 0; count < ITERATIONS; count++) { gcm_real la = ISOTROPIC_LAMBDA_LIMIT * (double) rand() / RAND_MAX; gcm_real mu = ISOTROPIC_MU_LIMIT * (double) rand() / RAND_MAX; gcm_real rho = ISOTROPIC_RHO_LIMIT * (double) rand() / RAND_MAX; gcm_real crackThreshold = numeric_limits<gcm_real>::infinity(); CalcNode isotropicNode; CalcNode anisotropicNode; IAnisotropicElasticMaterial::RheologyParameters params; params.c11 = params.c22 = params.c33 = la + 2 * mu; params.c44 = params.c55 = params.c66 = mu; params.c12 = params.c13 = params.c23 = la; params.c14 = params.c15 = params.c16 = 0.0; params.c24 = params.c25 = params.c26 = 0.0; params.c34 = params.c35 = params.c36 = 0.0; params.c45 = params.c46 = params.c56 = 0.0; IsotropicElasticMaterial m1("AnisotropicMatrix3D_IsotropicTransition_IEM", rho, crackThreshold, la, mu); MaterialImplementation m2("AnisotropicMatrix3D_IsotropicTransition_AEM", rho, crackThreshold, params); isotropicNode.setMaterialId(Engine::getInstance().addMaterial(&m1)); anisotropicNode.setMaterialId(Engine::getInstance().addMaterial(&m2)); RheologyMatrix3D& isotropicMatrix = isotropicNode.getRheologyMatrix(); RheologyMatrix3D& anisotropicMatrix = anisotropicNode.getRheologyMatrix(); for (int i = 0; i < 3; i++) { switch (i) { case 0: isotropicMatrix.createAx(isotropicNode); anisotropicMatrix.createAx(anisotropicNode); break; case 1: isotropicMatrix.createAy(isotropicNode); anisotropicMatrix.createAy(anisotropicNode); break; case 2: isotropicMatrix.createAz(isotropicNode); anisotropicMatrix.createAz(anisotropicNode); break; } for (int j = 0; j < 9; j++) for (int k = 0; k < 9; k++) ASSERT_NEAR(anisotropicMatrix.getA(j, k), isotropicMatrix.getA(j, k), EQUALITY_TOLERANCE); } Engine::getInstance().clear(); } };
void InterpolationFixedAxis::__doNextPartStep(CalcNode& cur_node, CalcNode& new_node, float time_step, int stage, Mesh* mesh) { assert_ge(stage, 0); assert_le(stage, 2); auto& engine = Engine::getInstance(); LOG_TRACE("Start node prepare for node " << cur_node.number); LOG_TRACE("Node: " << cur_node); // Variables used in calculations internally // Delta x on previous time layer for all the omegas // omega_new_time_layer(ksi) = omega_old_time_layer(ksi+dksi) float dksi[9]; // If the corresponding point on previous time layer is inner or not bool inner[9]; // We will store interpolated nodes on previous time layer here // We know that we need five nodes for each direction (corresponding to Lambdas -C1, -C2, 0, C2, C1) // TODO - We can deal with (lambda == 0) separately vector<CalcNode> previous_nodes; previous_nodes.resize(9); // Outer normal at current point float outer_normal[3]; // Number of outer characteristics int outer_count = prepare_node(cur_node, cur_node.getRheologyMatrix(), time_step, stage, mesh, dksi, inner, previous_nodes, outer_normal); LOG_TRACE("Done node prepare"); // If all the omegas are 'inner' // omega = Matrix_OMEGA * u // new_u = Matrix_OMEGA^(-1) * omega // TODO - to think - if all omegas are 'inner' can we skip matrix calculations and just use new_u = interpolated_u ? if (cur_node.isInner()) { LOG_TRACE("Start inner node calc"); if (outer_count == 0) // FIXME - hardcoded name engine.getVolumeCalculator("SimpleVolumeCalculator")->doCalc( new_node, cur_node.getRheologyMatrix(), previous_nodes); else THROW_BAD_MESH("Outer characteristic for internal node detected"); LOG_TRACE("Done inner node calc"); } if (cur_node.isBorder()) { LOG_TRACE("Start border node calc"); // FIXME_ASAP - do smth with this! // It is not stable now. See ugly hack below. // Think about: (a) cube, (b) rotated cube, (c) sphere. float val = (outer_normal[stage] >= 0 ? 