/**
 * Takes two paths and time ranges on them, with the invariant that the
 * paths are monotonic on the range.  Splits A when the linear intersection
 * doesn't exist or is inaccurate.  Uses the fact that it is monotonic to
 * do very fast local bounds.
 */
void mono_pair(Path const &A, double Al, double Ah,
               Path const &B, double Bl, double Bh,
               Crossings &ret, double /*tol*/, unsigned depth = 0) {
    if( Al >= Ah || Bl >= Bh) return;
    std::cout << " " << depth << "[" << Al << ", " << Ah << "]" << "[" << Bl << ", " << Bh << "]";

    Point A0 = A.pointAt(Al), A1 = A.pointAt(Ah),
          B0 = B.pointAt(Bl), B1 = B.pointAt(Bh);
    //inline code that this implies? (without rect/interval construction)
    if(!Rect(A0, A1).intersects(Rect(B0, B1)) || A0 == A1 || B0 == B1) return;
    
    //Checks the general linearity of the function
    //if((depth > 12) || (A.boundsLocal(Interval(Al, Ah), 1).maxExtent() < 0.1 
    //                &&  B.boundsLocal(Interval(Bl, Bh), 1).maxExtent() < 0.1)) {
        double tA, tB, c;
        if(linear_intersect(A0, A1, B0, B1,
                            tA, tB, c)) {
            tA = tA * (Ah - Al) + Al;
            tB = tB * (Bh - Bl) + Bl;
            if(depth % 2)
                ret.push_back(Crossing(tB, tA, c < 0));
            else
                ret.push_back(Crossing(tA, tB, c > 0));
            return;
        }
    //}
    if(depth > 12) return;
    double mid = (Bl + Bh)/2;
    mono_pair(B, Bl, mid,
              A, Al, Ah,
              ret, depth+1);
    mono_pair(B, mid, Bh,
              A, Al, Ah,
              ret, depth+1);
}
Crossings reverse_ta(Crossings const &cr, std::vector<double> max) {
    Crossings ret;
    for(Crossings::const_iterator i = cr.begin(); i != cr.end(); ++i) {
        double mx = max[i->a];
        ret.push_back(Crossing(i->ta > mx+0.01 ? (1 - (i->ta - mx) + mx) : mx - i->ta,
                               i->tb, !i->dir));
    }
    return ret;
}
Crossings reverse_tb(Crossings const &cr, unsigned split, std::vector<double> max) {
    Crossings ret;
    for(Crossings::const_iterator i = cr.begin(); i != cr.end(); ++i) {
        double mx = max[i->b - split];
        std::cout << i->b << "\n";
        ret.push_back(Crossing(i->ta, i->tb > mx+0.01 ? (1 - (i->tb - mx) + mx) : mx - i->tb,
                               !i->dir));
    }
    return ret;
}
/**
 * This uses the local bounds functions of curves to generically intersect two.
 * It passes in the curves, time intervals, and keeps track of depth, while
 * returning the results through the Crossings parameter.
 */
void pair_intersect(Curve const & A, double Al, double Ah, 
                    Curve const & B, double Bl, double Bh,
                    Crossings &ret,  unsigned depth=0) {
   // std::cout << depth << "(" << Al << ", " << Ah << ")\n";
    OptRect Ar = A.boundsLocal(Interval(Al, Ah));
    if (!Ar) return;

    OptRect Br = B.boundsLocal(Interval(Bl, Bh));
    if (!Br) return;
    
    if(! Ar->intersects(*Br)) return;
    
    //Checks the general linearity of the function
    if((depth > 12)) { // || (A.boundsLocal(Interval(Al, Ah), 1).maxExtent() < 0.1 
                    //&&  B.boundsLocal(Interval(Bl, Bh), 1).maxExtent() < 0.1)) {
        double tA, tB, c;
        if(linear_intersect(A.pointAt(Al), A.pointAt(Ah), 
                            B.pointAt(Bl), B.pointAt(Bh), 
                            tA, tB, c)) {
            tA = tA * (Ah - Al) + Al;
            tB = tB * (Bh - Bl) + Bl;
            intersect_polish_root(A, tA,
                                  B, tB);
            if(depth % 2)
                ret.push_back(Crossing(tB, tA, c < 0));
            else
                ret.push_back(Crossing(tA, tB, c > 0));
            return;
        }
    }
    if(depth > 12) return;
    double mid = (Bl + Bh)/2;
    pair_intersect(B, Bl, mid,
                    A, Al, Ah,
                    ret, depth+1);
    pair_intersect(B, mid, Bh,
                    A, Al, Ah,
                    ret, depth+1);
}
예제 #5
0
//same as below but curves not paths
void mono_intersect(Curve const &A, double Al, double Ah,
                    Curve const &B, double Bl, double Bh,
                    Crossings &ret, double tol = 0.1, unsigned depth = 0) {
    if( Al >= Ah || Bl >= Bh) return;
    //std::cout << " " << depth << "[" << Al << ", " << Ah << "]" << "[" << Bl << ", " << Bh << "]";

    Point A0 = A.pointAt(Al), A1 = A.pointAt(Ah),
          B0 = B.pointAt(Bl), B1 = B.pointAt(Bh);
    //inline code that this implies? (without rect/interval construction)
    Rect Ar = Rect(A0, A1), Br = Rect(B0, B1);
    if(!Ar.intersects(Br) || A0 == A1 || B0 == B1) return;

    if(depth > 12 || (Ar.maxExtent() < tol && Ar.maxExtent() < tol)) {
        double tA, tB, c;
        if(linear_intersect(A.pointAt(Al), A.pointAt(Ah),
                            B.pointAt(Bl), B.pointAt(Bh),
                            tA, tB, c)) {
            tA = tA * (Ah - Al) + Al;
            tB = tB * (Bh - Bl) + Bl;
            intersect_polish_root(A, tA,
                                  B, tB);
            if(depth % 2)
                ret.push_back(Crossing(tB, tA, c < 0));
            else
                ret.push_back(Crossing(tA, tB, c > 0));
            return;
        }
    }
    if(depth > 12) return;
    double mid = (Bl + Bh)/2;
    mono_intersect(B, Bl, mid,
              A, Al, Ah,
              ret, tol, depth+1);
    mono_intersect(B, mid, Bh,
              A, Al, Ah,
              ret, tol, depth+1);
}