template<typename MatrixType> void vectorwiseop_matrix(const MatrixType& m) { typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVectorType; typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType; Index rows = m.rows(); Index cols = m.cols(); Index r = internal::random<Index>(0, rows-1), c = internal::random<Index>(0, cols-1); MatrixType m1 = MatrixType::Random(rows, cols), m2(rows, cols), m3(rows, cols); ColVectorType colvec = ColVectorType::Random(rows); RowVectorType rowvec = RowVectorType::Random(cols); // test addition m2 = m1; m2.colwise() += colvec; VERIFY_IS_APPROX(m2, m1.colwise() + colvec); VERIFY_IS_APPROX(m2.col(c), m1.col(c) + colvec); VERIFY_RAISES_ASSERT(m2.colwise() += colvec.transpose()); VERIFY_RAISES_ASSERT(m1.colwise() + colvec.transpose()); m2 = m1; m2.rowwise() += rowvec; VERIFY_IS_APPROX(m2, m1.rowwise() + rowvec); VERIFY_IS_APPROX(m2.row(r), m1.row(r) + rowvec); VERIFY_RAISES_ASSERT(m2.rowwise() += rowvec.transpose()); VERIFY_RAISES_ASSERT(m1.rowwise() + rowvec.transpose()); // test substraction m2 = m1; m2.colwise() -= colvec; VERIFY_IS_APPROX(m2, m1.colwise() - colvec); VERIFY_IS_APPROX(m2.col(c), m1.col(c) - colvec); VERIFY_RAISES_ASSERT(m2.colwise() -= colvec.transpose()); VERIFY_RAISES_ASSERT(m1.colwise() - colvec.transpose()); m2 = m1; m2.rowwise() -= rowvec; VERIFY_IS_APPROX(m2, m1.rowwise() - rowvec); VERIFY_IS_APPROX(m2.row(r), m1.row(r) - rowvec); VERIFY_RAISES_ASSERT(m2.rowwise() -= rowvec.transpose()); VERIFY_RAISES_ASSERT(m1.rowwise() - rowvec.transpose()); }
template<typename ArrayType> void vectorwiseop_array(const ArrayType& m) { typedef typename ArrayType::Index Index; typedef typename ArrayType::Scalar Scalar; typedef Array<Scalar, ArrayType::RowsAtCompileTime, 1> ColVectorType; typedef Array<Scalar, 1, ArrayType::ColsAtCompileTime> RowVectorType; Index rows = m.rows(); Index cols = m.cols(); Index r = internal::random<Index>(0, rows-1), c = internal::random<Index>(0, cols-1); ArrayType m1 = ArrayType::Random(rows, cols), m2(rows, cols), m3(rows, cols); ColVectorType colvec = ColVectorType::Random(rows); RowVectorType rowvec = RowVectorType::Random(cols); // test addition m2 = m1; m2.colwise() += colvec; VERIFY_IS_APPROX(m2, m1.colwise() + colvec); VERIFY_IS_APPROX(m2.col(c), m1.col(c) + colvec); VERIFY_RAISES_ASSERT(m2.colwise() += colvec.transpose()); VERIFY_RAISES_ASSERT(m1.colwise() + colvec.transpose()); m2 = m1; m2.rowwise() += rowvec; VERIFY_IS_APPROX(m2, m1.rowwise() + rowvec); VERIFY_IS_APPROX(m2.row(r), m1.row(r) + rowvec); VERIFY_RAISES_ASSERT(m2.rowwise() += rowvec.transpose()); VERIFY_RAISES_ASSERT(m1.rowwise() + rowvec.transpose()); // test substraction m2 = m1; m2.colwise() -= colvec; VERIFY_IS_APPROX(m2, m1.colwise() - colvec); VERIFY_IS_APPROX(m2.col(c), m1.col(c) - colvec); VERIFY_RAISES_ASSERT(m2.colwise() -= colvec.transpose()); VERIFY_RAISES_ASSERT(m1.colwise() - colvec.transpose()); m2 = m1; m2.rowwise() -= rowvec; VERIFY_IS_APPROX(m2, m1.rowwise() - rowvec); VERIFY_IS_APPROX(m2.row(r), m1.row(r) - rowvec); VERIFY_RAISES_ASSERT(m2.rowwise() -= rowvec.transpose()); VERIFY_RAISES_ASSERT(m1.rowwise() - rowvec.transpose()); // test multiplication m2 = m1; m2.colwise() *= colvec; VERIFY_IS_APPROX(m2, m1.colwise() * colvec); VERIFY_IS_APPROX(m2.col(c), m1.col(c) * colvec); VERIFY_RAISES_ASSERT(m2.colwise() *= colvec.transpose()); VERIFY_RAISES_ASSERT(m1.colwise() * colvec.transpose()); m2 = m1; m2.rowwise() *= rowvec; VERIFY_IS_APPROX(m2, m1.rowwise() * rowvec); VERIFY_IS_APPROX(m2.row(r), m1.row(r) * rowvec); VERIFY_RAISES_ASSERT(m2.rowwise() *= rowvec.transpose()); VERIFY_RAISES_ASSERT(m1.rowwise() * rowvec.transpose()); // test quotient m2 = m1; m2.colwise() /= colvec; VERIFY_IS_APPROX(m2, m1.colwise() / colvec); VERIFY_IS_APPROX(m2.col(c), m1.col(c) / colvec); VERIFY_RAISES_ASSERT(m2.colwise() /= colvec.transpose()); VERIFY_RAISES_ASSERT(m1.colwise() / colvec.transpose()); m2 = m1; m2.rowwise() /= rowvec; VERIFY_IS_APPROX(m2, m1.rowwise() / rowvec); VERIFY_IS_APPROX(m2.row(r), m1.row(r) / rowvec); VERIFY_RAISES_ASSERT(m2.rowwise() /= rowvec.transpose()); VERIFY_RAISES_ASSERT(m1.rowwise() / rowvec.transpose()); m2 = m1; // yes, there might be an aliasing issue there but ".rowwise() /=" // is supposed to evaluate " m2.colwise().sum()" into a temporary to avoid // evaluating the reduction multiple times if(ArrayType::RowsAtCompileTime>2 || ArrayType::RowsAtCompileTime==Dynamic) { m2.rowwise() /= m2.colwise().sum(); VERIFY_IS_APPROX(m2, m1.rowwise() / m1.colwise().sum()); } // all/any Array<bool,Dynamic,Dynamic> mb(rows,cols); mb = (m1.real()<=0.7).colwise().all(); VERIFY( (mb.col(c) == (m1.real().col(c)<=0.7).all()).all() ); mb = (m1.real()<=0.7).rowwise().all(); VERIFY( (mb.row(r) == (m1.real().row(r)<=0.7).all()).all() ); mb = (m1.real()>=0.7).colwise().any(); VERIFY( (mb.col(c) == (m1.real().col(c)>=0.7).any()).all() ); mb = (m1.real()>=0.7).rowwise().any(); VERIFY( (mb.row(r) == (m1.real().row(r)>=0.7).any()).all() ); }
template<typename MatrixType> void vectorwiseop_matrix(const MatrixType& m) { typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVectorType; typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType; typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealColVectorType; typedef Matrix<RealScalar, 1, MatrixType::ColsAtCompileTime> RealRowVectorType; Index rows = m.rows(); Index cols = m.cols(); Index r = internal::random<Index>(0, rows-1), c = internal::random<Index>(0, cols-1); MatrixType m1 = MatrixType::Random(rows, cols), m2(rows, cols), m3(rows, cols); ColVectorType colvec = ColVectorType::Random(rows); RowVectorType rowvec = RowVectorType::Random(cols); RealColVectorType rcres; RealRowVectorType rrres; // test addition m2 = m1; m2.colwise() += colvec; VERIFY_IS_APPROX(m2, m1.colwise() + colvec); VERIFY_IS_APPROX(m2.col(c), m1.col(c) + colvec); if(rows>1) { VERIFY_RAISES_ASSERT(m2.colwise() += colvec.transpose()); VERIFY_RAISES_ASSERT(m1.colwise() + colvec.transpose()); } m2 = m1; m2.rowwise() += rowvec; VERIFY_IS_APPROX(m2, m1.rowwise() + rowvec); VERIFY_IS_APPROX(m2.row(r), m1.row(r) + rowvec); if(cols>1) { VERIFY_RAISES_ASSERT(m2.rowwise() += rowvec.transpose()); VERIFY_RAISES_ASSERT(m1.rowwise() + rowvec.transpose()); } // test substraction m2 = m1; m2.colwise() -= colvec; VERIFY_IS_APPROX(m2, m1.colwise() - colvec); VERIFY_IS_APPROX(m2.col(c), m1.col(c) - colvec); if(rows>1) { VERIFY_RAISES_ASSERT(m2.colwise() -= colvec.transpose()); VERIFY_RAISES_ASSERT(m1.colwise() - colvec.transpose()); } m2 = m1; m2.rowwise() -= rowvec; VERIFY_IS_APPROX(m2, m1.rowwise() - rowvec); VERIFY_IS_APPROX(m2.row(r), m1.row(r) - rowvec); if(cols>1) { VERIFY_RAISES_ASSERT(m2.rowwise() -= rowvec.transpose()); VERIFY_RAISES_ASSERT(m1.rowwise() - rowvec.transpose()); } // test norm rrres = m1.colwise().norm(); VERIFY_IS_APPROX(rrres(c), m1.col(c).norm()); rcres = m1.rowwise().norm(); VERIFY_IS_APPROX(rcres(r), m1.row(r).norm()); VERIFY_IS_APPROX(m1.cwiseAbs().colwise().sum(), m1.colwise().template lpNorm<1>()); VERIFY_IS_APPROX(m1.cwiseAbs().rowwise().sum(), m1.rowwise().template lpNorm<1>()); VERIFY_IS_APPROX(m1.cwiseAbs().colwise().maxCoeff(), m1.colwise().template lpNorm<Infinity>()); VERIFY_IS_APPROX(m1.cwiseAbs().rowwise().maxCoeff(), m1.rowwise().template lpNorm<Infinity>()); // regression for bug 1158 VERIFY_IS_APPROX(m1.cwiseAbs().colwise().sum().x(), m1.col(0).cwiseAbs().sum()); // test normalized m2 = m1.colwise().normalized(); VERIFY_IS_APPROX(m2.col(c), m1.col(c).normalized()); m2 = m1.rowwise().normalized(); VERIFY_IS_APPROX(m2.row(r), m1.row(r).normalized()); // test normalize m2 = m1; m2.colwise().normalize(); VERIFY_IS_APPROX(m2.col(c), m1.col(c).normalized()); m2 = m1; m2.rowwise().normalize(); VERIFY_IS_APPROX(m2.row(r), m1.row(r).normalized()); // test with partial reduction of products Matrix<Scalar,MatrixType::RowsAtCompileTime,MatrixType::RowsAtCompileTime> m1m1 = m1 * m1.transpose(); VERIFY_IS_APPROX( (m1 * m1.transpose()).colwise().sum(), m1m1.colwise().sum()); Matrix<Scalar,1,MatrixType::RowsAtCompileTime> tmp(rows); VERIFY_EVALUATION_COUNT( tmp = (m1 * m1.transpose()).colwise().sum(), (MatrixType::RowsAtCompileTime==Dynamic ? 1 : 0)); m2 = m1.rowwise() - (m1.colwise().sum()/RealScalar(m1.rows())).eval(); m1 = m1.rowwise() - (m1.colwise().sum()/RealScalar(m1.rows())); VERIFY_IS_APPROX( m1, m2 ); VERIFY_EVALUATION_COUNT( m2 = (m1.rowwise() - m1.colwise().sum()/RealScalar(m1.rows())), (MatrixType::RowsAtCompileTime==Dynamic && MatrixType::ColsAtCompileTime!=1 ? 1 : 0) ); }