1.0 : -1.0); outer_normal[0] = outer_normal[1] = outer_normal[2] = 0; outer_normal[stage] = val; // If there is no 'outer' omega - it is ok, border node can be inner for some directions if (outer_count == 0) { // FIXME - hardcoded name engine.getVolumeCalculator("SimpleVolumeCalculator")->doCalc( new_node, cur_node.getRheologyMatrix(), previous_nodes); } // If there are 3 'outer' omegas - we should use border or contact algorithm else if (outer_count == 3) { // Border if (!cur_node.isInContact() || cur_node.contactDirection != stage) { // FIXME int borderCondId = cur_node.getBorderConditionId(); LOG_TRACE("Using calculator: " << engine.getBorderCondition(borderCondId)->calc->getType()); engine.getBorderCondition(borderCondId)->doCalc(Engine::getInstance().getCurrentTime(), cur_node, new_node, cur_node.getRheologyMatrix(), previous_nodes, inner, outer_normal); } // Contact else { CalcNode& virt_node = engine.getVirtNode(cur_node.contactNodeNum); // FIXME - WA Mesh* virtMesh = (Mesh*) engine.getBody(virt_node.contactNodeNum)->getMeshes(); LOG_TRACE("We are going to calc contact. Target virt node: " << cur_node.contactNodeNum << " Target mesh: " << virt_node.contactNodeNum); LOG_TRACE("Mesh: " << mesh->getId() << " Virt mesh: " << virtMesh->getId() << "\nReal node: " << cur_node << "\nVirt node: " << virt_node); // Mark virt node as having contact state // TODO FIXME - most probably CollisionDetector should do it // But we should check it anycase virt_node.setInContact(true); //virt_node.contactNodeNum = cur_node.contactNodeNum; // Variables used in calculations internally // Delta x on previous time layer for all the omegas // omega_new_time_layer(ksi) = omega_old_time_layer(ksi+dksi) float virt_dksi[9]; // If the corresponding point on previous time layer is inner or not bool virt_inner[9]; // We will store interpolated nodes on previous time layer here // We know that we need five nodes for each direction (corresponding to Lambdas -C1, -C2, 0, C2, C1) // TODO - We can deal with (lambda == 0) separately vector<CalcNode> virt_previous_nodes; virt_previous_nodes.resize(9); // Outer normal at current point float virt_outer_normal[3]; // Number of outer characteristics int virt_outer_count = prepare_node(virt_node, virt_node.getRheologyMatrix(), time_step, stage, virtMesh, virt_dksi, virt_inner, virt_previous_nodes, virt_outer_normal); // FIXME_ASAP: WA switch (stage) { case 0: virt_node.getRheologyMatrix()->decomposeX(virt_node); break; case 1: virt_node.getRheologyMatrix()->decomposeY(virt_node); break; case 2: virt_node.getRheologyMatrix()->decomposeZ(virt_node); break; } // WA for sharp edges if(virt_outer_count == 0) { RheologyMatrixPtr curM = cur_node.getRheologyMatrix(); RheologyMatrixPtr virtM = virt_node.getRheologyMatrix(); int sign = 0; for(int i = 0; i < 9; i++) { if(!inner[i]) sign = (curM->getL(i,i) > 0 ? 1 : -1); } for(int i = 0; i < 9; i++) { if( virtM->getL(i,i) * sign < 0 ) virt_inner[i] = false; } virt_outer_count = 3; } // TODO - merge this condition with the next ones if (virt_outer_count != 3) { LOG_DEBUG("EXTENDED DEBUG INFO BEGINS"); prepare_node(virt_node, virt_node.getRheologyMatrix(), time_step, stage, virtMesh, virt_dksi, virt_inner, virt_previous_nodes, virt_outer_normal, true); LOG_DEBUG("EXTENDED DEBUG INFO ENDS"); LOG_DEBUG("Calc contact failed. Mesh: " << mesh->getId() << " Virt mesh: " << virtMesh->getId() << "\nReal node: " << cur_node << "\nVirt node: " << virt_node); LOG_DEBUG("There are " << virt_outer_count << " 'outer' characteristics for virt node."); for (int z = 0; z < 9; z++) { LOG_DEBUG("Dksi[" << z << "]: " << virt_dksi[z]); LOG_DEBUG("Inner[" << z << "]: " << virt_inner[z]); LOG_DEBUG("PrNodes[" << z << "]: " << virt_previous_nodes[z]); } THROW_BAD_METHOD("Illegal number of outer characteristics"); } // // Check that 'paired node' is in the direction of 'outer' characteristics // // If it is not the case - we have strange situation when // // we replace 'outer' points data with data of 'paired node' from different axis direction. // // // For all characteristics of real node and virt node // /*for(int i = 0; i < 9; i++) // { // float v_x_outer[3]; // float v_x_virt[3]; // // Real node - if characteristic is 'outer'*/ // /* if(!inner[i]) // { // // Find directions to corresponding 'outer' point and to virt 'paired node' // for(int j = 0; j < 3; j++) { // v_x_outer[j] = previous_nodes[ppoint_num[i]].coords[j] - cur_node.coords[j]; // v_x_virt[j] = virt_node.coords[j] - cur_node.coords[j]; // } // // If directions are different - smth bad happens // if( (v_x_outer[0] * v_x_virt[0] // + v_x_outer[1] * v_x_virt[1] + v_x_outer[2] * v_x_virt[2]) < 0 ) // { // *logger << "MESH " << mesh->zone_num << "REAL NODE " << cur_node.local_num << ": " // << "x: " << cur_node.coords[0] // << " y: " << cur_node.coords[1] // << " z: " < cur_node.coords[2]; // log_node_diagnostics(cur_node, stage, outer_normal, mesh, basis_num, rheologyMatrix, time_step, previous_nodes, ppoint_num, inner, dksi); // *logger << "'Outer' direction: " << v_x_outer[0] << " " // << v_x_outer[1] << " " < v_x_outer[2]; // *logger << "'Virt' direction: " << v_x_virt[0] << " " // << v_x_virt[1] << " " < v_x_virt[2]; // throw GCMException( GCMException::METHOD_EXCEPTION, "Bad contact from real node point of view: 'outer' and 'virt' directions are different"); // } // }*/ // // We switch it off because it conflicts sometimes with 'safe_direction' // /* // Virt node - if characteristic is 'outer' // if(!virt_inner[i]) // { // // Find directions to corresponding 'outer' point and to real 'paired node' // for(int j = 0; j < 3; j++) { // v_x_outer[j] = virt_previous_nodes[virt_ppoint_num[i]].coords[j] - virt_node.coords[j]; // v_x_virt[j] = cur_node.coords[j] - virt_node.coords[j]; // } // // If directions are different - smth bad happens // if( (v_x_outer[0] * v_x_virt[0] // + v_x_outer[1] * v_x_virt[1] + v_x_outer[2] * v_x_virt[2]) < 0 ) // { // *logger << "MESH " << mesh->zone_num << "REAL NODE " << cur_node.local_num << ": " // << "x: " << cur_node.coords[0] // << " y: " << cur_node.coords[1] // << " z: " < cur_node.coords[2]; // log_node_diagnostics(virt_node, stage, virt_outer_normal, virt_node.mesh, basis_num, virt_rheologyMatrix, time_step, virt_previous_nodes, virt_ppoint_num, virt_inner, virt_dksi); // *logger << "'Outer' direction: " << v_x_outer[0] << " " // << v_x_outer[1] << " "< v_x_outer[2]; // *logger << "'Virt' direction: " << v_x_virt[0] << " " // << v_x_virt[1] << " " < v_x_virt[2]; // throw GCMException( GCMException::METHOD_EXCEPTION, "Bad contact from virt node point of view: 'outer' and 'virt' directions are different"); // } // }*/ //// } // LOG_TRACE("Using calculator: " << engine.getContactCondition(cur_node.getContactConditionId())->calc->getType()); LOG_TRACE("Outer normal: " << outer_normal[0] << " " << outer_normal[1] << " " << outer_normal[2]); engine.getContactCondition(cur_node.getContactConditionId())->doCalc(Engine::getInstance().getCurrentTime(), cur_node, new_node, virt_node, cur_node.getRheologyMatrix(), previous_nodes, inner, virt_node.getRheologyMatrix(), virt_previous_nodes, virt_inner, outer_normal); } // It means smth went wrong. Just interpolate the values and report bad node. } else { //LOG_WARN("Outer count: " << outer_count); //LOG_WARN("Node: " << cur_node); //for (int z = 0; z < 9; z++) { // LOG_WARN("Dksi[" << z << "]: " << dksi[z]); // LOG_WARN("Inner[" << z << "]: " << inner[z]); // LOG_WARN("PrNodes[" << z << "]: " << previous_nodes[z]); //} //THROW_BAD_METHOD("Illegal number of outer characteristics"); // FIXME - implement border and contact completely LOG_TRACE("Using calculator: " << engine.getBorderCondition(0)->calc->getType()); engine.getBorderCondition(0)->doCalc(Engine::getInstance().getCurrentTime(), cur_node, new_node, cur_node.getRheologyMatrix(), previous_nodes, inner, outer_normal); cur_node.setNeighError(stage); } LOG_TRACE("Done border node calc"); } }