template<typename ArrayType> void vectorwiseop_array(const ArrayType& m) { typedef typename ArrayType::Index Index; typedef typename ArrayType::Scalar Scalar; typedef Array<Scalar, ArrayType::RowsAtCompileTime, 1> ColVectorType; typedef Array<Scalar, 1, ArrayType::ColsAtCompileTime> RowVectorType; Index rows = m.rows(); Index cols = m.cols(); Index r = internal::random<Index>(0, rows-1), c = internal::random<Index>(0, cols-1); ArrayType m1 = ArrayType::Random(rows, cols), m2(rows, cols), m3(rows, cols); ColVectorType colvec = ColVectorType::Random(rows); RowVectorType rowvec = RowVectorType::Random(cols); // test addition m2 = m1; m2.colwise() += colvec; VERIFY_IS_APPROX(m2, m1.colwise() + colvec); VERIFY_IS_APPROX(m2.col(c), m1.col(c) + colvec); VERIFY_RAISES_ASSERT(m2.colwise() += colvec.transpose()); VERIFY_RAISES_ASSERT(m1.colwise() + colvec.transpose()); m2 = m1; m2.rowwise() += rowvec; VERIFY_IS_APPROX(m2, m1.rowwise() + rowvec); VERIFY_IS_APPROX(m2.row(r), m1.row(r) + rowvec); VERIFY_RAISES_ASSERT(m2.rowwise() += rowvec.transpose()); VERIFY_RAISES_ASSERT(m1.rowwise() + rowvec.transpose()); // test substraction m2 = m1; m2.colwise() -= colvec; VERIFY_IS_APPROX(m2, m1.colwise() - colvec); VERIFY_IS_APPROX(m2.col(c), m1.col(c) - colvec); VERIFY_RAISES_ASSERT(m2.colwise() -= colvec.transpose()); VERIFY_RAISES_ASSERT(m1.colwise() - colvec.transpose()); m2 = m1; m2.rowwise() -= rowvec; VERIFY_IS_APPROX(m2, m1.rowwise() - rowvec); VERIFY_IS_APPROX(m2.row(r), m1.row(r) - rowvec); VERIFY_RAISES_ASSERT(m2.rowwise() -= rowvec.transpose()); VERIFY_RAISES_ASSERT(m1.rowwise() - rowvec.transpose()); // test multiplication m2 = m1; m2.colwise() *= colvec; VERIFY_IS_APPROX(m2, m1.colwise() * colvec); VERIFY_IS_APPROX(m2.col(c), m1.col(c) * colvec); VERIFY_RAISES_ASSERT(m2.colwise() *= colvec.transpose()); VERIFY_RAISES_ASSERT(m1.colwise() * colvec.transpose()); m2 = m1; m2.rowwise() *= rowvec; VERIFY_IS_APPROX(m2, m1.rowwise() * rowvec); VERIFY_IS_APPROX(m2.row(r), m1.row(r) * rowvec); VERIFY_RAISES_ASSERT(m2.rowwise() *= rowvec.transpose()); VERIFY_RAISES_ASSERT(m1.rowwise() * rowvec.transpose()); // test quotient m2 = m1; m2.colwise() /= colvec; VERIFY_IS_APPROX(m2, m1.colwise() / colvec); VERIFY_IS_APPROX(m2.col(c), m1.col(c) / colvec); VERIFY_RAISES_ASSERT(m2.colwise() /= colvec.transpose()); VERIFY_RAISES_ASSERT(m1.colwise() / colvec.transpose()); m2 = m1; m2.rowwise() /= rowvec; VERIFY_IS_APPROX(m2, m1.rowwise() / rowvec); VERIFY_IS_APPROX(m2.row(r), m1.row(r) / rowvec); VERIFY_RAISES_ASSERT(m2.rowwise() /= rowvec.transpose()); VERIFY_RAISES_ASSERT(m1.rowwise() / rowvec.transpose()); }